Problem 1.
Markov chains (steady state):
XYZ insurance company charges its customers according to their accident history. If you
have not had accidents the last two years will be charged for the new policy $ 1,730,000
(state 0); if you have had an accident in each of the last two years you will be charged $
2,280,000 (State 1); If you had accidents the first of the last two years you will be
charged $ 1,650,000 (state 2) and if you had an accident the second of the last two
years will be charged $ 1,670,000 (State 3). The historical behavior of each state is
given by the following cases of accident, taken in four different events.
                            Table 1. Historical accident data
According to Table 1 by applying the Markovian processes, ie finding the transition
matrix and solving the respective equations of p * q, where p is the transition matrix and
q the vector [W X Y Z]. Answer:
   a. What is the transition matrix resulting from proportionality according to the
      accident history?
   b. What is the average premium paid by a customer in Payoff, according to historical
      accident rate?
Transition probability
matrix
  STATE         E0             E1            E2             E3         TOTAL
    E0          0,3            0,2           0,4            0,1          1
    E1          0,1            0,3           0,5            0,1          1
    E2          0,2            0,1           0,1            0,6          1
    E3          0,3             0            0,2            0,5          1
What is the average premium paid by a customer in Payoff, according to
historical accident rate?
  STATE           E0        E1            E2            E3
    E0           0,3        0,2           0,4           0,1
    E1           0,1        0,3           0,5           0,1
    E2           0,2        0,1           0,1           0,6
    E3           0,3         0            0,2           0,5
STATE                     E0               E1           E2               E3
  E0                     0,22             0,16         0,28             0,34
  E1                     0,19             0,16         0,26             0,39
  E2                     0,27             0,08         0,26             0,39
  E3                     0,28             0,08         0,24              0,4
                          E0               E1           E2               E3
                         0,24             0,12         0,26             0,38
                       1580000          2150000      1630000          1550000
                        379200           258000       423800           589000
                                               1650000
                                           Accidents in the year
                  STATE                 E0   E1      E2                E3       TOTAL
                   E0                  2961 1974 3948                  987       9870
                   E1                  1100 3300 5500                 1100      11000
                   E2                  2500 1250 1250                 7500      12500
                   E3                  4380   0    2920               7300      14600
     a) With the last frequencies, we calculate the probabilities of
     trasnsition, keeping in the same order in table (E0,E1,E2, E3) is:
                          0,3  0,2     0,4          0,1
                          0,1  0,3     0,5          0,1
            P=
                          0,2  0,1     0,1          0,6
                          0,3   0      0,2          0,5
     As we are taking two months as reference, we have to get
                                       0,3          0,2   0,4            0,1
 P
     2                                 0,1          0,3   0,5            0,1
                      =
                                       0,2          0,1   0,1            0,6
                                       0,3           0    0,2            0,5
P2               0,3             0,2            0,4             0,1
                 0,1             0,3            0,5             0,1
                 0,2             0,1            0,1             0,6
                 0,3              0             0,2             0,5
             2
                  =
                           0,22              0,16          0,28        0,34
         P
                           0,19              0,16          0,26        0,39
                           0,27              0,08          0,26        0,39
                           0,28              0,08          0,24        0,4
a. What is the transition matrix resulting from proportionality according to the
   accident history?
R/= This is the transition matrix resulting from proportionality according to the
accident history to the w, x,y,z.
b. What is the average premium paid by a customer in Payoff, according to
   historical accident rate?
 E0          E1          E2          E3
0,24        0,12        0,26        0,38
1.580.0     2.150.      1.630.      1.550.
 00         000         000         000
   379.       258.        423.        589.
200         000         800         000
Problem 2. Markov chains (Initial state multiplication):
In Colombia there are 5 main mobile operators such as Tigo, Comcel, Movistar, ETB
and Uff, which we will call states. The following chart summarizes the odds that each
client has to stay in their current operator or make a change of company.
          Table 2. Probabilities of change and permanence in the company of
                             Telephony (Transition Matrix)
The current percentages of each operator in the current market are for Tigo 0.25 for
Comcel 0.2, for Movistar 0.3, for ETB 0.1 and 0.15 for Uff (initial state).
                               MOVISTA
  STATE        TIGO     COMCEL    R                 ETB       UFF
   TIGO         0,18      0,28   0,19               0,18      0,17
 COMCEL         0,21      0,23   0,17               0,25      0,14
 MOVISTA
     R          0,19        0,16        0,23        0,26      0,16
   ETB          0,18        0,19        0,23        0,21      0,19
    UFF         0,22        0,23        0,19        0,17      0,19
Find the probability that each user stays with the mobile company for
the next period.
                                  PROBABILITY 0
                                     MOVISTA
               TIGO       COMCEL          R         ETB       UFF
                0,25         0,2         0,3         0,1      0,15
                                     MOVISTA
  STATE        TIGO       COMCEL          R         ETB       UFF
   TIGO       0,1971       0,2185      0,1992      0,2185    0,1667
 COMCEL       0,1942       0,2186      0,2022      0,2158    0,1692
 MOVISTA
     R        0,1935       0,213       0,2064      0,2158    0,1713
   ETB        0,1956       0,2145      0,2038      0,2161     0,17
    UFF       0,1964       0,2209      0,1998      0,2145    0,1684
                                  PROBABILITY 1
               TIGO       COMCEL MOVISTA            ETB       UFF
                                        R
              0,195      0,2175       0,202      0,2195      0,166
                                   COMPANIES
      STATE             TIGO     COMCEL         MOVISTAR         ETB       UFF
E0        TIGO           0,18       0,28            0,19         0,18      0,17
E1     COMCEL            0,21       0,23            0,17         0,25      0,14
E2    MOVISTAR           0,19       0,16            0,23         0,26      0,16
E3        ETB            0,18       0,19            0,23         0,21      0,19
E4        UFF            0,22       0,23            0,19         0,17      0,19
C. Find the probability that each user stays with the mobile company for the next
                                      period.
                                            PROBABILITY 0
                        TIGO     COMCEL         MOVISTAR         ETB       UFF
                         0,25        0,2             0,3          0,1      0,15
                                            PROBABILITY 1
    P0 * T = P1         TIGO     COMCEL         MOVISTAR         ETB       UFF
P1 = NEXT
PERIOD                  0,195      0,2175           0,202       0,2195     0,166
Problem 3. Markov chains (Initial state multiplication):
In Colombia there are 6 main mobile operators such as Avantel, Tigo, Comcel, Movistar,
ETB and Uff, which we will call states. The following chart summarizes the odds that
each client has to stay in their current operator or make a change of company.
          Table 3. Probabilities of change and permanence in the company of
                             Telephony (Transition Matrix)
The current percentages of each operator in the current market are for Avantel 0.1, Tigo
0.15 for Comcel 0.15, for Movistar 0.35, for ETB 0.1 and 0.15 for Uff (initial state).
           AVANT TIG COMC MOVIST
STATE        EL   O   EL   AR    ETB UFF
AVANT
  EL        0,19    0,18   0,17      0,15    0,19 0,12
 TIGO       0,17    0,15   0,16      0,16    0,18 0,18
COMCE
   L        0,16    0,19   0,17      0,17    0,16 0,15
MOVIST
  AR        0,18    0,18   0,19   0,18       0,15 0,12
 ETB        0,15    0,16   0,19   0,15       0,18 0,17
 UFF        0,15    0,16   0,17   0,19       0,18 0,15
                         PROBABILITY 0
           AVANT    TIG COMC MOVIST
             EL      O      EL    AR         ETB UFF
             0,1    0,15 0,15     0,35       0,1 0,15
           AVANT    TIG COMC MOVIST
 STATE       EL      O      EL    AR         ETB    UFF
 AVANT              0,17                     0,17   0,14
   EL      0,1674    01 0,175 0,1645           4      9
                    0,16                     0,17   0,14
 TIGO  0,1662        99 0,1753 0,1667         37     82
COMCE               0,16                     0,17   0,14
   L   0,167         98 0,1747 0,1664         31      9
MOVIST              0,17                     0,17   0,14
  AR   0,1681        11 0,1748 0,1658         26     76
              0,17                 0,17 0,14
 ETB   0,1656 01 0,175    0,1667    32   94
              0,17                 0,17 0,14
 UFF   0,1666 03 0,1758   0,1667    24   82
                   PROBABILITY 1
       AVANT TIG COMC MOVIST
         EL    O     EL     AR   ETB UFF
              0,17               0,16 0,14
        0,169  2 0,1775 0,171     75    3
                     COMPANIES
                         COMCE
   STATE    AVANTEL TIGO   L   MOVISTAR        ETB    UFF
E0 AVANTEL    0,19  0,18  0,17   0,15          0,19   0,12
E1   TIGO     0,17  0,15  0,16   0,16          0,18   0,18
E2 COMCEL     0,16  0,19  0,17   0,17          0,16   0,15
E3 MOVISTAR   0,18  0,18  0,19   0,18          0,15   0,12
E4   ETB      0,15  0,16  0,19   0,15          0,18   0,17
E5   UFF      0,15  0,16  0,17   0,19          0,18   0,15
                            PROBABILITY 0
                            COMCE
              AVANTEL TIGO     L   MOVISTAR ETB       UFF
                 0,1   0,15  0,15      0,35   0,1     0,15
                            PROBABILITY 1
                            COMCE
  P0 * T = P1 AVANTEL TIGO     L   MOVISTAR ETB       UFF
 P1 = NEXT
  PERIOD        0,169 0,172 0,1775    0,171 0,1675    0,143
Problem 4. Markov chains (Initial
state multiplication):
Suppose that 4 types of soft drinks are obtained in the market: Colombian, Pepsi Cola,
Fanta and Coca Cola when a person has bought Colombian there is a probability that
they will continue to consume 40%, 20% of which will buy Pepsi Cola, 10% that Fanta
buys and 30% that Coca Cola consumes; when the buyer currently consumes Pepsi
Cola there is a probability that he will continue to buy 30%, 20% buy Colombiana, 20%
that Fanta consumes and 30% Coca Cola; if Fanta is currently consumed, the likelihood
of it continuing to be consumed is 20%, 40% buy Colombian, 20% consume Pepsi Cola
and 20% go to Coca Cola. If you currently consume Coca Cola the probability that it will
continue to consume is 50%, 20% buy Colombian, 20% that consumes Pepsi Cola and
10% that is passed to Fanta.
   At present, each Colombian brand, Pepsi Cola, Fanta and Coca Cola have the
   following percentages in market share respectively (30%, 25%, 15% and 30%)
   during week 3.
   c. Find the transition matrix.
   d. Find the probability that each user stays with the mark or change to another for
      period 4 (problem 4) and period 5 (problem 5).
                                    PEPSI
   STATE    COLOMBIANA              COLA        FANTA          COCA-COLA
COLOMBIANA     0,40                  0,2          0,1             0,3
 PEPSI COLA     0,2                  0,3          0,2             0,3
   FANTA        0,4                  0,2          0,2             0,2
 COCA-COLA      0,2                  0,2          0,1             0,5
                                    PEPSI
                 COLOMBIANA         COLA        FANTA          COCA-COLA
                    0,30             0,25        0,15             0,3
                                    PEPSI
   STATE    COLOMBIANA              COLA        FANTA          COCA-COLA
COLOMBIANA     0,30                  0,22        0,13             0,35
 PEPSI COLA    0,28                  0,23        0,15             0,34
   FANTA       0,32                  0,22        0,14             0,32
 COCA-COLA     0,26                  0,22        0,13             0,39
                                    PEPSI
                 COLOMBIANA         COLA        FANTA          COCA-COLA
                    0,29            0,225        0,14            0,345
                               PEPSI
   STATE    COLOMBIANA         COLA      FANTA        COCA-COLA
COLOMBIANA     0,29             0,222     0,135           0,357
 PEPSI COLA    0,286            0,223     0,138           0,353
   FANTA       0,292            0,222     0,136           0,35
 COCA-COLA     0,278            0,222     0,135           0,365
                               PEPSI
                COLOMBIANA     COLA      FANTA        COCA-COLA
                   0,29        0,2225    0,1365           0,355
                            COMPANIES
                                       PEPSI                  COCA-
       STATE          COLOMBIANA       COLA      FANTA        COLA
E0   COLOMBIANA           0,4            0,2       0,1          0,3
E1    PEPSI COLA          0,2            0,3       0,2          0,3
E2        FANTA           0,4            0,2       0,2          0,2
E3    COCA-COLA           0,2            0,2       0,1          0,5
                                      PROBABILITY 0
                                       PEPSI                  COCA-
                      COLOMBIANA       COLA      FANTA        COLA
                         0,30           0,25      0,15          0,3
                                      PROBABILITY 1
                                       PEPSI                  COCA-
    P0 * T = P1       COLOMBIANA       COLA      FANTA        COLA
   P1 = PERIOD 1         0,29          0,225      0,14        0,345
                                      PROBABILITY 2
                                       PEPSI                  COCA-
    P1 * T = P2       COLOMBIANA       COLA      FANTA        COLA
   P2 = PERIOD 2         0,29          0,2225    0,1365       0,355
                                      PROBABILITY 3
                                       PEPSI                  COCA-
    P2 * T = P3       COLOMBIANA       COLA      FANTA        COLA
   P23= PERIOD 3              0,2845    0,22225    0,1359       0,35735
                                      PROBABILITY 4
                                       PEPSI                  COCA-
    P3 * T = P4       COLOMBIANA       COLA      FANTA        COLA
   P4 = PERIOD 4            0,28408    0,222225 0,135815        0,35788
Problem 5. Markov chains (Initial state multiplication):
Suppose you get 6 types of Jeans brands in the Colombian market: Brand 1, Brand 2,
Brand 3, Brand 4, Brand 5 and Brand 6. The following table shows the odds that you
continue to use the same brand or change it.
            Table 4. Probabilities of change and permanence in the brand
At present, brand, have the following percentages in market share respectively (19%,
18%, 17%, 15%, 19% y 12%) during week 4.
   a. Find the transition matrix.
   b. Find the probability that each user stays with the mark or change to another for
      period and period 5 (problem 5).
                                CONCLUSIONS
 We learned to apply the strategies of how to evaluate a situation, when we don´t
  know what is going to happen to a financial of a company. Ivan Gomez
 We could understand the probabilities of occurring when a decision in taken. Ivan
  Gomez
 A strategy was used to could know what will it happen in the future, with the
  clients or user of a service provided by a supplier. Ivan Gomez