B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
COMPARISION BETWEEN MANUAL ANALYSIS AND STAAD
PRO. ANALYSIS OF MULTI STOREY BUILDING
BANDIPATI ANUP 1*, Dr. DUMPA VENKATESWARLU 2*
1. Student, Dept of CIVIL, GODAVARI INSTITUTE OF ENGINEERING AND TECHNOLOGY,
RAJAHMUNDRY.
2. Head - Dept of CIVIL, GODAVARI INSTITUTE OF ENGINEERING AND TECHNOLOGY,
RAJAHMUNDRY.
ABSTRACT
The principle objective of this project is to analyze and design a multi-storeyed building [G + 2 (3
dimensional frame)] using STAAD Pro. The design involves load calculations manually and analyzing
the whole structure by STAAD Pro. The design methods used in STAAD-Pro analysis are Limit State
Design conforming to Indian Standard Code of Practice.
STAAD.Pro is the professional’s choice. Initially we started with the analysis of simple 2 dimensional
frames and manually checked the accuracy of the software with our results. The results proved to be very
accurate. We analysed and designed a G + 2 storey building [2-D Frame] initially for all possible load
combinations [dead, live, wind and seismic loads]. STAAD.Pro has a very interactive user interface
which allows the users to draw the frame and input the load values and dimensions. Then according to the
specified criteria assigned it analyses the structure and designs the members with reinforcement details for
RCC frames. We continued with our work with some more multi-storeyed 2-D and 3-D frames under
various load combinations. Our final work was the proper analysis and design of a G + 2 3-D RCC frame
under various load combinations.
The materials were specified and cross-sections of the beam and column members were assigned. The
supports at the base of the structure were also specified as fixed. The codes of practice to be followed
were also specified for design purpose with other important details. Then STAAD.Pro was used to
analyze the structure and design the members.
INTRODUCTION number of factors, from building materials
available, to weather conditions, to land prices,
Buildings constitute a part of the definition of ground conditions, specific uses and aesthetic
civilizations, a way of life advanced by the reasons. To better understand the term building
people. The construction of buildings should be compares the list of non building structures.
looked upon as a process responded to human
requirements rather than as a product to be Buildings serve several needs of society –
designed and built a great expense. primarily as shelter from weather, security,
living space, privacy, to store belongings, and to
A building is a structure with a roof and walls comfortably live and work. A building as a
standing more or less permanently in one place, shelter represents a physical division of the
such as a house or factory. Buildings come in a human habitat (a place of comfort and safety)
variety of sizes, shapes and functions, and have and the outside (a place that at times may be
been adapted throughout history for a wide harsh and harmful).
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
Ever since the first cave paintings, buildings ventilation. A special feature of this building is
have also become objects or canvases of artistic the provision of ventilation from all sides as
expression. In recent years, interest in possible i.e., from bath rooms and bed rooms.
sustainable planning and building practices has Each flat has got main entrance from a common
also become an intentional part of the design entrance lobby thus take care not to isolate any
process of many new buildings. flat as a protection against burglary at the same
time maintaining sufficient privacy. The
Single-family residential buildings are most building is provided with a spacious staircase to
often called houses or homes. Residential avoid over – crowding.
buildings containing more than one dwelling
unit are called a duplex, apartment building to The building is designed as a framed structure
differentiate them from 'individual' houses. A with brick walls as infill walls. All the exterior
condominium is an apartment that the occupant walls are one brick-wall while all the partition
owns rather than rents. Houses may also be built walls are half brick walls. We propose use M20
in pairs (semi-detached), in terraces where all concrete and Fe415 bars for all structural
but two of the houses have others either side; components like slabs, beams columns and
apartments may be built round courtyards or as Foundation.
rectangular blocks surrounded by a piece of
ground of varying sizes. Houses which were Regarding their structural features, they are
built as a single dwelling may later be divided rectangular buildings. All the columns are
into apartments or bedsitters; they may also be arranged in such a way that they form typical
converted to another use e.g. an office or a shop. frames in length and width direction. The
longitudinal and transverse frames are
Building types may range from huts to multi- analyzed using the Kani‘s method of
million dollar high-rise apartment blocks able to analysis. The limit state method of collapse
house thousands of people. Increasing settlement using IS: 456-2000, and SP-16 have been
density in buildings (and smaller distances adopted for the design of all structural
between buildings) is usually a response to high components like slabs, beams, columns and
ground prices resulting from many people foundations.
wanting to live close to work or similar
attractors. Other common building materials are We have compared the manual analysis results
brick, concrete or combinations of either of with the results obtained by using the STAAD
these with stone Pro. Software. We have used the AUTO CAD
for effective representation of the plans.
The dimensions of the interior rooms are fixed
as per the guidelines of national building code. PLANNING
Each that is provided with all the basic amenities
and requirements like bedroom with attached
bath, a living cum dining room and a kitchen, as
described above. Sufficiently large doors and
windows in good number are provided for better
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
STRUCTURAL ANALYSIS:
INTRODUCTION:
Structural analysis deals with the behavior of
structure in the given loading conditions.
Depending upon the nature of loading, the
structure may respond in number of ways. The
structure may deform statistically, might yield
and may vibrate or buckle. Structures carrying
static loading can be classified as statically
determinate and statically indeterminate
structure. If all reactions and internal forces in a
structure can be found using the equilibrium
Fig;plan conditions along that is,
Minimum size and other requirements of ∑Fx =0, ∑Fy =0, ∑Fz=0, ∑My =0, ∑Mz =0.
different types of rooms as per NBC
Then the structure is statically determinate, if
LOAD CALCULATIONS not it is statically indeterminate of redundant
various methods popularly used for analysis
includes
Moment distribution method
Kani‘s method
Substitute frame method
Slope deflection method
Matrix methods
In this project Kani‘s method is used for the
analysis of structure. The reason is, even if a
mistake is committed in distribution in one of
the cycles, it converges finally to the correct
answer i.e. error is self-eliminative. No. of
cycles required for getting the final value are
also less compared to moment distribution
method and it is very quick method. Even today,
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
many practicing engineers who are not familiar
with computer methods use Kani‘s method for
the analysis of 3 to 4 storey building frames.
4.2 KANIS METHOD (OR ROTATION
CONTRIBUTION METHOD) OF FRAME
ANALYSIS:
This method may be considered as a further
simplification of moment distribution method
wherein the problems involving sway were
Frame: 3 bed room Transverse section
attempted in a tabular form thrice ( for double
story frames) and two shear coefficients had to
be determined which when inserted in end
moments gave us the final end moments. All
these effort can be cut short very considering by
using this method.
Frame analysis is carried out by solving
the slope – Deflection equations by successive
approximations. Useful in case of side sway as
well.
Operation is simple, as it is carried out
in a specific direction. If some error is
committed, it will be eliminated in a subsequent
cycles if the restraining moments and
distribution factors have been determined
correctly. Please note that method does not give
realistic result in case of columns or unequal
heights within a storey and for pin ended
columns both of these cases are in fact
extremely rare even in actual practice. Even
codes suggest that RC columns framing into
footing or members above may be considered
more or less as fixed for analysis and design
purpose.
Case 1. No side sway and therefore no
translation of joints derivation. Fig;loading
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
DESIGN PHILOSOPHIES
INTRODUCTION
Introduction to limit state design:
Before the last two decades the structural
designers of reinforced concrete were concerned
more with safety against failure of the structure
than with durability under service conditions.
The theoretical calculations for design of R.C.C
structure were based on classical elastic theory,
Resultant Bending moment diagram with fictitious modulus of Elasticity of concrete and
sagging moments at mid span permissible working stresses, recent
developments lead to limit state design
otherwise called strength and performance
criteria based on the recommendation of
International code of practice different countries
started changing their codes introducing limit
state design for the design of reinforced concrete
structures.
India introduced limit state design for the design
during the revised IS: 456-2000 along with
working stress method of design. IS:456-2000
permits design of R.C.C structural design by
Resultant Shear force diagram with SF values at both working stress method and limit state
the support: method.
As has happened in the other scientific field new
ways of thinking replace old ways. In scientific
circles this is generally referred as Paradigm
shift limit state design should therefore looked
upon as a paradigm a better way of explaining
certain aspects reality and new way us of
thinking about old problems. Thus the design
should be learnt and taught with own philosophy
and not as an extension of old elastic theory.
Since the rational approach to design of
Resultant displacement diagram at mid span: reinforced concrete did not mean simply
adopting the existing method of elastic and
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
ultimate theories. New concepts with a semi consideration these factors have values given in
probabilistic approach to design were found IS: 456 – 2000 according to the material the type
necessary the proposed new method had to of loading and the limit state being considered.
provide a framework, which would allow a
design to be economical and safe. The new PARTIAL SAFETY FACTORS
philosophy of design was called the limit state Ultimate load theory is based on the assumption
method of design.
that a structure reaches a collapse condition
CONCEPT OF LIMIT STATES forming a mechanism when a certain load is
applied. The load factor has been judiciously
In the method of design based on limit state selected giving due considerations to the various
concepts the structure shall be designed to factors contributing the failure. The load factor
withstand safely all loads to act on it throughout is used in estimating ultimate loading.
its life, it shall also satisfy the serviceability
requirements such as limitations on deflection Partial safety factor for material, strength should
and cracking. The acceptable limit for the safety account for,
and serviceability requirements before failure •Possibility of deviation of the strength of
occurs is called limit state. The aim of the design material.
is to achieve acceptable probabilities that the
structure will not become unfit for the use for •Deviation of structural dimensions.
which it is intended, i.e., that it will not reach a
limit state. •Deviation of structural dimensions.
•Accuracy of the calculations procedure.
All relevant limit state shall be considered in •Risk to like and economic consequences.
design to ensure an adequate degree of safety
and serviceability. In general the structure shall
be designed on the basis of the most critical limit When assuming the strength of a structure for
state and shall be checked for other limit states. limit state of collapse. Value of partial safety
factors should be taken into account for,
For ensuring above objective, the design should
be based on characteristic values for material Partial safety factor for concrete = 1.5
strengths and in the loads to be supported, the
characteristic values should be based on Partial safety factor for steel = 1.15
statistical data; if available where such data are
Partial safety factors for loads should account
not available they should be based on
for
experience. The design values are derived from
the characteristic values through the use of •Unusual increasing loads beyond that using for
partial safely factors, one for material strengths deriving characteristic values.
and other for load. In the absence of special
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
•Unforeseen stress distribution.
•In accurate assessment of the effect of loading.
Partial safely factors of loads under different
conditions are given in clause 35.4 of IS: 456 –
2000.
DESIGN OF SLABS
Fig: reainforcement details
Design of Column
Design of stair case
DESIGN OF BEAMS
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
•Used AUTOCAD 2010 for effective
representation of drawings.
•Since spans differ by more than 15% with
largest, we went for exact analysis method.
•Manual analysis results are compared with the
STAAD results and identified that the variation
is at max 5%.
•Used IS-456:2000 & SP-16, for the design of
the STRUCTURAL MEMBERS. i.e., fallowed
the LIMIT STATE method.
•Materials used are M 20 grade concrete and Fe
Fig: Reinforcement details 415 steel.
DESIGN OF FOUNDATION REFERENCES
1.Indian Standard PLAIN AND REINFORCED
CONCRETE - CODE OF PRACTICE ( Fourth
Revision ) IS:456-2000
2.IS-875(PART-1) : 1987 Indian Standard
CODE OF PRACTICE FOR DESIGN LOADS
(OTHER THAN EARTHQUAKE) FOR
BUILDINGS AND STRUCTURES PART 1
DEAD LOADS — UNIT WEIGHTS OF
BUILDING MATERIALS AND STORED
MATERIALS.
3.IS-875(PART-2) : 1987 Indian Standard
CODE OF PRACTICE FOR DESIGN
LOADS (OTHER THAN EARTHQUAKE)
FOR BUILDINGS AND STRUCTURES PART
Fig: foundation reinforcement details 2 IMPOSED LOADS
CONCLUSION 4.SP-16: DESIGN AIDS FOR REINFORCED
CONCRETE TO IS : 456-l 978
•Planning has been done in accordance with the
specifications made by NATIONAL 5.Indian Standard CODE OF PRACTICE FOR
BUILDING CODE. DESIGN AND CONSTRUCTION OF
PILEFOUNDATIONS PART Ill UNDER-
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224
B ANUP, et al, International Journal of Research Sciences and Advanced
Engineering [IJRSAE]TM
Volume 2, Issue 15, PP: 216 - 224, SEPTEMBER’ 2016.
REAMED PILES (First Revision)IS : 2911 (
Part III ) – 1980
6.R.C.C. DESIGNS (reinforced concrete
structures) by Dr.B.C.PUNMIA, ASHOK
KUMAR JAIN, ARUN KUMAR JAIN (Tenth
edition), LAXMI PUBLICATIONS (P) LTD.
7.Building planning and drawing by Dr.
N.Kumara swamy and A. Kameswara rao(fourth
revised and enlarged edition:2010), Charotar
publishing house Pvt. Ltd.
8.AUTOCAD-2010
9.STAAD Pro. software
International Journal of Research Sciences and Advanced Engineering
Vol.2 (15), ISSN: 2319-6106, SEP’ 2016. PP: 216 - 224