FX X X X Cos X X F X F X X: 1/18 Math - Ma - 9/2017
FX X X X Cos X X F X F X X: 1/18 Math - Ma - 9/2017
                                  اﻟﻨﻬﺎﻳﺎت واﻻﺗﺼﺎل
                                 ( ﲤﺮﻦ16) 1 اﻟﺴﻠﺴ
                                                                                                        :1
                                   f ( x ) = x 2 − 2x cos ( x ) + 1 :                      اf    ا ا ا د
                                                                                cos ( x )
                                                                          lim             = 0 أن     .1
                                                                          x →+∞    x
                                                                                       :    ! " # $ ا.2
                                                                                lim f ( x ) = +∞ .أ
                                                                                  x →+∞
                                                                                         f (x )
                                                                                   lim          = 1 .ب
                                                                                   x →+∞   x
                                                                                              :2
                                                         :        ا       '#  أدرس ا، * *+ ! راm                  &
                                                                lim 4x + 2x − 5 + mx − 1 .1
                                                                              2
                                                                x →+∞
                                                                lim 4x 2 + 2x − 5 + mx − 1 .2
                                                                x →−∞
                                                                                                        :3
                               x + x + ......... + x − n
       ( n ∈ ℕ∗ )
                                     2            n
                    f (x ) =                             :                اx        * *,  ا-       f        ا ا
                                        x −1
                                                                                x k −1
                                                             ( k ∈ ℕ∗ )    lim
                                                                            x →1 x − 1
                                                                                       : '#  د ا+ .1
                                                                          lim f ( x ) : '#  " ا# $ ا.2
                                                                          x →1
                                                                                                      :4
                                                                                          :     ' ت ا# أدرس ا
                                                                                        tan ( x ) − 1
                                                                                  limπ                   .1
                                                                                  x → 2cos ( x ) − 2
                                                                                     4
                                                                             cos ( 2x ) − cos ( 4x )
                                                                        lim                          .2
                                                                        x →0           x2
                                                   sin ( x ) − sin ( a )
                       ( * *+ د    a)         lim                        .3
                                              x →a cos ( x ) − cos ( a )
                                                                 :5
                       :              اx * *,  ا-         ا ا ا دf &
                                                           2
                                           f ( x ) = x sin   ; x ≠ 0
                                                           x 
                                           
                                                 f ( 0) = 0
                                          0 2*#  اf أن ا ا          .1
                                       .ℝ 3     4 ! f أن ا ا        .2
                                                                :6
                                                 :     ل ا وال ا47أدرس ا
                                                   2x − 1
         f (x ) = x 2 − 2 x        (2 f ( x ) = 2               (1
                                               x − 6x + 5
                                                   x −1
           f (x ) = E (x )        (4    f (x ) =             (3
                                                    x −1
                                                                       :7
                             :                   اx * *,  ا-         f ا ا
                  
                       ( x ) = ( x 2 − 1) sin 
                                                   1 
                  f                                   ;x ≠ 1
                                               x −1 
                  
                                f (1) = 1
                                       f ا ا8 7           9! D f  د+ (1
               ( ∀x ∈ ]0,2[ )     f ( x ) − f (1) ≤ 3 x − 1 : أن  (2
                           x 0 = 1 2*# ا      4 ! f  " أن ا ا# $( ا3
                                                                  :8
                                                    : 7: ل ا وال ا47أدرس ا
                                                       1 
       f ( x ) = x 3 − 2x 2 + 1 (2      f ( x ) = cos  3  (1
                                                      x 
          f ( x ) = 1 + x 2 (4        f ( x ) = sin ( x 2 + x ) (3
                                         :9
                 x 0 2*# ا     7:أدرس ' ا وال ا
         f ( x ) = 3x 3 + x − 1 x 0 = +∞ (1
                      x 2 − 6x + 5
         f (x ) =                        x 0 = 1 (2
                    ( x − 1)( x + 3)
                   3x 2 + x − 1
        f (x ) =                  x 0 = +∞             (3
                      x +1
                    x 2 +1
          f (x ) =           − x x 0 = +∞              (4
                     x +1
                         x +1 x
              f (x ) = 2           x 0 = −1            (5
                           x −1
                            1 1
                f (x ) = + 2 x 0 = 0                   (6
                            x x
                       x −1
                         3
       f (x ) =                       x 0 =1           (7
                ( x − 1) ( 3x − 1)
                         2
                          x + 1 −1
             f (x ) =              x 0 = 0 (8
                            x
                                           : 10
                    x0 =0       7:أدرس ' ا وال ا
                                      E (x )
                            f (x ) =            (1
                                         x
                                  x − sin x
                        f (x ) =                (2
                                  x + sin x
                                   tan ( 3x )
                         f (x ) =               (3
                                   sin ( 2x )
                              tan x − sin x
                     f (x ) =                   (4
                                    x3
                                        : 11
                 x 0 2*# ا     7:أدرس ' ا وال ا
            f ( x ) = x − sin x x 0 = +∞ (1
              f ( x ) = E ( x ) x 0 = +∞ (2
                                                                                         : 12
                                                        ℝ    @AB ا3 C+ @ *7 f ( x ) = 0 أن ا د
                                                                         f ( x ) = 2x 3 + 5x − 4 (1
                                                                         f ( x ) = 1 + sin x − x (2
                                                                                1        1
                                                                   f (x ) =            − cos x (3
                                                                            ( x + 1) 2
                                                                                     2
                                                                                              : 13
                                                                    4
                                                        f (x ) = x 4 −:ب         ا ا ا د اf &
                                                                    x
                                                 [1, 2]      @AB ا3 C+ @ *7 f ( x ) = x أن ا د
                                                                                        : 14
                                                I 3    4 !  وℝ ! I  ل9! 3         ! د     داf &
       ( ∀x ∈ I )   f ( x ) < 0   أو( ∀x ∈ I ) f ( x ) > 0  : # نJ I  م#7 I f D E  إذاH أ
                                                                                              : 15
                                  . [ 0,1] , [ 0,1] !       !  [ و0,1]  ل9  ا3       4! د        داf   &
                                           f (α n ) = α nn : L , [ 0,1] ! α n K       n ! n @& H أ
                                                                                     : 16
                                                   . [a;b ] , [a;b ]  ل9! ! !  و4 !  داf &
                                            [a;b ]  ل9 @ اAB ا3 C+ @ *7 f ( x ) = x أن ا د
1 "! ا#
                                                      cos ( x )   1
                                     ∀x ∈ ℝ ∗                   ≤   إذن      ∀x ∈ ℝ         cos ( x ) ≤ 1 : #       .1
                                                        x         x
                                                                   cos ( x )                  1
                                                             lim             = 0 نJ   lim       = 0 أن          و
                                                             x →+∞   x                x →+∞   x
                                                                                                                - أ.2
                                    lim f ( x )            = lim x 2 − 2x cos ( x ) + 1
                                    x →+∞                    x →+∞
                                                                      cos x   1 
                                                      = lim x 2 1 − 2       + 2  = +∞
                                                        x →+∞
                                                                        x    x 
                                                                                
                                                                                 xlim  x 2 = +∞
                                                                                    →+∞
                                                                                
                                                                                      cos x
                                                                                xlim         = 0 : نB
                                                                                   →+∞    x
                                                                                
                                                                                         1
                                                                                 x →+∞ x 2 = 0
                                                                                    lim
                                                                                                                -ب
             f (x )                                 x 2 − 2x cos ( x ) + 1
        lim                           = lim
       x →+∞   x                            x →+∞            x
                                          cos x   1                           =1
                                x 2 1 − 2       + 2                 cos x   1
                                                               x 1− 2       + 2
                                            x    x                    x    x
                      = lim                            = lim
                       x →+∞               x             x →+∞        x
2 "! ا#
                                                                       2 5           1
                                lim 4x 2 + 2x − 5 + mx − 1 = lim x  4 + − 2 + m −  : #                            .1
                               x →+∞                         x →+∞      x x           x 
                                                                   
                                                                         : m > −2  نEإذا
                                                              lim 4x 2 + 2x − 5 + mx − 1 = +∞
                                                             x →+∞
                                          2 5          1
                                xlim   4+ − 2 +m −  = 2+m >0
                                    →+∞
                                          x x          x            : نB
                                              lim x = +∞
                                            x →+∞
                                          2 5          1
                                xlim   4+ − 2 +m −  = 2+m <0
                                    →+∞
                                          x x          x            : نB
                                              lim x = +∞
                                            x →+∞
                                                             : m = −2  نE إذا
                                                                              5
                                                                        x 2− 
                                    4x + 2x − 5 −4x
                                     2              2
                                                                              x         −1
 lim 4x 2 + 2x − 5 − 2x − 1 = lim                       − 1 = lim                    −1 =
x →+∞                         x →+∞
                                     4x 2 + 2x − 5 + 2x       x →+∞         2 5         2
                                                                    x  4 + − 2 + 2
                                                                            x x   
                                                                2 5          1
                       lim 4x 2 + 2x − 5 + mx − 1 = lim x  − 4 + − 2 + m −  : #            .2
                      x →−∞                         x →−∞        x x         x 
                                                          
                                                                  : m > 2  نE إذا
                                                  lim 4x 2 + 2x − 5 + mx − 1 = −∞
                                                  x →−∞
                                                2 5          1
                                    xlim   − 4+ − 2 +m −  = m −2>0
                                        →−∞
                                                x x          x           : نB
                                                   lim x = −∞
                                                 x →−∞
                                                2 5          1
                                    xlim   − 4+ − 2 +m −  = m −2< 0
                                        →−∞
                                                x x          x           : نB
                                                   lim x = −∞
                                                 x →−∞
: m = 2  نE إذا
                                                                                  5
                                                                             x 2− 
                                    4 x + 2 x − 5 −4 x
                                         2                   2
                                                                                  x          −3
 lim 4x 2 + 2x − 5 + 2x − 1 = lim                          − 1 = lim                      −1 =
x →−∞                         x →−∞
                                      4 x 2 + 2x − 5 − 2 x       x →−∞          2 5          2
                                                                       x  − 4 + − 2 − 2
                                                                                x x    
3 "! ا#
                                         x k −1
                                                = 1 + x + x 2 + ........ + x k −1 : #       ℝ \ {1} ! x @& .1
                                          x −1
                                                                                    x k −1
                                                                                lim        = k نJ H#! و
                                                                               x →1 x − 1
4 "! ا#
                                                          π    
                                                      tan  + h  − 1
             tan x − 1                                    4    
       limπ                                  = lim
       x → 2cos x − 2                          h →0      π    
          4                                         2cos  + h  − 2
                                                         4    
                                                 π 
                                             tan   + tan ( h )
                                                 4              −1
                                                    π 
                                            1 − tan   tan ( h )
                           = lim                    4
                             h →0       π                 π           
                                 2  cos   cos ( h ) − sin   sin ( h )  − 2
                                        4                 4           
                                                         2 tan ( h )
                           = lim
                             h →0
                                    (1 − tan ( h ) ) ( 2 ( cos ( h ) − 1) −   2 sin ( h )   )
                                                       tan ( h )
                                                         2
                         = lim                             h
                                (1 − tan ( h ) )  2  h 2 .h − 2 h( ) 
                           h →0                    cos ( h ) − 1  sin h 
                                                                        
                                                              2
                                                      =−
                                                             2
                                                       : * + د ا-( ( ل ا          ) :2 % ط
                                         π
                                                  * قPC           A "cos" " وtan"               ا ا
                                         4
                                                           π 
                                           tan ( x ) − tan  
                  tan ( x ) − 1                            4
       limπ                       = limπ
       x→       2cos ( x ) − 2      x→    
                                       4 2 cos ( x ) − cos
                                                             π 
            4
                                                            
                                                            4 
                                                           π 
                                           tan ( x ) − tan  
                                                           4
                                                          π
                                                     x−
                                  = limπ                4
                                                           π 
                                           cos ( x ) − cos  4  
                                    x→
                                       4
                                         2                  
                                                       π         
                                                  x−             
                                                        4        
                                                    π 
                                               tan′  
                                            =       4
                                                     π 
                                              2cos′  
                                                     4
                                                       π 
                                             1 + tan 2  
                                           =           4
                                                      π 
                                              −2sin  
                                                      4
                                                   2
                                               =
                                                  − 2
5 "! ا#
                                                             2
                                           f ( x ) = x . sin   : ℝ∗ ! x @& #          .1
                                                             x 
                                                                   2
                                              f ( x ) ≤ x نJ sin   ≤ 1 و أن
                                                                   x 
                                   lim f ( x ) = 0 = f ( 0 ) نJ lim x = 0  أنL + و
                                   x →0                          x →0
                                                 2
                         x0        4 ! f 2 :x ֏       ا ا: #
                                                 x
                  f 2 (x 0 )       4 ! f 3 : x ֏ sin x و ا ا
                                 x0         4 ! f 3 f 2 إذن ا ا
                           x0         4 ! f = f 1 × ( f 3 f 2 )  ا اH#! و
                                          ℝ∗ 3    4! f        و
                .ℝ 3           4 ! f نJ 0    4 ! f  أن ا اL + و
6 "! ا#
                                                           2x − 1
                                                f (x ) =          (1
                                                       x − 6x + 5
                                                              2
7 "! ا#
                                                                       x 2 −1 = x −1 x +1 : #                    و
                                                                            x ∈ ]0, 2[ ⇒ x + 1 ≤ 3
                                                                 x ∈ ]0, 2[ ⇒ x 2 − 1 ≤ 3 x − 1
8 "! ا#
                                                                                                     1 
                                                                                      f ( x ) = cos  3  (1
                                                                                                    x 
                                                                                            D f = ℝ∗ #
                                                  1
                                       h :x ֏         وg : x ֏ cos ( x ) L + f = g h #
                                                  x3
                                                                       x 0 ∈ ℝ∗ &
                            ( x 0 ∈ D h ر وSK  ' داB ) x 0                4 !  داh
                           (ℝ 3           4 ! g نB ) h ( x 0 )          4 !  داg
                                 x0       4 ! f H#!  وx 0          4 ! g h إذن
                                                     Df 3          4! f                و
                                                          f ( x ) = x 3 − 2x 2 + 1 (2
                                                                     Df = ℝ #
              h : x ֏ x 3 − 2x 2 + 1  وg : x ֏ x L + f = g h #
                                                                      x0 ∈ℝ            &
                                         (  ود+  ' داB ) x 0            4 !  داh
              (ℝ 3       4! *2 ا           * ن دا اB ) h ( x 0 )        4 !  داg
                             ℝ 3          4 ! f نJ H#!  وx 0           4 ! f إذن
                                                            f ( x ) = sin ( x 2 + x ) (3
                                                                     Df = ℝ #
               h : x ֏ x 2 + x  وg : x ֏ sin ( x ) L + f = g h #
                                                                      x0 ∈ℝ            &
                                         (  ود+  ' داB ) x 0            4 !  داh
                       (ℝ 3           4 ! "sin" نB ) h ( x 0 )          4 !  داg
                                 ℝ 3       4 ! f نJ H#!  وx 0           4 ! f إذن
                                                                   f ( x ) = 1 + x 2 (4
                                                                Df = ℝ #
                    h : x ֏1+ x 2  وg : x ֏ x L + f = g h #
                                                                      x0 ∈ℝ            &
                                         (  ود+  ' داB ) x 0            4 !  داh
        ( h ( x 0 ) > 0  وℝ+ 3        4 !  داg نB ) h ( x 0 )          4 !  داg
                             ℝ 3         4 ! f نJ H#!  وx 0           4 ! f إذن
9 "! ا#
                                                                                                      (1
                             lim f ( x ) = lim 3x + x − 1 = lim 3x = +∞
                                                         3                     3
                             x →+∞              x →+∞                 x →+∞
                                             lim f ( x ) = lim
                                                                  ( x − 1)( x − 5 ) = lim x − 5 = −1 (2
                                             x →1            x →1 ( x − 1)( x + 3 )   x →1 x + 3
                                                                                                       (3
                                                              3x 2
                                          lim f ( x ) = lim        = lim 3x = +∞
                                          x →+∞          x →+∞ x     x →+∞
                                                              3x 2
                                           lim f ( x ) = lim       = lim 3x = −∞
                                          x →−∞          x →−∞ x     x →−∞
                                                                                                       (4
                                                              x 2 +1       1− x
                                                    f (x ) =         −x =
                                                              x +1         x +1
                                                                        −x
                                                     lim f ( x ) = lim      = −1
                                                    x →+∞          x →+∞ x
(5
               lim f ( x ) = lim
                                          x +1 x
                                                 = lim
                                                            ( x + 1) x = lim x = 1
                                          x − 1 xx→− >−1 ( x + 1)( x − 1)
               x →−1           x →−1        2           1                 x →−1 x − 1 2
                x >−1           x >−1                                      x >−1
                                        x +1 x            − ( x + 1) x           −x     −1
              lim f ( x ) = lim                = lim                    = lim         =
                                        x − 1 xx→− <−1 ( x + 1)( x − 1)
              x →−1           x →−1       2           1                   x →−1 x − 1   2
              x <−1           x <−1                                        x <−1
                                                      1 1 x +1                 1
                                           f (x ) =      + 2 = 2 = ( x + 1) . 2                        (6
                                                      x x          x          x
                                                                       1
                                          lim f ( x ) = lim ( x + 1) . 2 = +∞
                                          x →0          x →0          x
                          x 3 −1      ( x − 1) ( x 2 + x + 1)   x 2 + x +1
        f   ( )
             x  =                   =                         =                                        (7
                  ( x − 1) ( 3x − 1) ( x − 1) ( 3x − 1) ( x − 1)( 3x − 1)
                          2                      2
                                              x 2 + x +1     1   3
                        lim+ f ( x ) = lim+              ×     = × +∞ = +∞
                         x →1           x →1     3x − 1    x −1 2
                                             x + x +1
                                               2
                                                            1   3
                        lim− f ( x ) = lim−             ×      = × −∞ = −∞
                        x →1           x →1    3x − 1     x −1 2
        lim f ( x ) = lim
                            x +1 −1
                                    = lim
                                             (      x +1 −1    )(   x +1 +1         ) = lim     1
                                                                                                     =
                                                                                                       1
                                                                                                                        (8
        x →0         x →0     x       x →0
                                                     x   (    x +1 +1    )             x →0   x +1 +1 2
10 "! ا#
                                                                                                                        (1
                                                             −1
                                               f (x ) =          إذنE ( x ) = −1 : [ −1,0[  ل9  ا3
                                                             x
                                                                                        −1
                                                                    lim f ( x ) = lim = +∞
                                                                    x →0          x →0 x
                                                                     x <0          x <0
                                                             0
                                               f (x ) =        = 0  إذنE ( x ) = 0 : [ 0,1[  ل9  ا3
                                                             x
                                                                        lim f ( x ) = lim 0 = 0
                                                                               x →0            x →0
                                                                                x >0            x >0
                                                                                                                        (2
                                                                     y
-4 -3 -2 -1 0 1 2 3 4 x
-1
-2
-3
                                                                                       sin x = −x ⇔ x = 0 : #
                                                                                                   D f = ℝ ∗ إذن
                                              sin x                sin x
                                           x 1 −            1−
                                   f (x ) =                =
                                                  x                    x
                                              sin x         1 + sin x
                                           x 1 +           
                                                 x                   x
                                                                     sin x
                                           lim f ( x ) = 0  إذنlim          = 1 [ أن
                                           x →0                  x →0 x
                                                                        tan ( 3x )
                                                              f (x ) =                  (3
                                                                        sin ( 2x )
                                       k π            π k π                 
                           Df = ℝ −        / k ∈ ℤ ∪  +             / k ∈ ℤ
                                        2             6          3          
                        3 tan 3x         2x        π   π
               f (x ) = ×            ×          :  − ,0  ∪  0,   ل9  ا3
                        2      3x      sin 2x  6   6 
               2x             X                   tan 3x           tan X
        lim          = lim          = 1  وlim              = lim           =1 : #
        x →0 sin 2x    X →0 sin X            x →0    3x      X →0     X
                                                                             3
                                                              lim f ( x ) = : إذن
                                                              x →0           2
                                                                        tan x − sin x
                                                            f (x ) =                   (4
                                                                             x3
                                                                 π                  
                                                    D f = ℝ∗ −  + k π / k ∈ ℤ 
                                                                 2                  
                       tan x − cos x tan x tan x  1 − cos x                 1 1
              f (x ) =            3
                                              =         ×       2      = 1× =
                                x                  x      x                 2 2
11 "! ا#
                                                                        x ∈ ℝ & (2
                                                    E (x ) ≤ x < E (x ) +1 #
                                                             x − 1 < E ( x ) إذن
                                                                                      x − 1 < f ( x ) إذن
                                                    lim f ( x ) = +∞ نJ lim x − 1 = +∞ أن
                                                    x →+∞                     x →+∞
                                                                   f ( x ) ≤ x  أيE ( x ) ≤ x #
                                                         lim f ( x ) = −∞ نJ          lim x = −∞ أن
                                                         x →−∞                        x →−∞
12 "! ا#
                                                                             f ( x ) = 2x 3 + 5x − 4 : #                        (1
                                                (  ود+  ' داB ) ℝ 3                4 ! f  وDf = ℝ : #
                                                                                        [ −1,1]  ل9 ا
                                           f ( −1) ≤ 0 ≤ f (1)  إذنf         (1) = 3  وf ( −1) = −11 :                  #
L , c ∈ [ −1,1] @AB ا3    K       2 $  ا * [ ا#] ! ھX+ H J         [ −1,1]   ل9  ا3            4 ! f أن                     و
                                                                                                            f (c ) = 0
                                                    ℝ       C+ @AB ا3 @ *7 f ( x ) = 0 د                 " أن ا# X
                                                                                 f ( x ) = 1 + sin x − x #                      (2
                                                                       ℝ 3         4 ! f  وDf = ℝ : #
                                            f (π ) < 0 < f ( 0 )  إذنf (π ) = 1 − π  وf ( 0 ) = 1 : #
L , c ∈ [ 0, π ] @AB ا3   K       2 $  ا * [ ا#] ! ھX+ H J         [0,π ]    ل9  ا3            4 ! f أن                     و
                                                                                                            f (c ) = 0
                                                ℝ        C+ @AB ا3 @ *7 f ( x ) = 0 د                 " أن ا# X إذن
                                                                                          1    1
                                                                       f (x ) =               − cos x #                         (3
                                                                                      ( x + 1) 2
                                                                                               2
                                                                Df 3    4 ! f  وD f = ℝ − {−1} : #
                                                                                           [0,2π ]  ل9          ا
                                                                             1            1          1
                              f ( 2π ) < 0 < f ( 0 )  إذنf ( 2π ) =                   −      وf (0) = : #
                                                                      ( 2π + 1)
                                                                                  2
                                                                                          2          2
L , c ∈ [ 0,2π ] @AB ا3   K        2 $  ا * [ ا#] ! ھX+ H J        [0,2π ]  ل9        ا3           4 ! f أن                 و
                                                                                                            f (c ) = 0
                                                ℝ       C+ @AB ا3 @ *7 f ( x ) = 0 د                  " أن ا# X إذن
13 "! ا#
                                                                                            4
                                                                                f (x ) = x 4 − : #
                                                                                            x
                                                                   ℝ∗ 3      4 ! f  وD f = ℝ∗ : #
                                                                            4
                                              f (x ) = x      ⇔       x4−     =x
                                                                            x
                                                                     4
                                                              ⇔     x4− −x =0
                                                                     x
                                                              ⇔ x 5 −x 2 −4=0
                                                                            g :x ֏ x 5 −x 2 −4
                                             g (1) ≤ 0 ≤ g ( 2 )     إذنg ( 2 ) = 24  وg (1) = −4 : #
L , c ∈ [1,2] @AB ا3      K     2 $  ا * [ ا#] ! ھX+ H J            [1,2]   ل9  ا3       4 ! g أن            و
                                                                                                   g (c ) = 0
                                                       g (c ) = 0 ⇔ c 5 − c 2 − 4 = 0
                                                                             4
                                                                  ⇔    c4 − =c                         : #
                                                                             c
                                                                  ⇔     f (c ) = c
                                                              f (c ) = c L , c ∈ [1,2] @AB ا3          K إذن
                                                [1, 2]  ل9    ا    @AB ا3 C+ @ *7 f ( x ) = x      د       إذن ا
14 "! ا#
                                                                            I  ل9! 3     4 ! f دا
          ( ∀x ∈ I ) f ( x ) ≠ 0   و( ∃x ∈ I ) f ( x ) ≥ 0   و( ∃x ∈ I ) f ( x ) ≤ 0   ض أنQ
                      ( ∃x ∈ I ) f ( x ) > 0   و( ∃x ∈ I ) f ( x ) < 0  نJ I 3  م#7 I f أن
                                                f (x 1) > 0  وf (x 2 ) < 0 : L , I       ! x 2  وx 1 K إذن
                                                       f ( x 2 ) < 0 < f ( x 1 ) اS& و ھx 1 ≠ x 2 ! ا ا _ أن
                                         I          x 2  وx 1 ي ط هS  ل ا9  ا: نJ I       ! x 2  وx 1 أن
                                      x 2  وx 1 ي ط هS  ل ا9  ا3            4 ! f  إذنI 3         4! f #
                                                           f (c ) = 0 L ,  ل9 ا اS ھ3 إ      # c K H#! و
15 "! ا#
                                                                                                 ℕ∗ !  ا4# n &
                                    g (x ) = f (x ) − x n :                        اx    * *,  ا- g ا ا ا د
                                               [0,1] 3          4!            ع دا9 E [ 0,1]  ل9  ا3        4! g            ا ا
                                                                g (1) = f (1) − 1 ≤ 0  وg ( 0 ) = f ( 0 ) ≥ 0 #               و
أي      g (α n ) = 0 : L ,      [0,1]    ! αn K           2 $  ا * [ ا#] ! ھX+ H#!  وg ( 0 ) × g (1) ≤ 0 إذن
                                                                                                           f (α n ) = α nn
16 "! ا#
                                                       g (x ) = f (x ) − x     :     [a , b ] 3           اg ا ا
                                          ( [a , b ] 3        4 !  ع دا9 E ) [a,b ] 3               4! g ا ا
                               f (b ) ∈ [a;b ]  وf ( a ) ∈ [a;b ] نJ [a;b ] , [a;b ] !           !  داf أن
               g (b ) ≤ 0    وg (a ) ≥ 0  إذنf (b ) − b ≤ 0  وf ( a ) − a ≥ 0  أيf (b ) ≤ b  وa ≤ f ( a ) H#! و
                                                                                  g ( a ) × g (b ) ≤ 0 :      و
                 [a;b ]  ل9 ا       @AB ا3 C+ @ *7 g ( x ) = 0          د      ا:       2 $  ا * [ ا#] ! ھX+ إذن
                                         . [a;b ]  ل9 ا      @AB ا3 C+ @ *7 f ( x ) = x           د   ا:           و
つづく