0% found this document useful (0 votes)
76 views69 pages

Simplex Dual

The document describes a linear programming problem and its dual formulation. The direct problem seeks to maximize an objective function Z = 4x1 + 3x2 - x3, subject to three inequality constraints. The dual problem seeks to minimize the dual objective, subject to the dual constraints formed from the direct problem coefficients and right hand sides.

Uploaded by

JoseLuis
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
76 views69 pages

Simplex Dual

The document describes a linear programming problem and its dual formulation. The direct problem seeks to maximize an objective function Z = 4x1 + 3x2 - x3, subject to three inequality constraints. The dual problem seeks to minimize the dual objective, subject to the dual constraints formed from the direct problem coefficients and right hand sides.

Uploaded by

JoseLuis
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 69

FORMULACIÓN DIRECTA

A B
EST) 6 x1 + 16 x2 ≤ 48000
SOL) 12 x1 + 6 x2 ≤ 42000

PIN) 9 x1 + 9 x2 ≤ 36000

Z = 4 x1 + 3 x2 ⇒ Máx

x1 , x2 ≥ 0
FORMULACIÓN DUAL

EST SOL PIN


A)
B)
FORMULACIÓN DIRECTA
A B
EST) 6 x1 + 16 x2 ≤ 48000
SOL) 12 x1 + 6 x2 ≤ 42000

PIN) 9 x1 + 9 x2 ≤ 36000

Z = 4 x1 + 3 x2 ⇒ Máx

x1 , x2 ≥ 0
FORMULACIÓN DUAL

EST SOL PIN


A) 6 y1 + 12 y2 + 9 y3 ≥ 4
B)
FORMULACIÓN DIRECTA
A B
EST) 6 x1 + 16 x2 ≤ 48000
SOL) 12 x1 + 6 x2 ≤ 42000

PIN) 9 x1 + 9 x2 ≤ 36000

Z = 4 x1 + 3 x2 ⇒ Máx

x1 , x2 ≥ 0
FORMULACIÓN DUAL

EST SOL PIN


A) 6 y1 + 12 y2 + 9 y3 ≥ 4
B) 16 y1 + 6 y2 + 9 y3 ≥ 3

Z = 48.000 y1 + 42.000 y2 + 36.000 y3 ⇒ Mín

y1 , y2 , y3 ≥ 0
FORMULACIÓN DIRECTA
A B
EST) 6 x1 + 16 x2 ≤ 48000
SOL) 12 x1 + 6 x2 ≤ 42000

PIN) 9 x1 + 9 x2 ≤ 36000

Z = 4 x1 + 3 x2 ⇒ Máx

x1 , x2 ≥ 0
FORMULACIÓN DUAL

EST SOL PIN


A) 6 y1 + 12 y2 + 9 y3 ≥ 4
B) 16 y1 + 6 y2 + 9 y3 ≥ 3

Z = 48.000 y1 + 42.000 y2 + 36.000 y3 ⇒ Mín


FORMULACIÓN DUAL

EST SOL PIN


A) 6 y1 + 12 y2 + 9 y3 ≥ 4
B) 16 y1 + 6 y2 + 9 y3 ≥ 3

Z = 48.000 y1 + 42.000 y2 + 36.000 y3 ⇒ Mín

yi ≥ 0
DIRECTO DUAL

MAX: Z = 4 x1 + 3 x2 MIN: 48.000 y1 + 42.000 y2 + 36.000 y3

6 x1 + 16 x2 ≤ 48000
6 y1 + 12 y2 + 9 y3 ≥ 4
12 x1 + 6 x2 ≤ 42000
16 y1 + 6 y2 + 9 y3 ≥ 3
9 x1 + 9 x2 ≤ 36000
yi ≥ 0
xi ≥ 0
EST SOL PIN A B

A) 6 y1 + 12 y2 + 9 y3 - y4 = 4
B) 16 y1 + 6 y2 + 9 y3 - y5 = 3

Z = 48.000 y1 + 42.000 y2 + 36.000 y3 ⇒ Mín

yi ≥ 0
cj 48000 42000 36000 0 0 M M
ck xk Bk A’1 A’2 A’3 A’4 A’5 A’µ1 A’µ2 bi/aij
M y4 4 6 12 9 0.6667
-1 1
M y5 3 16 6 9 -1 1 0.1875
22M 18M 18M
Z =7M -M -M 0 0 zj-cj
-48000 -42000 -36000

ck xk Bk A’1 A’2 A’3 A’4 A’5 A’µ1 A’µ2 bi/aij

M y4 2.875 9.75 5.625 -0.375 -0.375 0.2949


-1 1
48000 y1 0.1875 1 0.375 0.5625 -0.0625 0.0625 0.5

9.75M 5.625M -0.375M -1.375M


Z = 2.875 M +9000 0 -M 0 zj-cj
-24000 -9000 +3000 +3000

ck xk Bk A’1 A’2 A’3 A’4 A’5 A’µ1 A’µ2 bi/aij

42000 y2 0.2949 1 0.5769 -0.1026 -0.0384 0.1026 -0.375 0.5111


48000 y1 0.0769 1 0.3462 0.0384 -0.0769 -0.0384 0.0625 0.2222

-12750
Z = 16076,92 0 0 4846.15 -2461.54 -2076.92 2466-M zj-cj
-M

ck xk Bk A’1 A’2 A’3 A’4 A’5 A’µ1 A’µ2

42000 y2 0.1667 -1.6667 1 -0.1667 0.1667 0.1667 -0.1667


36000 y3 0.2222 2.8889 1 0.1111 -0.2222 -0.1111 0.2222

Z = 15000 -14000 0 0 -3000 -1000 3000-M 1000-M


TEOREMA FUNDAMENTAL DE
LA DUALIDAD

DIRECTA FINITA ⇔ DUAL FINITA


ZÓPTIMO DIRECTO = ZÓPTIMO DUAL

DEGENERADA ⇔ ALTERNATIVA

INCOMPATIBLE ⇔ POL. ABIERTO


PROBLEMA DIRECTO

FORMA CANÓNICA FORMA ESTÁNDAR

TRANSFORMACIÓN TRANSFORMACIÓN
SIMÉTRICA ASIMÉTRICA

PROBLEMA DUAL
DUAL SIMÉTRICO
DIRECTO DUAL
A·X≤B
X≥0
Z = C · X → Máx
DUAL SIMÉTRICO
DIRECTO DUAL
A·X≤B AT · Y ≥ C
X≥0 Y≥0
Z = C · X → Máx Z = B · Y → Mín
DUAL SIMÉTRICO
DIRECTO DUAL
A·X≤B AT · Y ≥ C
X≥0 Y≥0
Z = C · X → Máx Z = B · Y → Mín
A·X≥B
X≥0
Z = C · X → Mín
DUAL SIMÉTRICO
DIRECTO DUAL
A·X≤B AT · Y ≥ C
X≥0 Y≥0
Z = C · X → Máx Z = B · Y → Mín
A·X≥B AT · Y ≤ C
X≥0 Y≥0
Z = C · X → Mín Z = B · Y → Máx
DUAL ASIMÉTRICO
DIRECTO DUAL
A·X=B
X≥0
Z = C · X → Máx
DUAL ASIMÉTRICO
DIRECTO DUAL
A·X=B AT · Y ≥ C
X≥0
Z = C · X → Máx Z = B · Y → Mín
DUAL ASIMÉTRICO
DIRECTO DUAL
A·X=B AT · Y ≥ C
X≥0
Z = C · X → Máx Z = B · Y → Mín

A·X=B
X≥0
Z = C · X → Mín
DUAL ASIMÉTRICO
DIRECTO DUAL
A·X=B AT · Y ≥ C
X≥0
Z = C · X → Máx Z = B · Y → Mín

A·X=B AT · Y ≤ C
X≥0
Z = C · X → Mín Z = B · Y → Máx
DUAL SIMÉTRICO
MAX: Z = 4 x1 + 3 x 2 – x 3

16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 ≥ 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0
MAX: Z = 4 x1 + 3 x 2 – x 3

16 x1 + 6 x2 + 2 x3 ≤ 480
– 4 x1 – 5 x2 + 7 x3 ≤ – 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0
DIRECTO MAX: Z = 4 x1 + 3 x2 – x3
FORMA
16 x1 + 6 x2 + 2 x3 ≤ 480
CANÓNICA
– 4 x1 – 5 x2 + 7 x3 ≤ – 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0

MIN: Z = 480 y1 - 100 y2 + 500 y3

16 y1 – 4 y2 + 10 y3 ≥ 4
6 y1 – 5 y2 + 8 y3 ≥ 3
2 y1 + 7 y2 – 3 y3 ≥ – 1

yi ≥ 0
DIRECTO MAX: Z = 4 x1 + 3 x2 – x3
16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1+ 5 x2 – 7 x3 ≥ 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0

DUAL MIN: Z = 480 y1 - 100 y2 + 500 y3

16 y1 – 4 y2 + 10 y3 ≥ 4
6 y1 – 5 y2 + 8 y3 ≥ 3
– 2 y1 – 7 y2 + 3 y3 ≤ 1

yi ≥ 0
MAX: Z = 4 x1 + 3 x 2 – x 3

16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 = 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0
MAX: Z = 4 x1 + 3 x 2 – x 3

16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 ≤ 100
4 x1 + 5 x2 – 7 x3 ≥ 100
10 x1 + 8 x2 – 3 x3 ≤ 500
xi ≥ 0
MAX: Z = 4 x1 + 3 x 2 – x 3

16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 ≤ 100
– 4 x1 – 5 x2 + 7 x3 ≤ – 100
10 x1 + 8 x2 – 3 x3 ≤ 500
xi ≥ 0
MAX: Z = 4 x1 + 3 x2 – x3
DIRECTO
FORMA 16 x1 + 6 x2 + 2 x3 ≤ 480
CANÓNICA
4 x1 + 5 x2 – 7 x3 ≤ 100
– 4 x1 – 5 x2 + 7 x3 ≤ – 100
10 x1 + 8 x2 – 3 x3 ≤ 500
xi ≥ 0

MIN: Z = 480 y1 + 100 y2 – 100 y2’ + 500 y3

16 y1 + 4 y2 – 4 y2’+ 10 y3 ≥ 4
6 y1 + 5 y2 – 5 y2’+ 8 y3 ≥ 3
2 y1 – 7 y2 + 7 y2’ – 3 y3 ≥ – 1

yi ≥ 0
MAX: Z = 4 x1 + 3 x2 – x3
DIRECTO
16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 = 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0

MIN: Z = 480 y1 + 100 y2 – 100 y2’ + 500 y3


DUAL
16 y1 + 4 y2 – 4 y2’+ 10 y3 ≥ 4
6 y1 + 5 y2 – 5 y2’+ 8 y3 ≥ 3
– 2 y1 + 7 y2 – 7 y2’ + 3 y3 ≤ 1

yi ≥ 0
DUAL ASIMÉTRICO
MAX: Z = 4 x1 + 3 x 2 – x 3

16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 = 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0
FORMA ESTÁNDAR

MAX: Z = 4 x1 + 3 x2 – x3

16 x1 + 6 x2 + 2 x3 + x4 = 480
4 x1 + 5 x2 – 7 x3 = 100
10 x1 + 8 x2 – 3 x3 + x5 = 500

xi ≥ 0
DIRECTO MAX: Z = 4 x1 + 3 x2 – x3

16 x1 + 6 x2 + 2 x3 ≤ 480
4 x1 + 5 x2 – 7 x3 = 100
10 x1 + 8 x2 – 3 x3 ≤ 500

xi ≥ 0

MIN: Z = 480 y1 + 100 y2 + 500 y3


DUAL
16 y1 + 4 y2 + 10 y3 ≥ 4
6 y1 + 5 y2 + 8 y3 ≥ 3
2 y1 – 7 y2 – 7 3 y3 ≥–1
y1 ≥0
y3 ≥0
PASAJE
DE TABLA ÓPTIMA DIRECTA
A TABLA ÓPTIMA DUAL
(Y VICEVERSA)
MAX: Z = 4 x1 + 3 x2

Sujeto a:
6 x1 + 16 x2 ≤ 48000
12 x1 + 6 x2 ≤ 42000
9 x1 + 9 x2 ≤ 36000

siendo: x1, x2 ≥ 0 y continuas


0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

Z = 15.000
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

y2
y3
Z = 15.000
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

42.000 y2 1/6
36.000 y3 2/9
Z = 15.000
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

42.000 y2 1/6 1
36.000 y3 2/9 1
Z = 15.000 0 0
x3 x4 x5 x1 x2
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

42.000 y2 1/6 -5/3 1 -1/6


36.000 y3 2/9 26/9 1
Z = 15.000 0 0
x3 x4 x5 x1 x2
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

42.000 y2 1/6 -5/3 1 -1/6 1/6


36.000 y3 2/9 26/9 1 1/9 -2/9
Z = 15.000 0 0
x3 x4 x5 x1 x2
0 x3 14.000 1 5/3 -26/9
4 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 15.000 0 0 0 1/6 2/9
y4 y5 y1 y2 y3

42.000 y2 1/6 -5/3 1 -1/6 1/6


36.000 y3 2/9 26/9 1 1/9 -2/9
Z = 15.000 -14.000 0 0 -3.000 -1.000
x3 x4 x5 x1 x2
xi

Z ⇒ MAX

yj

Z ⇒ MIN
xi

Z ⇒ MIN

yj

Z ⇒ MAX
xi
Aj

Z ⇒ MAX

+ _

yj

Z ⇒ MIN
xi
Aj

Z ⇒ MIN

_ _

yj

Z ⇒ MAX
xi
λj

Z ⇒ MAX

+ _

yj

Z ⇒ MIN
xi
λj

Z ⇒ MIN

+ +

yj

Z ⇒ MAX
MIN: Z = x1 + 0,5 x2 + 2 x3

Sujeto a:
3 x1 + 2 x2 + 4 x3 ≤ 3,6
x1 + 0,5 x2 + 2 x3 ≥ 1,2
x1 + x2 + x3 = 1

siendo: x1, x2 , x3 ≥ 0
1 0,5 2 M
cK xK BK A1 A2 A3 A4 A5 λ
1 x1 0,4 1 2 1 4
0 x5 0,4 -0,5 -1 1 -2
2 x3 0,6 1 1 -1 -3
Z (MIN) = 1,6 -0,5 -1 -2-M
y4 y5 y6 y1 y2 y3

3,6 1,2 1
bK xK BK A’1 A’2 A’3 A’4 A’5 A’6
3,6 y1 1 1 1 -1 1
1 y3 -2 -2 1 4 -3
0 y5 0,5 0,5 -2 1 -1
Z (MAX) = 1,6 0,4 0,4 0,6
x4 x5 x6 x1 x2 x3
1 0,5 2 M
cK xK BK A1 A2 A3 A4 A5 λ
1 x1 0,4 1 2 1 4
0 x5 0,4 -0,5 -1 1 -2
2 x3 0,6 1 1 -1 -3
Z (MIN) = 1,6 -0,5 -1 -2-M
y4 y5 y6 y1 y2 y3

3,6 1,2 1
bK xK BK A’1 A’2 A’3 A’4 A’5 A’6
3,6 y1 1 1 1 -1 1
1 y3 -2 -2 1 4 3
0 y5 0,5 0,5 -2 1 -1
Z (MAX) = 1,6 0,4 0,4 0,6
x4 x5 x6 x1 x2 x3
1 0,5 2 M
cK xK BK A1 A2 A3 A4 A5 λ
1 x1 0,4 1 2 1 4
0 x5 0,4 -0,5 -1 1 -2
2 x3 0,6 1 1 -1 -3
Z (MIN) = 1,6 -0,5 -1 -2-M
y4 y5 y6 y1 y2 y3

3,6 1,2 1
bK xK BK A’1 A’2 A’3 A’4 A’5 A’6
3,6 y1 1 1 1 -1 1
1 y3 -2 -2 1 4 3
0 y5 0,5 0,5 -2 1 -1
Z (MAX) = 1,6 0,4 0,4 0,6
x4 x5 x6 x1 x2 x3
1 0,5 2 M
cK xK BK A1 A2 A3 A4 A5 λ
1 x1 0,4 1 2 1 4
0 x5 0,4 -0,5 -1 1 -2
2 x3 0,6 1 1 -1 -3
Z (MIN) = 1,6 -0,5 -1 -2-M
y4 y5 y6 y1 y2 y3

3,6 1,2 1
bK xK BK A’1 A’2 A’3 A’4 A’5 A’6
3,6 y1 1 1 1 -1 1
1 y3 -2 -2 1 4 -3
0 y5 0,5 0,5 -2 1 -1
Z (MAX) = 1,6 0,4 0,4 0,6
x4 x5 x6 x1 x2 x3
1 0,5 2 M
cK xK BK A1 A2 A3 A4 A5 λ
1 x1 0,4 1 2 1 4
0 x5 0,4 -0,5 -1 1 -2
2 x3 0,6 1 1 -1 -3
Z (MIN) = 1,6 -0,5 -1 -2-M
y4 y5 y6 y1 y2 y3

3,6 1,2 1
bK xK BK A’1 A’2 A’3 A’4 A’5 A’6
3,6 y1 1 1 1 -1 1
1 y3 -2 -2 1 4 3
0 y5 0,5 0,5 -2 1 -1
Z (MAX) = 1,6 0,4 0,4 0,6
x4 x5 x6 x1 x2 x3
TEOREMA FUNDAMENTAL DE LA DUALIDAD

DIRECTA FINITA ⇔ DUAL FINITA


ZÓPTIMO DIRECTO = ZÓPTIMO DUAL

DEGENERADA ⇔ ALTERNATIVA

INCOMPATIBLE ⇔ POL. ABIERTO


cj 3 3 0 0 0
ck xk B A1 A2 A3 A4 A5
0 x3 14.000 1 5/3 -26/9
3 x1 3.000 1 1/6 -1/9
3 x2 1.000 1 -1/6 2/9
Z = 12.000 0 0 0 0* 3/9
ALTERNATIVA

cj 3 3 0 0 0
ck xk B A1 A2 A3 A4 A5
42.000 y2 0 -5/3 1 -1/6 1/6
36.000 y3 3/9 26/9 1 1/9 -2/9
Z = 12.000 -14.000 0 0 -3.000 -1.000

DEGENERADA
INTERPRETACIÓN
ECONÓMICA
DEL PROBLEMA DUAL
6 y1
6 y1 + 12 y2
6 y1 + 12 y2 + 9 y3
6 y1 + 12 y2 + 9 y3 ≥ 4
EST SOL PIN
A) 6 y1 + 12 y2 + 9 y3 ≥ 4
EST SOL PIN
A) 6 y1 + 12 y2 + 9 y3 ≥ 4
B) 16 y1 + 6 y2 + 9 y3 ≥ 3
EST SOL PIN
A) 6 y1 + 12 y2 + 9 y3 ≥ 4
B) 16 y1 + 6 y2 + 9 y3 ≥ 3

Z = 48.000 y1 + 42.000 y2 + 36.000 y3 ⇒ Mín


EST SOL PIN A B

A) 6 y1 + 12 y2 + 9 y3 - y4 = 4
B) 16 y1 + 6 y2 + 9 y3 - y5 = 3

Z = 48.000 y1 + 42.000 y2 + 36.000 y3 ⇒ Mín

You might also like