0% found this document useful (0 votes)
1K views40 pages

Slab Thickness Calculation

The document calculates the minimum slab thickness for various slabs (S1-S15) based on their clear span lengths and whether they are one-way or two-way slabs. The minimum thicknesses range from 2.00 to 3.00 inches. It also calculates the dead and live loads, and provides sample moment calculations for slab S1/S3 and S2 as two-way slabs.

Uploaded by

Kutub Uddin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
1K views40 pages

Slab Thickness Calculation

The document calculates the minimum slab thickness for various slabs (S1-S15) based on their clear span lengths and whether they are one-way or two-way slabs. The minimum thicknesses range from 2.00 to 3.00 inches. It also calculates the dead and live loads, and provides sample moment calculations for slab S1/S3 and S2 as two-way slabs.

Uploaded by

Kutub Uddin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 40

Slab Thickness Calculation:

Slab: S1 / S3

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 10.42 f
(Assuming, Beam width = 12")

Lb/La = 1.33 < 2 Two way slab

For two way slab


Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.20 f = 2.43 inch
180
≈ 2.50 inch

Slab: S2

Length of shorter clear span, La = 8.00 f


Length of longer clear span, Lb = 10.42 f
(Assuming, Beam width = 12")

Lb/La = 1.30 < 2 Two way slab

For two way slab


Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.20 f = 2.46 inch
180
≈ 2.50 inch
Slab: S4 / S6

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 11.42 f
(Assuming, Beam width = 12")

Lb/La = 1.46 < 2 Two way slab

For two way slab


Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.21 f = 2.57 inch
180
≈ 2.75 inch

Slab: S5

Length of shorter clear span, La = 8.00 f


Length of longer clear span, Lb = 11.42 f
(Assuming, Beam width = 12")

Lb/La = 1.43 < 2 Two way slab

For two way slab


Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.22 f = 2.59 inch
180
≈ 2.75 inch

Slab: S7 / S9
Length of shorter clear span, La = 7.83 f
Length of longer clear span, Lb = 12.25 f
(Assuming, Beam width = 12")

Lb/La = 1.56 < 2 Two way slab

For two way slab


Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.22 f = 2.68 inch
180
≈ 2.75 inch

Slab: S8

Length of shorter clear span, La = 8.00 f


Length of longer clear span, Lb = 12.25 f
(Assuming, Beam width = 12")

Lb/La = 1.53 < 2 Two way slab

For two way slab


Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.23 f = 2.70 inch
180
≈ 2.75 inch

Slab: S10 / S11

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 11.42 f
(Assuming, Beam width = 12")

Lb/La = 1.46 < 2 Two way slab


For two way slab
Minimum thickness,
Perimeter
180
or
3.5" whichever is large.

2x(Lb+La)
Thickness, T min = = 0.21 f = 2.57 inch
180
≈ 2.75 inch

Slab: S12 / S13

Length of shorter clear span, La = 3.25 f


Length of longer clear span, Lb = 7.25 f
(Assuming, Beam width = 12")

Lb/La = 2.23 > 2 One way slab

for one end continuous slab

L fy
Thickness, T min = x (0.40+ ) = 0.14 f = 1.73 inch
24 60000
≈ 2.00 inch

Slab: S14 / S15

Length of shorter clear span, La = 5.50 f


Length of longer clear span, Lb = 38.08 f
(Assuming, Beam width = 12")

Lb/La = 6.92 > 2 One way slab

for one way slab, one end continuous

L fy
Thickness, T min = x (0.40+ ) = 0.24 f = 2.93 inch
24 60000
≈ 3.0 inch
Slab Thickness Calculation Chart

Minimum Final
Sl. No Slab La Lb Lb/La Slab Type
Thickness Thickness

01 S1 / S3 7.83 10.42 1.33 Two Way Slab 2.50

02 S2 8.00 10.42 1.30 Two Way Slab 2.50

03 S4 / S6 7.83 11.42 1.46 One Way Slab 2.75

04 S5 8.00 11.42 1.43 Two Way Slab 2.75

05 S7 / S9 7.83 12.25 1.56 Two Way Slab 2.75 5.00

06 S8 8.00 12.25 1.53 Two Way Slab 2.75

07 S10 / S11 7.83 11.42 1.46 Two Way Slab 2.75

08 S12 / S13 3.25 7.25 2.23 One Way Slab 2.00

09 S14 / S15 5.50 38.08 6.92 One Way Slab 3.00


Calculation of Load

Dead Load:
Self Weight = t/12X150 = 5/12X150 = 62.5 lb/sf

Partition Wall:
Length
In X direction =
(5.08+12.33+5.50+4.67+12.33+12.33+6.00+5.00+4.08+3.83+7.83+7.25)X2+8.00

= 180.46 f

In Y direction =

(3.00+11.42+11.42+13.83+13.83+12.25+12.25+7.25+10.42+12.42+4.25)X2+10.42+11.42+12.
83+4.83X2X2
= 259.35 f

P. wall Height = 10.00 f Unit weight = 120.00 lb/cf


Wall Thickness = 5 inch
0.42 f
Slab Area = 1770.00 Sf
considering volume of partition wall will be 75% of total volume = 0.75

Weight of Wall
Partition Wall Load =
Slab Area

(180.46 + 259.35) X 10 X (5/12)X120X.075


=
1770

= 93.93 lb/sf
≈ 94.00 lb/sf

Floor Finish = 20.00 lb/sf

Total Dead Load, DL = Self Weight + Partition Wall Load + Floor Finish = 176.50 lb/sf

Total Live Load,LL = 40.00 lb/sf

Ultimate Load, Wu = 1.4 X DL + 1.7 X LL


= 1.4 X 181.50 X 1.7 X 40.00
= 315.10 lb/sf
Moment Calculation

Slab No: S1 / S3

Slab Condition: Two Way Slab Case 8

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 10.42 f

La 7.83
m= = = 0.7514
Lb 10.42

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0608
Mu (a) = Ca X Wu X (La)2 = 0.0608 X 315.10 X 7.832
= 1175.1 lb-f/f
= 1.175 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0361
Mu (b) = Cb X Wu X (Lb)2 = 0.0361 X 315.10 X 10.422
= 1237 lb-f/f
= 1.237 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0359 DL = 176.50 lb/sf
Ca(LL) = 0.0489 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0359 X 176.50 X 7.832 + 1.7 X 0.0489 X 40.00 X 7.832
= 747 lb-f/f
= 0.747 kip-f/f

Long Direction
Cb(DL) = 0.0131 DL = 176.50 lb/sf
Cb(LL) = 0.0161 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0131 X 176.50 X 10.422 + 1.7 X 0.0161 X 40.00 X 10.422
= 469 lb-f/f
= 0.469 kip-f/f
Slab No: S2

Slab Condition: Two Way Slab Case 9

Length of shorter clear span, La = 8.00 f


Length of longer clear span, Lb = 10.42 f

La 8.00
m= = = 0.7678
Lb 10.42

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0769
Mu (a) = Ca X Wu X (La)2 = 0.0769 X 315.10 X 8.002
= 1551.5 lb-f/f
= 1.551 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0129
Mu (b) = Cb X Wu X (Lb)2 = 0.0129 X 315.10 X 10.422
= 443 lb-f/f
= 0.443 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0303 DL = 176.50 lb/sf
Ca(LL) = 0.0446 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0303 X 176.50 X 8.002 + 1.7 X 0.0446 X 40.00 X 8.002
= 673 lb-f/f
= 0.673 kip-f/f

Long Direction
Cb(DL) = 0.0059 DL = 176.50 lb/sf
Cb(LL) = 0.0116 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0059 X 176.50 X 10.422 + 1.7 X 0.0116 X 40.00 X 10.422
= 245 lb-f/f
= 0.245 kip-f/f

Slab No: S4 / S6

Slab Condition: Two Way Slab Case 2

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 11.42 f

La 7.83
m= = = 0.6856
Lb 11.42

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0749
Mu (a) = Ca X Wu X (La)2 = 0.0749 X 315.10 X 7.832
= 1446.2 lb-f/f
= 1.446 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0161
Mu (b) = Cb X Wu X (Lb)2 = 0.0161 X 315.10 X 11.422
= 663 lb-f/f
= 0.663 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0306 DL = 176.50 lb/sf
Ca(LL) = 0.0501 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0306 X 181.50 X 7.832 + 1.7 X 0.0501 X 40.00 X 7.832
= 672 lb-f/f
= 0.672 kip-f/f

Long Direction
Cb(DL) = 0.0067 DL = 176.50 lb/sf
Cb(LL) = 0.0114 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0067 X 176.50 X 11.422 + 1.7 X 0.0114 X 40.00 X 11.422
= 318 lb-f/f
= 0.318 kip-f/f

Slab No: S5

Slab Condition: Two Way Slab Case 2

Length of shorter clear span, La = 8.00 f


Length of longer clear span, Lb = 11.42 f

La 8.00
m= = = 0.7005
Lb 11.42

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0739
Mu (a) = Ca X Wu X (La)2 = 0.0739 X 315.10 X 8.002
= 1491.3 lb-f/f
= 1.491 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0171
Mu (b) = Cb X Wu X (Lb)2 = 0.0171 X 315.10 X 11.422
= 701 lb-f/f
= 0.701 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0300 DL = 176.50 lb/sf
Ca(LL) = 0.0490 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0300 X 176.50 X 8.002 + 1.7 X 0.0490 X 40.00 X 8.002
= 687 lb-f/f
= 0.687 kip-f/f

Long Direction
Cb(DL) = 0.0070 DL = 176.50 lb/sf
Cb(LL) = 0.0120 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0070 X 176.50 X 11.422 + 1.7 X 0.0120 X 40.00 X 11.422
= 333 lb-f/f
= 0.333 kip-f/f

Slab No: S7 / S9

Slab Condition: Two Way Slab Case 2

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 12.25 f

La 7.83
m= = = 0.6392
Lb 12.25

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0779
Mu (a) = Ca X Wu X (La)2 = 0.0779 X 315.10 X 7.832
= 1504.2 lb-f/f
= 1.504 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0131
Mu (b) = Cb X Wu X (Lb)2 = 0.0131 X 315.10 X 12.252
= 621 lb-f/f
= 0.621 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0324 DL = 176.50 lb/sf
Ca(LL) = 0.0541 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0324 X 176.50 X 7.832 + 1.7 X 0.0541 X 40.00 X 7.832
= 717 lb-f/f
= 0.717 kip-f/f

Long Direction
Cb(DL) = 0.0056 DL = 176.50 lb/sf
Cb(LL) = 0.0046 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0056 X 176.50 X 12.252 + 1.7 X 0.0046 X 40.00 X 12.252
= 254 lb-f/f
= 0.254 kip-f/f

Slab No: S8

Slab Condition: Two Way Slab Case 9

Length of shorter clear span, La = 8.00 f


Length of longer clear span, Lb = 12.25 f

La 8.00
m= = = 0.6531
Lb 12.25

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0829
Mu (a) = Ca X Wu X (La)2 = 0.0829 X 315.10 X 8.002
= 1671.3 lb-f/f
= 1.671 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0082
Mu (b) = Cb X Wu X (Lb)2 = 0.0082 X 315.10 X 12.252
= 387 lb-f/f
= 0.387 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0281 DL = 176.50 lb/sf
Ca(LL) = 0.0538 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0281 X 176.50 X 8.002 + 1.7 X 0.0538 X 40.00 X 8.002
= 678 lb-f/f
= 0.678 kip-f/f
Long Direction
Cb(DL) = 0.0051 DL = 176.50 lb/sf
Cb(LL) = 0.0091 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0051 X 176.50 X 12.252 + 1.7 X 0.0091 X 40.00 X 12.252
= 281 lb-f/f
= 0.281 kip-f/f

Slab No: S10 / S11

Slab Condition: Two Way Slab Case 8

Length of shorter clear span, La = 7.83 f


Length of longer clear span, Lb = 11.42 f

La 7.83
m= = = 0.6856
Lb 11.42

Negative Moment:

Short Direction
Wu = 315.10 lb/sf
Ca = 0.0697
Mu (a) = Ca X Wu X (La)2 = 0.0697 X 315.10 X 7.832
= 1346.9 lb-f/f
= 1.347 kip-f/f

Long Direction
Wu = 315.10 lb/sf
Cb = 0.0276
Mu (b) = Cb X Wu X (Lb)2 = 0.0276 X 315.10 X 11.422
= 1133 lb-f/f
= 1.133 kip-f/f

Positive Moment:

Short Direction
Ca(DL) = 0.0411 DL = 176.50 lb/sf
Ca(LL) = 0.0554 LL = 40.00 lb/sf
Mu (a) = 1.4 X Ca(DL) X DL X (La)2 + 1.7X Ca(LL) X LL X (La)2
= 1.4 X 0.0411 X 176.50 X 7.832 + 1.7 X 0.0554 X 40.00 X 7.832
= 854 lb-f/f
= 0.854 kip-f/f

Long Direction
Cb(DL) = 0.0104 DL = 176.50 lb/sf
Cb(LL) = 0.0089 LL = 40.00 lb/sf
Mu (b) = 1.4 X Cb(DL) X DL X (Lb)2 + 1.7X Cb(LL) X LL X (Lb)2
= 1.4 X 0.0104 X 176.50 X 11.422 + 1.7 X 0.0089 X 40.00 X 11.422
= 415 lb-f/f
= 0.415 kip-f/f

Slab No: S14 / S15

Slab Condition: One Way Slab

Length of shorter clear span, La = 5.50 f


Length of longer clear span, Lb = 38.08 f

From Slab design of S1 / S3 / S4 / S6


Negative moment at end in shorter direction = Maximum Negative moment of the connected slab
= 1.504 kip-f/f
= 1504 lb-f/f

Wu = 315.10 lb/sf

Positive Moment = ( Wu X L2/8 ) - ( M/2 )


= ( 315.10 X 5.502/8 ) - ( 1504/2 )
= 439.35 lb-f/f
= 0.439 kip-f/f

Slab No: S12 / S13

Slab Condition: One Way Slab

Length of shorter clear span, La = 3.25 f


Length of longer clear span, Lb = 7.25 f

From Slab design of S10 / S11


Negative moment at end in longer direction = Maximum Negative moment of the connected slabs
= 1.133 kip-f/f
= 1133 lb-f/f

Wu = 315.10 lb/sf

Positive Moment = ( Wu X L2/8 ) - ( M/2 )


= ( 315.10 X 3.252/8 ) - ( 1133/2 )
= -150.33 lb-f/f
= -0.150 kip-f/f
onnected slab
nnected slabs
Moment Table:

Negative Moment Positive Moment


Sl No Slab No slab condition case Short Long Short Long
Direction Direction Direction Direction
(kip-f) (kip-f) (kip-f) (kip-f)
01 S1 / S3 Two Way Slab Case 8 1.175 1.237 0.747 0.469

02 S2 Two Way Slab Case 9 1.551 0.443 0.673 0.245

03 S4 / S6 One Way Slab Case 2 1.446 0.663 0.672 0.318

04 S5 Two Way Slab Case 2 1.491 0.701 0.687 0.333


05 S7 / S9 Two Way Slab Case 2 1.504 0.621 0.717 0.254

06 S8 Two Way Slab Case 9 1.671 0.387 0.678 0.281

07 S10 / S11 Two Way Slab Case 8 1.347 1.133 0.854 0.415

08 S12 / S13 One Way Slab 1.133 -0.150

09 S14 / S15 One Way Slab 1.504 0.439

Reinforcement Table:

Reinforcement for Reinforcement for


Negative Moment Positive Moment
Sl No Slab No slab condition case
Short Long Short Long
Direction Direction Direction Direction
#3 bar @ #3 bar @ #3 bar @ #3 bar @
01 S1 / S3 Two Way Slab Case 8 10" c/c 10" c/c 10" c/c 10" c/c
#3 bar @ #3 bar @ #3 bar @ #3 bar @
02 S2 Two Way Slab Case 9 10" c/c 10" c/c 10" c/c 10" c/c
03 #3 bar @ #3 bar @ #3 bar @ #3 bar @
S4 / S6 One Way Slab Case 2 10" c/c 10" c/c 10" c/c 10" c/c
04 #3 bar @ #3 bar @ #3 bar @ #3 bar @
S5 Two Way Slab Case 2 10" c/c 10" c/c 10" c/c 10" c/c
05 #3 bar @ #3 bar @ #3 bar @ #3 bar @
S7 / S9 Two Way Slab Case 2 10" c/c 10" c/c 10" c/c 10" c/c
06 #3 bar @ #3 bar @ #3 bar @ #3 bar @
S8 Two Way Slab Case 9 10" c/c 10" c/c 10" c/c 10" c/c
07 #3 bar @ #3 bar @ #3 bar @ #3 bar @
S10 / S11 Two Way Slab Case 8 10" c/c 10" c/c 10" c/c 10" c/c
08 #3 bar @ #3 bar @
S12 / S13 One Way Slab
10" c/c 10" c/c
09 #3 bar @ #3 bar @
S14 / S15 One Way Slab 10" c/c 10" c/c
Slab reinforecment

Slab: S1:

Reinforcement for Negative Moment

Short Direction
Mu = 1.175 Kip-f fy = 60 Ksi d = 4.25 inch
assuming a = 1 f'c = 4 Ksi φ = 0.90
b = 12 inch

Mu = φ As fy (d- a/2)
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-1/2 )
> As = 0.07 Sq. inch

Trail: 1
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.06 Sq. inch = 0.10

Trail: 2
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.06 Sq. inch = 0.09

As min = ρmin x bt ρmin = 0.0018


= 0.0018 x 12 x 5.00 thickness, t (inch) = 5
= 0.11 Sq. inch

Long Direction
Mu = 1.237 Kip-f fy = 60 Ksi d = 4.25 inch
assuming a = 1 f'c = 4 Ksi φ = 0.90
b = 12 inch

Mu = φ As fy (d- a/2)
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-1/2 )
> As = 0.07 Sq. inch

Trail: 1
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.07 Sq. inch = 0.11

Trail: 2
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.07 Sq. inch = 0.10

As min = ρmin x bt ρmin = 0.0018


= 0.0018 x 12 x 5.00 thickness, t (inch) = 5
= 0.11 Sq. inch

Spacing = (12 X bar area)/required area


= (12 X 0.11) / 0.11 using #3 bar (10 mm)
= 12 "

Spacing = 2t
= 2X5
= 10"

Spacing = 18"

required Spacing = 10"

Reinforcement for Positive Moment

Short Direction
Mu = 0.747 Kip-f fy = 60 Ksi d = 4.25 inch
assuming a = 1 f'c = 4 Ksi φ = 0.90
b = 12 inch

Mu = φ As fy (d- a/2)
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-1/2 )
> As = 0.04 Sq. inch

Trail: 1
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.04 Sq. inch = 0.07

Trail: 2
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.04 Sq. inch = 0.06
As min = ρmin x bt ρmin = 0.0018
= 0.0018 x 12 x 5.00 thickness, t (inch) = 5
= 0.11 Sq. inch

Long Direction
Mu = 0.469 Kip-f fy = 60 Ksi d = 4.25 inch
assuming a = 1 f'c = 4 Ksi φ = 0.90
b = 12 inch

Mu = φ As fy (d- a/2)
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-1/2 )
> As = 0.03 Sq. inch

Trail: 1
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.02 Sq. inch = 0.04

Trail: 2
Mu = φ As fy (d- a/2) As f y 0.26 X 60
a= =
> 4.38 x 12 = 0.9 x As x 60 ( 4.25-0.38/2 ) 0.85 f'c b 0.85 X 4 X 12
> As = 0.02 Sq. inch = 0.04

As min = ρmin x bt ρmin = 0.0018


= 0.0018 x 12 x 5.00 thickness, t (inch) = 5
= 0.11 Sq. inch

Spacing = (12 X bar area)/required area


= (12 X 0.11) / 0.11 using #3 bar (10 mm)
= 12 "

Spacing = 2t
= 2X5
= 10"

Spacing = 18"

required Spacing = 10"


Moment Coefficient Table For Two Way Slab
Table Al: Coefficients (Ca, neg.) for negative moment in slab along shorter
direction

m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9


0.50 0.000 0.086 0.000 0.094 0.090 0.097 0.000 0.089 0.088
0.55 0.000 0.084 0.000 0.092 0.089 0.096 0.000 0.085 0.086
0.60 0.000 0.081 0.000 0.089 0.088 0.095 0.000 0.080 0.085
0.65 0.000 0.077 0.000 0.085 0.087 0.093 0.000 0.074 0.083
0.70 0.000 0.074 0.000 0.081 0.086 0.091 0.000 0.068 0.081
0.75 0.000 0.069 0.000 0.076 0.085 0.088 0.000 0.061 0.078
0.80 0.000 0.065 0.000 0.071 0.083 0.086 0.000 0.055 0.075
0.85 0.000 0.060 0.000 0.066 0.082 0.083 0.000 0.049 0.072
0.90 0.000 0.055 0.000 0.060 0.080 0.079 0.000 0.043 0.068
0.95 0.000 0.050 0.000 0.055 0.079 0.075 0.000 0.038 0.065
1.00 0.000 0.045 0.000 0.050 0.075 0.071 0.000 0.033 0.061

Table A2: Coefficients (Cb, neg.) for negative moment in slab along longer
direction

m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9


0.50 0.000 0.006 0.022 0.006 0.000 0.000 0.014 0.010 0.003
0.55 0.000 0.007 0.028 0.008 0.000 0.000 0.019 0.014 0.005
0.60 0.000 0.010 0.035 0.011 0.000 0.000 0.024 0.018 0.006
0.65 0.000 0.014 0.043 0.015 0.000 0.000 0.031 0.024 0.008
0.70 0.000 0.017 0.050 0.019 0.000 0.000 0.038 0.029 0.011
0.75 0.000 0.022 0.056 0.024 0.000 0.000 0.044 0.036 0.014
0.80 0.000 0.027 0.061 0.029 0.000 0.000 0.051 0.041 0.017
0.85 0.000 0.031 0.065 0.034 0.000 0.000 0.057 0.046 0.021
0.90 0.000 0.037 0.070 0.040 0.000 0.000 0.062 0.052 0.025
0.95 0.000 0.041 0.072 0.045 0.000 0.000 0.067 0.056 0.029
1.00 0.000 0.045 0.076 0.050 0.000 0.000 0.071 0.061 0.033

Table A3: Coefficients (Ca, DL) for dead load positive moment in slab along
shorter direction
m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
0.50 0.095 0.037 0.080 0.059 0.039 0.061 0.089 0.056 0.023
0.55 0.088 0.035 0.071 0.056 0.038 0.058 0.081 0.052 0.024
0.60 0.081 0.034 0.062 0.053 0.037 0.056 0.073 0.048 0.026
0.65 0.074 0.032 0.054 0.050 0.036 0.054 0.065 0.044 0.028
0.70 0.068 0.030 0.046 0.046 0.035 0.051 0.058 0.040 0.029
0.75 0.061 0.028 0.040 0.043 0.033 0.048 0.051 0.036 0.031
0.80 0.056 0.026 0.034 0.039 0.032 0.045 0.045 0.032 0.029
0.85 0.050 0.024 0.029 0.036 0.310 0.042 0.004 0.029 0.028
0.90 0.045 0.022 0.025 0.033 0.029 0.039 0.035 0.025 0.026
0.95 0.040 0.020 0.021 0.030 0.028 0.036 0.031 0.022 0.024
1.00 0.036 0.018 0.018 0.027 0.027 0.033 0.027 0.020 0.023

Table A4: Coefficients (Cb, DL) for dead load positive moment in slab along
longer direction

m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9


0.50 0.006 0.002 0.007 0.004 0.001 0.003 0.007 0.004 0.002
0.55 0.008 0.003 0.009 0.005 0.002 0.004 0.009 0.005 0.003
0.60 0.010 0.004 0.011 0.007 0.003 0.006 0.012 0.007 0.004
0.65 0.013 0.006 0.014 0.009 0.004 0.007 0.014 0.009 0.005
0.70 0.016 0.007 0.016 0.011 0.005 0.009 0.017 0.011 0.006
0.75 0.019 0.009 0.018 0.013 0.007 0.013 0.020 0.013 0.007
0.80 0.023 0.011 0.020 0.016 0.009 0.015 0.022 0.015 0.010
0.85 0.026 0.012 0.022 0.019 0.011 0.017 0.025 0.017 0.013
0.90 0.029 0.014 0.024 0.022 0.013 0.021 0.028 0.019 0.015
0.95 0.033 0.016 0.025 0.024 0.015 0.024 0.031 0.021 0.017
1.00 0.036 0.018 0.027 0.027 0.018 0.027 0.033 0.023 0.020

Table A5: Coefficients (Ca, LL) for live load positive moment in slab along
shorter direction

m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9


0.50 0.095 0.066 0.088 0.077 0.067 0.078 0.092 0.076 0.067
0.55 0.088 0.062 0.080 0.072 0.063 0.073 0.085 0.070 0.063
0.60 0.081 0.058 0.071 0.067 0.059 0.068 0.077 0.065 0.059
0.65 0.074 0.053 0.064 0.062 0.055 0.064 0.070 0.059 0.054
0.70 0.068 0.049 0.057 0.057 0.051 0.060 0.063 0.054 0.050
0.75 0.061 0.045 0.051 0.052 0.047 0.055 0.056 0.049 0.046
0.80 0.056 0.041 0.045 0.048 0.044 0.051 0.051 0.044 0.042
0.85 0.050 0.037 0.040 0.043 0.041 0.046 0.045 0.040 0.039
0.90 0.045 0.034 0.035 0.039 0.037 0.042 0.040 0.035 0.036
0.95 0.040 0.030 0.031 0.035 0.034 0.038 0.036 0.031 0.032
1.00 0.036 0.027 0.027 0.032 0.032 0.035 0.032 0.028 0.030

Table A6: Coefficients (Cb, LL) for live load positive moment in slab along
longer direction

m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9


0.50 0.006 0.004 0.007 0.005 0.004 0.005 0.007 0.005 0.004
0.55 0.008 0.006 0.009 0.007 0.005 0.006 0.009 0.007 0.006
0.60 0.010 0.007 0.011 0.009 0.007 0.008 0.011 0.009 0.007
0.65 0.013 0.010 0.014 0.011 0.009 0.010 0.014 0.011 0.009
0.70 0.016 0.012 0.016 0.014 0.011 0.013 0.017 0.014 0.011
0.75 0.019 0.014 0.019 0.016 0.013 0.016 0.020 0.016 0.013
0.80 0.023 0.017 0.022 0.020 0.016 0.019 0.023 0.019 0.017
0.85 0.026 0.019 0.024 0.023 0.019 0.022 0.026 0.022 0.020
0.90 0.029 0.022 0.027 0.026 0.021 0.025 0.029 0.024 0.022
0.95 0.033 0.025 0.029 0.029 0.024 0.029 0.032 0.027 0.025
1.00 0.036 0.027 0.032 0.032 0.027 0.032 0.035 0.030 0.028

Table A7: Ratio of Load W in la direction for shear in slab and load on
supports

m Case l Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9


0.5 0.94 0.94 0.76 0.94 0.99 0.97 0.86 0.89 0.97
0.55 0.92 0.92 0.69 0.92 0.98 0.96 0.81 0.85 0.95
0.6 0.89 0.89 0.61 0.89 0.97 0.95 0.76 0.8 0.94
0.65 0.85 0.85 0.53 0.85 0.96 0.93 0.69 0.74 0.92
0.7 0.81 0.81 0.45 0.81 0.95 0.91 0.62 0.68 0.89
0.75 0.76 0.76 0.39 0.76 0.94 0.88 0.56 0.61 0.86
0.8 0.71 0.71 0.33 0.71 0.92 0.86 0.49 0.55 0.83
0.85 0.66 0.66 0.28 0.66 0.9 0.83 0.43 0.49 0.79
0.9 0.6 0.6 0.23 0.6 0.88 0.79 0.38 0.43 0.75
0.95 0.55 0.55 0.2 0.55 0.86 0.75 0.33 0.38 0.71
1 0.5 0.5 0.17 0.5 0.83 0.71 0.29 0.33 0.67
Beam Load Calculation
Slab
Beam No. Length (f) Contributory Floor Partition Total DL Total LL Dead Load Live Load
selfweight
Area (sf) Finish (Ksf) Wall (Ksf) (Ksf) (Ksf) (kip/f) (kip/f)
(Ksf)
B 01 7.83 15.32 0.0625 0.020 0.094 0.1765 0.040 0.345 0.078
B 02 8.00 16.00 0.0625 0.020 0.094 0.1765 0.040 0.353 0.080
B 03 7.83 15.32 0.0625 0.020 0.094 0.1765 0.040 0.345 0.078
B 04 7.83 30.64 0.0625 0.020 0.094 0.1765 0.040 0.691 0.157
B 05 8.00 32.00 0.0625 0.020 0.094 0.1765 0.040 0.706 0.160
B 06 7.83 30.64 0.0625 0.020 0.094 0.1765 0.040 0.691 0.157
B 07 7.83 30.64 0.0625 0.020 0.094 0.1765 0.040 0.691 0.157
B 08 8.00 32.00 0.0625 0.020 0.094 0.1765 0.040 0.706 0.160
B 09 7.83 30.64 0.0625 0.020 0.094 0.1765 0.040 0.691 0.157
B 10 7.83 30.64 0.0625 0.020 0.094 0.1765 0.040 0.691 0.157
B 11 8.00 16.00 0.0625 0.020 0.094 0.1765 0.040 0.353 0.080
B 12 7.83 30.64 0.0625 0.020 0.094 0.1765 0.040 0.691 0.157
B 13 7.83 38.87 0.0625 0.020 0.094 0.1765 0.040 0.876 0.199
B 14 7.83 38.87 0.0625 0.020 0.094 0.1765 0.040 0.876 0.199
B 15 10.42 90.16 0.0625 0.020 0.094 0.1765 0.040 1.527 0.346
B 16 10.42 51.12 0.0625 0.020 0.094 0.1765 0.040 0.866 0.196
B 17 10.42 51.12 0.0625 0.020 0.094 0.1765 0.040 0.866 0.196
B 18 11.42 90.16 0.0625 0.020 0.094 0.1765 0.040 1.393 0.316
B 19 11.42 76.19 0.0625 0.020 0.094 0.1765 0.040 1.178 0.267
B 20 11.42 59.04 0.0625 0.020 0.094 0.1765 0.040 0.912 0.207
B 21 11.42 59.04 0.0625 0.020 0.094 0.1765 0.040 0.912 0.207
B 22 11.42 76.19 0.0625 0.020 0.094 0.1765 0.040 1.178 0.267
B 23 12.25 61.73 0.0625 0.020 0.094 0.1765 0.040 0.889 0.202
B 24 12.25 65.63 0.0625 0.020 0.094 0.1765 0.040 0.946 0.214
B 25 12.25 65.63 0.0625 0.020 0.094 0.1765 0.040 0.946 0.214
B 26 12.25 61.73 0.0625 0.020 0.094 0.1765 0.040 0.889 0.202
B 27 11.42 29.37 0.0625 0.020 0.094 0.1765 0.040 0.454 0.103
B 28 11.42 29.37 0.0625 0.020 0.094 0.1765 0.040 0.454 0.103
B 29 11.42 29.37 0.0625 0.020 0.094 0.1765 0.040 0.454 0.103
B 30 11.42 29.37 0.0625 0.020 0.094 0.1765 0.040 0.454 0.103

Preliminary Beam Size Calculation


Floor Beam 1 to 6 Grade Beam Self Weight
Beam Longest span
Width (in) Depth (in) Width (in) Depth (in) Floor Beam Grade Beam
B1, B3, B4, B6, B7, B9, B10, B12, 7.83 12.00 5.87 12.00 12.00 73.41 150
B13, B14
B2, B5, B8, B11 8.00 12.00 6.00 12.00 12.00 75.00 150
B15, B16, B17, B18 10.42 12.00 7.82 12.00 12.00 97.69 150
B19, B20, B21, B22, B27, B28,B29, 11.42 12.00 8.57 12.00 12.00 107.06 150
B30
B23, B24, B25, B26 12.25 12.00 9.19 12.00 12.00 114.84 150

Considering
Width (in) Depth (in)
In X direction 12 12
In Y direction 12 12
Moment for Frame 5 ABCD (Kip-f)

Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior
Load Type Face Face Face Face Face Face Face Face
Dead Load -4.865 1.921 -3.168 -3.633 3.441 -3.309 -3.128 1.912 -4.912

Live Load -0.745 0.246 -0.431 -0.507 0.496 -0.518 -0.450 0.245 -0.749

Wind load -0.019

EQ Load

Shear for Frame 5 ABCD (Kip-f)

Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior
Load Type
Face Face Face Face Face Face Face Face
Dead Load

Live Load

Wind load

EQ Load
Moment for Frame 5 ABCD (Kip-f)

Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior
Load Combination Face Face Face Face Face Face Face Face
1.4DL -6.8110 2.6896 -4.4050 -5.0856 4.8176 -5.7320 -4.3798 2.6843 -6.8774
1.4DL+1.7LL -8.0776 3.1072 -5.2093 -5.9482 5.6608 -6.5440 -5.1443 3.1006 -8.1512
1.O5DL+1.275LL+1.275WLX -6.0595 2.3304 -3.9046 -4.4642 4.2454 -4.5377 -3.8607 2.3255 -6.1121
1.O5DL+1.275LL-1.275WLx -6.0569 2.3305 -3.9095 -4.4580 4.2458 -4.5439 -3.8557 2.3254 -6.1147
1.O5DL+1.275LL+1.4025EQX -5.8666 2.8907 -6.2493 -4.5037 4.4619 -8.1029 -4.0665 2.3216 -7.5569
1.O5DL+1.275LL-1.4025EQx -7.5030 2.3350 -3.6823 -8.0227 4.4561 -4.4836 -6.1988 2.8725 -6.2950
0.9DL+1.3WLX -4.3798 1.7290 -2.8487 -3.2724 3.0969 -3.3225 -2.8181 1.7257 -4.4198
0.9DL-1.3WLx -4.3772 1.7290 -2.8537 -3.2661 3.0972 -3.3288 -2.8138 1.7256 -4.4225
0.9DL+1.43EQLX -4.1831 2.3910 -5.2395 -3.3127 3.3208 -6.9576 -3.0280 1.7217 -6.2651
0.9DL-1.43EQLx -6.2189 1.7336 -2.6222 -6.9007 3.3162 -3.2673 -5.2021 2.3773 -4.6063
Design Moment -8.0776 3.1072 -6.2493 -8.0227 5.6608 -8.1029 -6.1988 3.1006 -8.1512

Shear for Frame 5 ABCD (Kip-f)

Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior Exterior Mid Span Interior
Load Combination Face Face Face Face Face Face Face Face
1.4DL -2.866 -0.620 3.238 -3.996 0.009 4.014 -3.213 0.634 2.879
1.4DL+1.7LL -3.325 -0.748 3.754 -4.653 0.011 4.674 -3.730 0.763 3.339
1.O5DL+1.275LL+1.275WLX -2.288 -0.364 2.815 -3.490 -0.006 3.505 -2.799 0.311 2.427
1.O5DL+1.275LL-1.275WLx -2.494 -0.561 2.817 -3.489 0.006 3.506 -2.797 0.312 2.505
1.O5DL+1.275LL+1.4025EQX -2.449 1.491 5.260 -3.487 1.487 5.496 -2.839 2.448 4.482
1.O5DL+1.275LL-1.4025EQx -4.407 -2.375 2.769 -5.425 -1.438 3.458 -5.166 -1.419 -2.547
0.9DL+1.3WLX -1.843 -0.399 2.078 -2.569 0.005 2.580 -2.066 0.407 1.851
0.9DL-1.3WLx -1.842 -0.398 2.079 -2.568 0.007 2.581 -2.065 0.408 1.851
0.9DL+1.43EQLX -1.797 1.655 4.605 -2.566 1.497 4.624 -2.108 2.337 3.889
0.9DL-1.43EQLx -3.838 -2.287 2.038 -4.575 -1.474 2.581 -4.541 -1.606 1.894
Design Shear -4.407 -2.375 4.605 -5.425 1.497 5.496 -5.166 2.448 4.482
Design for Beam:

Check for T-beam


Design of Lintel

Considering Opening of the window = 5'-0"

Assume Effective Depth of lintel

d = l / 10 = 5 / 10 = 0.50 f
= 6.00 inch
Beam Length Dead Load
DL from Total Total
DL from Live Total Preliminary
Column Contributory Slab DL from Dead Live
name Area (sf) X Y direction (PW+FF+ Beam SW, Beam SW, DL from load load load Load ρg Ag Column Size
direction SW) (Ksf) X Column (Ksf) (kip) (in X in)
(f)
(f) direction Y direction SW, (Kip) (kip) (kip)
(kip/f)
(kip/f)

C1 54.34 3.92 5.25 0.1765 0.1500 0.1500 1.50 0.040 74.80 13.04 126.89 0.015 53.33 8X8
C2 41.22 7.92 5.25 0.1765 0.1500 0.1500 1.50 0.040 64.50 9.89 107.12 0.015 45.02 8X8
C3 41.22 7.92 5.25 0.1765 0.1500 0.1500 1.50 0.040 64.50 9.89 107.12 0.015 45.02 8X8
C4 54.34 3.92 5.25 0.1765 0.1500 0.1500 1.50 0.040 74.80 13.04 126.89 0.015 53.33 8X8
C5 97.45 3.92 11.00 0.1765 0.1500 0.1500 1.50 0.040 125.63 23.39 215.64 0.015 90.63 10 X 10
C6 86.39 7.92 11.00 0.1765 0.1500 0.1500 1.50 0.040 117.52 20.73 199.77 0.015 83.96 10 X 10
C7 86.39 7.92 11.00 0.1765 0.1500 0.1500 1.50 0.040 117.52 20.73 199.77 0.015 83.96 10 X 10
C8 97.45 3.92 11.00 0.1765 0.1500 0.1500 1.50 0.040 125.63 23.39 215.64 0.015 90.63 10 X 10
C9 83.51 6.17 11.92 0.1765 0.1500 0.1500 1.50 0.040 113.72 20.04 193.28 0.015 81.23 10 X 10
C10 93.64 7.92 11.92 0.1765 0.1500 0.1500 1.50 0.040 126.02 22.47 214.63 0.015 90.20 10 X 10
C11 93.64 7.92 11.92 0.1765 0.1500 0.1500 1.50 0.040 126.02 22.47 214.63 0.015 90.20 10 X 10
C12 83.51 3.92 11.92 0.1765 0.1500 0.1500 1.50 0.040 111.69 20.04 190.44 0.015 80.04 10 X 10
C13 61.31 3.92 11.92 0.1765 0.1500 0.1500 1.50 0.040 88.18 14.71 148.47 0.015 62.40 8X8
C16 61.31 3.92 11.92 0.1765 0.1500 0.1500 1.50 0.040 88.18 14.71 148.47 0.015 62.40 8X8
C17 34.12 3.92 5.75 0.1765 0.1500 0.1500 1.50 0.040 53.84 8.19 89.29 0.015 37.53 8X8
C20 34.12 3.92 5.75 0.1765 0.1500 0.1500 1.50 0.040 53.84 8.19 89.29 0.015 37.53 8X8
Preliminary Design of column size

Pu = Wu X A X no of floors

For typical floor,


Wu = 1.4 DL X 1.7 LL

Dead Load:
Slab SW = 62.50 lb/sf = 0.0625 Kip/sf
P. Wall = 94.00 lb/sf = 0.0940 Kip/sf
F.F = 20.00 lb/sf = 0.0200 Kip/sf
= 0.1765 Kip/sf
Beam Self-weight:
12 X12 150
In X direction = X = 0.1500 Kip/f
144 1000

12 X12 150
In Y direction = X = 0.1500 Kip/f
144 1000

For Column C4 -

Beam in X direction = 3.92 f


Beam in Y direction = 11.00 f
Beam Self-weight = 3.92 X 0.150 + 11.00 X 0.150 = 2.238 Kip

Column Contributory Area


= 97.45 sf

Assuming Column Size = 12" X 12"


12 X12
Column SW = X 10 X 150 = 1.50 Kip/f
144

So, Total DL = (3.92 X 0.15 + 11.00 X 0.15 + 97.45 X 0.1765 + 1.5) X 6


= 125.63 Kip

Total LL = 0.040 X 97.45 X 6


= 23.39 Kip

Pu = 1.4 X 125.63 + 1.7 X 23.39


= 215.64 Kip

Now, Pu =
Ag = 90.63 inch2

Use Column 12" X 12"


Stair Design

Given
Live Load = 100 Psf
Floor Finish = 20 Psf
Concrete Strength (F'c) = 4000 psi
60 grade mild steel (fy) = 60000 psi

Riser = 6 inch
trade = 10 inch
Floor to floof height = 10 f
Total span = 16.50 f

Load Calculation
Assuming
waist slab thickness = 5.00 inch

Load from waist slab (per horizontal foot)

= 73.08 Psf

Load from step 1


= X trade X rise X unit weight of slab
2

1 10 6
= X X X 150
2 12 12

= 31.12 lb ( around 10" horizontal length and per foot


width of stair slab)

31.25 X 12
=
10

= 37.34 Psf

Dead Load = Load from waist slab + Load from step + Floor finish
DL = 73.08 + 37.34 + 20 = 130.42 Psf

Design Load, Wu = 1.4 DL + 1.7 LL


= 1.4 X 130.42 + 1.7 X 100
= 352.59 Psf

Effective span of stair = 6.67 + 5.75 = 12.42 f


Maximum Bending Moment
Mu = ( Wu X L2/8 )
= 352.59 X 12.422/8
= 6.80 kip-f

Check for effective depth of stair slab


ρmax = 0.85 β1 X (f'c/fy) X (0.003/0.008)
= 0.85 X 0.85 X (4/60) x (0.003/0.008)
= 0.0181

Now Mu = Ф X ρ X fy X bd2 ( 1- 0.59 X fy/f'c X ρ)


6.80 X 12 = 0.90 X 0.0181 X 60 X 12 X d2 ( 1- 0.59 X 60/4 X 0.0181)
d = 3.53 inch

Let, Cover of the slab = 1"

d (provided) = (5-1)
= 4"

Steel Area ( for bending moment )

Mu = 6.800 Kip-f fy = 60 Ksi d= 3 inch


assuming a = 1 f'c = 4 Ksi φ = 0.90
b = 12 inch

Mu = φ As fy (d- a/2)
> 6.80 x 12 = 0.9 x As x 60 ( 4.00-1/2 )
> As = 0.60 Sq. inch
As fy 0.32 X 60
a= =
Trail: 1 0.85 f'c b 0.85 X 4 X 12
Mu = φ As fy (d- a/2) = 0.89
> 5.41 x 12 = 0.9 x As x 60 ( 4.00-0.38/2 )
> As = 0.59 Sq. inch
As fy 0.30 X 60
a= =
Trail: 2 0.85 f'c b 0.85 X 4 X 12
Mu = φ As fy (d- a/2) = 0.87
> 5.41 x 12 = 0.9 x As x 60 ( 4.00-0.38/2 )
> As = 0.59 Sq. inch

As min = ρmin x bt ρmin = 0.0018


= 0.0018 x 12 x 5.00 thickness, t (inch) = 5
= 0.108 Sq. inch
As > As min Ok

Let use # 5 bar

so, 12 X 0.31
c/c spacing =
0.45

= 8.27 inch

# 5 @ 8" c/c

Maximum spacing = 3t or 18"


= 12" OK

Steel for temperature and shrinkage-

As min = ρmin x bt ρmin = 0.0018


= 0.0018 x 12 x 5.00 thickness, t (inch) = 5
= 0.108 Sq. inch

Let use # 3 bar

so, 12 X 0.11
c/c spacing =
0.108

= 12.22 inch

# 3 @ 12" c/c

Maximum spacing = 5t or 18"


= 18" OK

Check for shear stress-

Minimum vertical shear, Vu = WuL/2 = 352.59 X 12.42 / 2


= 2190 lb
Shear Capacity ФVc = 2Ф bd
= 2x0.85X X 12 X 4
= 5.16 kip

Actual shear (Vu) < Shear capacity (ФVc)


Check for Bond stress:

Actual Bond stress developed, u=

= Perimeter of all bars, a= 0.93"

# 5 perimeter = 2 = 1.96 in

spacing of bars = 5"

No of bars in 12" width =(12/5)


= 2.4 Nos

= 1.96 X 2.40 = 4.704 inch

u= = 159.03 psi

Ultimate bond straight =

= 707.7 psi

Actual bond straight (u) Ultimate bond straight ( , Ok

Development length:

Inclined span (L) waist slab = = 9.01 f

Development length, = = 3 f.

You might also like