0% found this document useful (0 votes)
1K views18 pages

FX X X X Cos X X F X F X X: 1/18 Math - Ma - 9/2017

This document contains 13 problems studying limits and continuity. The problems cover various types of limits including one-sided limits, limits at infinity, limits of composite functions, limits involving trigonometric functions, limits of rational functions, and limits determining continuity. The document also contains problems finding zeros of functions and determining intervals of continuity.

Uploaded by

Youssef Guella
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
1K views18 pages

FX X X X Cos X X F X F X X: 1/18 Math - Ma - 9/2017

This document contains 13 problems studying limits and continuity. The problems cover various types of limits including one-sided limits, limits at infinity, limits of composite functions, limits involving trigonometric functions, limits of rational functions, and limits determining continuity. The document also contains problems finding zeros of functions and determining intervals of continuity.

Uploaded by

Youssef Guella
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

‫مر‬ ‫ا‬

‫ل‬ ‫ت وا‬ ‫ا‬

‫اﻟﻨﻬﺎﻳﺎت واﻻﺗﺼﺎل‬
(‫ ﲤﺮﻦ‬16) 1 ‫اﻟﺴﻠﺴ‬
:1
f ( x ) = x 2 − 2x cos ( x ) + 1 : ‫ا‬f ‫ا ا ا د‬
cos ( x )
lim = 0 ‫أن‬ .1
x →+∞ x
: ! " # $‫ ا‬.2
lim f ( x ) = +∞ .‫أ‬
x →+∞

f (x )
lim = 1 .‫ب‬
x →+∞ x

:2
: ‫ا‬ '# ‫ أدرس ا‬، * *+ !‫ را‬m &
lim 4x + 2x − 5 + mx − 1 .1
2
x →+∞

lim 4x 2 + 2x − 5 + mx − 1 .2
x →−∞

:3
x + x + ......... + x − n
( n ∈ ℕ∗ )
2 n
f (x ) = : ‫ا‬x * *, ‫ ا‬- f ‫ا ا‬
x −1
x k −1
( k ∈ ℕ∗ ) lim
x →1 x − 1
: '# ‫ د ا‬+ .1
lim f ( x ) : '# ‫ " ا‬# $‫ ا‬.2
x →1

:4
: ‫' ت ا‬# ‫أدرس ا‬
tan ( x ) − 1
limπ .1
x → 2cos ( x ) − 2
4

cos ( 2x ) − cos ( 4x )
lim .2
x →0 x2

1/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

sin ( x ) − sin ( a )
( * *+ ‫د‬ a) lim .3
x →a cos ( x ) − cos ( a )

:5
: ‫ ا‬x * *, ‫ ا‬- ‫ا ا ا د‬f &
 2
f ( x ) = x sin   ; x ≠ 0
 x 

 f ( 0) = 0
0 2*# ‫ ا‬f ‫أن ا ا‬ .1
.ℝ 3 4 ! f ‫أن ا ا‬ .2

:6
: ‫ ل ا وال ا‬47‫أدرس ا‬
2x − 1
f (x ) = x 2 − 2 x (2 f ( x ) = 2 (1
x − 6x + 5
x −1
f (x ) = E (x ) (4 f (x ) = (3
x −1

:7
: ‫ ا‬x * *, ‫ ا‬- f ‫ا ا‬

( x ) = ( x 2 − 1) sin 
1 
f  ;x ≠ 1
  x −1 

 f (1) = 1
f ‫ا ا‬8 7 9! D f ‫ د‬+ (1
( ∀x ∈ ]0,2[ ) f ( x ) − f (1) ≤ 3 x − 1 : ‫أن‬ (2
x 0 = 1 2*# ‫ا‬ 4 ! f ‫ " أن ا ا‬# $‫( ا‬3

:8
: 7:‫ ل ا وال ا‬47‫أدرس ا‬
 1 
f ( x ) = x 3 − 2x 2 + 1 (2 f ( x ) = cos  3  (1
x 
f ( x ) = 1 + x 2 (4 f ( x ) = sin ( x 2 + x ) (3

2/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

:9
x 0 2*# ‫ا‬ 7:‫أدرس ' ا وال ا‬
f ( x ) = 3x 3 + x − 1 x 0 = +∞ (1
x 2 − 6x + 5
f (x ) = x 0 = 1 (2
( x − 1)( x + 3)
3x 2 + x − 1
f (x ) = x 0 = +∞ (3
x +1
x 2 +1
f (x ) = − x x 0 = +∞ (4
x +1
x +1 x
f (x ) = 2 x 0 = −1 (5
x −1
1 1
f (x ) = + 2 x 0 = 0 (6
x x
x −1
3
f (x ) = x 0 =1 (7
( x − 1) ( 3x − 1)
2

x + 1 −1
f (x ) = x 0 = 0 (8
x

: 10
x0 =0 7:‫أدرس ' ا وال ا‬
E (x )
f (x ) = (1
x
x − sin x
f (x ) = (2
x + sin x
tan ( 3x )
f (x ) = (3
sin ( 2x )
tan x − sin x
f (x ) = (4
x3

: 11
x 0 2*# ‫ا‬ 7:‫أدرس ' ا وال ا‬
f ( x ) = x − sin x x 0 = +∞ (1
f ( x ) = E ( x ) x 0 = +∞ (2

3/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

: 12
ℝ @AB‫ ا‬3 C+ @ *7 f ( x ) = 0 ‫أن ا د‬
f ( x ) = 2x 3 + 5x − 4 (1
f ( x ) = 1 + sin x − x (2
1 1
f (x ) = − cos x (3
( x + 1) 2
2

: 13
4
f (x ) = x 4 −:‫ب‬ ‫ا ا ا د ا‬f &
x
[1, 2] @AB‫ ا‬3 C+ @ *7 f ( x ) = x ‫أن ا د‬

: 14
I 3 4 ! ‫ و‬ℝ ! I ‫ ل‬9! 3 ! ‫د‬ ‫ دا‬f &
( ∀x ∈ I ) f ( x ) < 0  ‫ أو‬( ∀x ∈ I ) f ( x ) > 0  : # ‫ن‬J I ‫ م‬#7 I f D E ‫ إذا‬H ‫أ‬

: 15
. [ 0,1] , [ 0,1] ! ! ‫ [ و‬0,1] ‫ ل‬9 ‫ ا‬3 4! ‫د‬ ‫ دا‬f &
f (α n ) = α nn : L , [ 0,1] ! α n K n ! n @& H ‫أ‬

: 16
. [a;b ] , [a;b ] ‫ ل‬9! ! ! ‫ و‬4 ! ‫ دا‬f &
[a;b ] ‫ ل‬9 ‫@ ا‬AB‫ ا‬3 C+ @ *7 f ( x ) = x ‫أن ا د‬

4/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

1 ‫"! ا‬#

cos ( x ) 1
∀x ∈ ℝ ∗ ≤ ‫إذن‬ ∀x ∈ ℝ cos ( x ) ≤ 1 : # .1
x x
cos ( x ) 1
lim = 0 ‫ن‬J lim = 0 ‫أن‬ ‫و‬
x →+∞ x x →+∞ x
-‫ أ‬.2
lim f ( x ) = lim x 2 − 2x cos ( x ) + 1
x →+∞ x →+∞

 cos x 1 
= lim x 2 1 − 2 + 2  = +∞
x →+∞
 x x 

 xlim x 2 = +∞
→+∞

 cos x
xlim = 0 : ‫ن‬B
→+∞ x

 1
 x →+∞ x 2 = 0
lim

-‫ب‬
f (x ) x 2 − 2x cos ( x ) + 1
lim = lim
x →+∞ x x →+∞ x
 cos x 1  =1
x 2 1 − 2 + 2 cos x 1
x 1− 2 + 2
 x x  x x
= lim = lim
x →+∞ x x →+∞ x

2 ‫"! ا‬#

 2 5 1
lim 4x 2 + 2x − 5 + mx − 1 = lim x  4 + − 2 + m −  : # .1
x →+∞ x →+∞ x x x 

: m > −2 ‫ ن‬E‫إذا‬
lim 4x 2 + 2x − 5 + mx − 1 = +∞
x →+∞

5/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

  2 5 1
 xlim  4+ − 2 +m −  = 2+m >0
→+∞
  x x x  : ‫ن‬B
 lim x = +∞
 x →+∞

: m < −2 ‫ ن‬E ‫إذا‬


lim 4x 2 + 2x − 5 + mx − 1 = −∞
x →+∞

  2 5 1
 xlim  4+ − 2 +m −  = 2+m <0
→+∞
  x x x  : ‫ن‬B
 lim x = +∞
 x →+∞

: m = −2 ‫ ن‬E ‫إذا‬
 5
x 2− 
4x + 2x − 5 −4x
2 2
 x  −1
lim 4x 2 + 2x − 5 − 2x − 1 = lim − 1 = lim −1 =
x →+∞ x →+∞
4x 2 + 2x − 5 + 2x x →+∞  2 5  2
x  4 + − 2 + 2
 x x 
 2 5 1
lim 4x 2 + 2x − 5 + mx − 1 = lim x  − 4 + − 2 + m −  : # .2
x →−∞ x →−∞ x x x 

: m > 2 ‫ ن‬E ‫إذا‬
lim 4x 2 + 2x − 5 + mx − 1 = −∞
x →−∞

  2 5 1
 xlim  − 4+ − 2 +m −  = m −2>0
→−∞
  x x x  : ‫ن‬B
 lim x = −∞
 x →−∞

: m < 2 ‫ ن‬E ‫إذا‬


lim 4x 2 + 2x − 5 + mx − 1 = +∞
x →−∞

  2 5 1
 xlim  − 4+ − 2 +m −  = m −2< 0
→−∞
  x x x  : ‫ن‬B
 lim x = −∞
 x →−∞

: m = 2 ‫ ن‬E ‫إذا‬

6/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

 5
x 2− 
4 x + 2 x − 5 −4 x
2 2
 x  −3
lim 4x 2 + 2x − 5 + 2x − 1 = lim − 1 = lim −1 =
x →−∞ x →−∞
4 x 2 + 2x − 5 − 2 x x →−∞  2 5  2
x  − 4 + − 2 − 2
 x x 

3 ‫"! ا‬#

x k −1
= 1 + x + x 2 + ........ + x k −1 : # ℝ \ {1} ! x @& .1
x −1
x k −1
lim = k ‫ن‬J H#! ‫و‬
x →1 x − 1

: ℝ \ {1} ! ‫ ا‬4# x & .2


x + x 2 + ......... + x n − n x − 1 + x 2 − 1 + ........ + x n − 1 n x k − 1
f (x ) = = =∑
x −1 x −1 k =1 x − 1
n
n ( n + 1) x k −1
lim f ( x ) = ∑ k = ‫ن‬J lim = k ‫أن‬
x →1 2 x →1 x − 1
k =1

4 ‫"! ا‬#

: "' ‫ ) ( ل '"" ا‬:1 % ‫ ط‬.1


π π
( h → 0 ) ⇔  x →  : ‫ إذن‬# x = + h MN
 4 4

7/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

π 
tan  + h  − 1
tan x − 1 4 
limπ = lim
x → 2cos x − 2 h →0 π 
4 2cos  + h  − 2
4 
π 
tan   + tan ( h )
4 −1
π 
1 − tan   tan ( h )
= lim 4
h →0  π  π  
2  cos   cos ( h ) − sin   sin ( h )  − 2
 4 4 
2 tan ( h )
= lim
h →0
(1 − tan ( h ) ) ( 2 ( cos ( h ) − 1) − 2 sin ( h ) )
tan ( h )
2
= lim h
(1 − tan ( h ) )  2  h 2 .h − 2 h( ) 
h →0   cos ( h ) − 1  sin h 
   
2
=−
2

: * + ‫د ا‬-( ‫( ل ا‬ ) :2 % ‫ط‬
π
‫ * ق‬PC A "cos" ‫" و‬tan" ‫ا ا‬
4

8/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

π 
tan ( x ) − tan  
tan ( x ) − 1 4
limπ = limπ
x→ 2cos ( x ) − 2 x→ 
4 2 cos ( x ) − cos
 π 
4
  
  4 
π 
tan ( x ) − tan  
4
π
x−
= limπ 4
 π 
 cos ( x ) − cos  4  
x→
4

2  
 π 
 x− 
 4 
π 
tan′  
= 4
π 
2cos′  
4
π 
1 + tan 2  
= 4
π 
−2sin  
4
2
=
− 2

5 ‫"! ا‬#

2
f ( x ) = x . sin   : ℝ∗ ! x @& # .1
x 
2
f ( x ) ≤ x ‫ن‬J sin   ≤ 1 ‫و أن‬
x 
lim f ( x ) = 0 = f ( 0 ) ‫ن‬J lim x = 0 ‫ أن‬L + ‫و‬
x →0 x →0

. 0 2*# ‫ا‬ 4! f ‫ن ا ا‬J H#! ‫و‬


x 0 ∈ ℝ∗ & .2
x0 4 ! f1:x ֏ x ‫ا ا‬

9/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

2
x0 4 ! f 2 :x ֏ ‫ا ا‬: #
x
f 2 (x 0 ) 4 ! f 3 : x ֏ sin x ‫و ا ا‬
x0 4 ! f 3 f 2 ‫إذن ا ا‬
x0 4 ! f = f 1 × ( f 3 f 2 ) ‫ ا ا‬H#! ‫و‬
ℝ∗ 3 4! f ‫و‬
.ℝ 3 4 ! f ‫ن‬J 0 4 ! f ‫ أن ا ا‬L + ‫و‬

6 ‫"! ا‬#

2x − 1
f (x ) = (1
x − 6x + 5
2

D f = ]−∞,1[ ∪ ]1,5[ ∪ ]5, +∞[ #


‫ر‬SK ‫ ' دا‬B 'Q 7R+3 4! f ‫ا ا‬
x −1
f (x ) = (2
x −1
D f = [ 0,1[ ∪ ]1, +∞[ #
Df 3 ‫ ص‬4, ‫ و‬ℝ 3 4 ! g : x ֏ x −1 ‫ا ا‬
Df 3 ‫ ص‬4U ‫ و‬ℝ + 3 4 ! h : x ֏ x −1 ‫ا ا‬
Df 3 h (x ) ≠ 0 ‫و‬
Df 3 4! ‫ رج دا‬UE D f 3 4! f ‫إذن ا ا‬
f ( x ) = x 2 + 2 x (3
Df = ℝ #
ℝ 3 4 ! g :x ֏ x 2 ‫ا ا‬
ℝ 3 4 ! h :x ֏ 2 x ‫ا ا‬
ℝ 3 4 ! ‫ دا‬f ‫ن‬J f = g + h ‫أن‬ ‫إذن‬
f ( x ) = E ( x ) (4
Df = ℝ #
( k ∈ ℤ ) [k , k + 1[ ‫ ل‬9 ‫ ا‬3
f (x ) = k : #

10/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

W ‫ ر دا‬4A ' B [ k , k + 1[ ‫ ل‬9 ‫ ا‬3 4! f ‫إذن ا ا‬


k ∈ ℤ M! k 2*# ‫ ا‬f ‫ ل‬47‫ا‬
f ( x ) = k − 1 : # [ k − 1, k [ ‫ ل‬9 ‫ ا‬3
lim f ( x ) = lim− k − 1 = k − 1
x →k − x →k

k ‫ر‬X ‫ا‬3 4 ! Y f ‫ن‬J f ( k ) = k ‫أن‬ ‫و‬


‫ رھ‬X 3 4 ! Y ‫' و‬# 3 4! f # ℤ ! 2* @E ‫ و‬ℝ − ℤ 3 4! f ‫إذن ا ا‬

7 ‫"! ا‬#

x ∈ D f ⇔ x ≠ 1 ‫أو‬ x =1 : # * *+ ‫دا‬ x & (1


D f = ℝ ‫ن‬J H#! ‫و‬
  1
 ∀x ∈ ]0;2[  sin ≤ 1 ‫ن‬J ( ∀a ∈ ℝ ) sin a ≤ 1 ‫أن‬ (2
 x ≠1  x −1

( ∀x ∈ ]0;2[ \ {1}) f ( x ) = x 2 − 1 sin


1
x −1
≤ x 2 − 1 ‫ن‬J H#! ‫و‬

x 2 −1 = x −1 x +1 : # ‫و‬
x ∈ ]0, 2[ ⇒ x + 1 ≤ 3
x ∈ ]0, 2[ ⇒ x 2 − 1 ≤ 3 x − 1

( ∀x ∈ ]0,2[ ) f ( x ) − f (1) ≤ 3 x − 1 H#! ‫و‬


lim x − 1 = 0 ‫∀ ( و‬x ∈ ]0, 2[ ) f ( x ) − f (1) ≤ 3 x − 1 ‫أن‬ (3
x →1

x 0 = 1 2*# ‫ا‬ 4! f ‫ن ا ا‬J H#! ‫ و‬lim f ( x ) = f (1) ‫ن‬J


x →1

8 ‫"! ا‬#

 1 
f ( x ) = cos  3  (1
x 
D f = ℝ∗ #
1
h :x ֏ ‫ و‬g : x ֏ cos ( x ) L + f = g h #
x3

11/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

x 0 ∈ ℝ∗ &
( x 0 ∈ D h ‫ر و‬SK ‫ ' دا‬B ) x 0 4 ! ‫ دا‬h
(ℝ 3 4 ! g ‫ن‬B ) h ( x 0 ) 4 ! ‫ دا‬g
x0 4 ! f H#! ‫ و‬x 0 4 ! g h ‫إذن‬
Df 3 4! f ‫و‬
f ( x ) = x 3 − 2x 2 + 1 (2
Df = ℝ #
h : x ֏ x 3 − 2x 2 + 1 ‫ و‬g : x ֏ x L + f = g h #
x0 ∈ℝ &
( ‫ ود‬+ ‫ ' دا‬B ) x 0 4 ! ‫ دا‬h
(ℝ 3 4! *2 ‫ا‬ * ‫ن دا ا‬B ) h ( x 0 ) 4 ! ‫ دا‬g
ℝ 3 4 ! f ‫ن‬J H#! ‫ و‬x 0 4 ! f ‫إذن‬
f ( x ) = sin ( x 2 + x ) (3
Df = ℝ #
h : x ֏ x 2 + x ‫ و‬g : x ֏ sin ( x ) L + f = g h #
x0 ∈ℝ &
( ‫ ود‬+ ‫ ' دا‬B ) x 0 4 ! ‫ دا‬h
(ℝ 3 4 ! "sin" ‫ن‬B ) h ( x 0 ) 4 ! ‫ دا‬g
ℝ 3 4 ! f ‫ن‬J H#! ‫ و‬x 0 4 ! f ‫إذن‬
f ( x ) = 1 + x 2 (4
Df = ℝ #
h : x ֏1+ x 2 ‫ و‬g : x ֏ x L + f = g h #
x0 ∈ℝ &
( ‫ ود‬+ ‫ ' دا‬B ) x 0 4 ! ‫ دا‬h
( h ( x 0 ) > 0 ‫ و‬ℝ+ 3 4 ! ‫ دا‬g ‫ن‬B ) h ( x 0 ) 4 ! ‫ دا‬g
ℝ 3 4 ! f ‫ن‬J H#! ‫ و‬x 0 4 ! f ‫إذن‬

12/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

9 ‫"! ا‬#

(1
lim f ( x ) = lim 3x + x − 1 = lim 3x = +∞
3 3
x →+∞ x →+∞ x →+∞

lim f ( x ) = lim 3x + x − 1 = lim 3x 3 = −∞


3
x →−∞ x →−∞ x →−∞

lim f ( x ) = lim
( x − 1)( x − 5 ) = lim x − 5 = −1 (2
x →1 x →1 ( x − 1)( x + 3 ) x →1 x + 3

(3
3x 2
lim f ( x ) = lim = lim 3x = +∞
x →+∞ x →+∞ x x →+∞

3x 2
lim f ( x ) = lim = lim 3x = −∞
x →−∞ x →−∞ x x →−∞

(4
x 2 +1 1− x
f (x ) = −x =
x +1 x +1
−x
lim f ( x ) = lim = −1
x →+∞ x →+∞ x

(5

lim f ( x ) = lim
x +1 x
= lim
( x + 1) x = lim x = 1
x − 1 xx→− >−1 ( x + 1)( x − 1)
x →−1 x →−1 2 1 x →−1 x − 1 2
x >−1 x >−1 x >−1

x +1 x − ( x + 1) x −x −1
lim f ( x ) = lim = lim = lim =
x − 1 xx→− <−1 ( x + 1)( x − 1)
x →−1 x →−1 2 1 x →−1 x − 1 2
x <−1 x <−1 x <−1

1 1 x +1 1
f (x ) = + 2 = 2 = ( x + 1) . 2 (6
x x x x
1
lim f ( x ) = lim ( x + 1) . 2 = +∞
x →0 x →0 x
x 3 −1 ( x − 1) ( x 2 + x + 1) x 2 + x +1
f ( )
x = = = (7
( x − 1) ( 3x − 1) ( x − 1) ( 3x − 1) ( x − 1)( 3x − 1)
2 2

x 2 + x +1 1 3
lim+ f ( x ) = lim+ × = × +∞ = +∞
x →1 x →1 3x − 1 x −1 2
x + x +1
2
1 3
lim− f ( x ) = lim− × = × −∞ = −∞
x →1 x →1 3x − 1 x −1 2

13/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

1 ‫ ار‬9 ' @ *7 I f ‫ن‬J lim+ f ( x ) ≠ lim− f ( x ) ‫أن‬


x →1 x →1

lim f ( x ) = lim
x +1 −1
= lim
( x +1 −1 )( x +1 +1 ) = lim 1
=
1
(8
x →0 x →0 x x →0
x ( x +1 +1 ) x →0 x +1 +1 2

10 ‫"! ا‬#

(1
−1
f (x ) = ‫ إذن‬E ( x ) = −1 : [ −1,0[ ‫ ل‬9 ‫ ا‬3
x
−1
lim f ( x ) = lim = +∞
x →0 x →0 x
x <0 x <0

0
f (x ) = = 0 ‫ إذن‬E ( x ) = 0 : [ 0,1[ ‫ ل‬9 ‫ ا‬3
x
lim f ( x ) = lim 0 = 0
x →0 x →0
x >0 x >0

0 ‫ ار‬9 ' @ *7 I f ‫إذن‬

(2
y

-4 -3 -2 -1 0 1 2 3 4 x

-1

-2

-3

sin x = −x ⇔ x = 0 : #
D f = ℝ ∗ ‫إذن‬

14/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

 sin x  sin x
x 1 −  1−
f (x ) =  =
x x
 sin x  1 + sin x
x 1 + 
 x  x
sin x
lim f ( x ) = 0 ‫ إذن‬lim = 1 ‫[ أن‬
x →0 x →0 x

tan ( 3x )
f (x ) = (3
sin ( 2x )
k π  π k π 
Df = ℝ −  / k ∈ ℤ ∪  + / k ∈ ℤ
 2  6 3 
3 tan 3x 2x  π   π
f (x ) = × × :  − ,0  ∪  0,  ‫ ل‬9 ‫ ا‬3
2 3x sin 2x  6   6 
2x X tan 3x tan X
lim = lim = 1 ‫ و‬lim = lim =1 : #
x →0 sin 2x X →0 sin X x →0 3x X →0 X
3
lim f ( x ) = : ‫إذن‬
x →0 2
tan x − sin x
f (x ) = (4
x3
π 
D f = ℝ∗ −  + k π / k ∈ ℤ 
2 
tan x − cos x tan x tan x  1 − cos x  1 1
f (x ) = 3
= × 2  = 1× =
x x  x  2 2

11 ‫"! ا‬#

−1 ≤ − sin x ≤ 1 ‫ إذن‬−1 ≤ sin x ≤ 1 ‫( [ أن‬1


x − 1 ≤ x − sin x ≤ x + 1 ‫إذن‬
x − 1 ≤ f ( x ) ‫إذن‬
lim f ( x ) = +∞ ‫ إذن‬lim x − 1 = +∞ : #
x →+∞ x →+∞

x ∈ ℝ & (2
E (x ) ≤ x < E (x ) +1 #
x − 1 < E ( x ) ‫إذن‬

15/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

x − 1 < f ( x ) ‫إذن‬
lim f ( x ) = +∞ ‫ن‬J lim x − 1 = +∞ ‫أن‬
x →+∞ x →+∞

f ( x ) ≤ x ‫ أي‬E ( x ) ≤ x #
lim f ( x ) = −∞ ‫ن‬J lim x = −∞ ‫أن‬
x →−∞ x →−∞

12 ‫"! ا‬#

f ( x ) = 2x 3 + 5x − 4 : # (1
( ‫ ود‬+ ‫ ' دا‬B ) ℝ 3 4 ! f ‫ و‬Df = ℝ : #
[ −1,1] ‫ ل‬9 ‫ا‬
f ( −1) ≤ 0 ≤ f (1) ‫ إذن‬f (1) = 3 ‫ و‬f ( −1) = −11 : #
L , c ∈ [ −1,1] @AB‫ ا‬3 K 2 $ ‫ ا * [ ا‬#‫] ! ھ‬X+ H J [ −1,1] ‫ل‬9 ‫ ا‬3 4 ! f ‫أن‬ ‫و‬
f (c ) = 0
ℝ C+ @AB‫ ا‬3 @ *7 f ( x ) = 0 ‫د‬ ‫ " أن ا‬# X
f ( x ) = 1 + sin x − x # (2
ℝ 3 4 ! f ‫ و‬Df = ℝ : #
f (π ) < 0 < f ( 0 ) ‫ إذن‬f (π ) = 1 − π ‫ و‬f ( 0 ) = 1 : #
L , c ∈ [ 0, π ] @AB‫ ا‬3 K 2 $ ‫ ا * [ ا‬#‫] ! ھ‬X+ H J [0,π ] ‫ل‬9 ‫ ا‬3 4 ! f ‫أن‬ ‫و‬
f (c ) = 0
ℝ C+ @AB‫ ا‬3 @ *7 f ( x ) = 0 ‫د‬ ‫ " أن ا‬# X ‫إذن‬
1 1
f (x ) = − cos x # (3
( x + 1) 2
2

Df 3 4 ! f ‫ و‬D f = ℝ − {−1} : #
[0,2π ] ‫ ل‬9 ‫ا‬
1 1 1
f ( 2π ) < 0 < f ( 0 ) ‫ إذن‬f ( 2π ) = − ‫ و‬f (0) = : #
( 2π + 1)
2
2 2
L , c ∈ [ 0,2π ] @AB‫ ا‬3 K 2 $ ‫ ا * [ ا‬#‫] ! ھ‬X+ H J [0,2π ] ‫ ل‬9 ‫ا‬3 4 ! f ‫أن‬ ‫و‬
f (c ) = 0
ℝ C+ @AB‫ ا‬3 @ *7 f ( x ) = 0 ‫د‬ ‫ " أن ا‬# X ‫إذن‬

16/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

13 ‫"! ا‬#

4
f (x ) = x 4 − : #
x
ℝ∗ 3 4 ! f ‫ و‬D f = ℝ∗ : #
4
f (x ) = x ⇔ x4− =x
x
4
⇔ x4− −x =0
x
⇔ x 5 −x 2 −4=0
g :x ֏ x 5 −x 2 −4
g (1) ≤ 0 ≤ g ( 2 ) ‫ إذن‬g ( 2 ) = 24 ‫ و‬g (1) = −4 : #
L , c ∈ [1,2] @AB‫ ا‬3 K 2 $ ‫ ا * [ ا‬#‫] ! ھ‬X+ H J [1,2] ‫ل‬9 ‫ ا‬3 4 ! g ‫أن‬ ‫و‬
g (c ) = 0
g (c ) = 0 ⇔ c 5 − c 2 − 4 = 0
4
⇔ c4 − =c : #
c
⇔ f (c ) = c
f (c ) = c L , c ∈ [1,2] @AB‫ ا‬3 K ‫إذن‬
[1, 2] ‫ ل‬9 ‫ا‬ @AB‫ ا‬3 C+ @ *7 f ( x ) = x ‫د‬ ‫إذن ا‬

14 ‫"! ا‬#

I ‫ ل‬9! 3 4 ! f ‫دا‬
( ∀x ∈ I ) f ( x ) ≠ 0  ‫ و‬( ∃x ∈ I ) f ( x ) ≥ 0  ‫ و‬( ∃x ∈ I ) f ( x ) ≤ 0  ‫ ض أن‬Q
( ∃x ∈ I ) f ( x ) > 0  ‫ و‬( ∃x ∈ I ) f ( x ) < 0  ‫ن‬J I 3 ‫ م‬#7 I f ‫أن‬
f (x 1) > 0 ‫ و‬f (x 2 ) < 0 : L , I ! x 2 ‫ و‬x 1 K ‫إذن‬
f ( x 2 ) < 0 < f ( x 1 ) ‫ا‬S&‫ و ھ‬x 1 ≠ x 2 ‫! ا ا _ أن‬
I x 2 ‫ و‬x 1 ‫ي ط ه‬S ‫ ل ا‬9 ‫ ا‬: ‫ن‬J I ! x 2 ‫ و‬x 1 ‫أن‬
x 2 ‫ و‬x 1 ‫ي ط ه‬S ‫ ل ا‬9 ‫ ا‬3 4 ! f ‫ إذن‬I 3 4! f #
f (c ) = 0 L , ‫ ل‬9 ‫ا ا‬S‫ ھ‬3 ‫إ‬ # c K H#! ‫و‬

17/18 Math.ma – 9/2017


‫مر‬ ‫ا‬
‫ل‬ ‫ت وا‬ ‫ا‬

x 2 ‫ و‬x 1 ‫ي ط ه‬S ‫ ل ا‬9 ‫ا‬ @AB‫ ا‬3 C+ @ *7 f ( x ) = 0 ‫د‬ ‫إذن ا‬


‫ ت‬2 8 U! ‫ا‬S‫ و ھ‬I 3 ‫ م‬#7 f ‫إذن‬
( ∀x ∈ I ) f ( x ) < 0  ‫ أو‬( ∀x ∈ I ) f ( x ) > 0  : # ‫ن‬J I ‫ م‬#7 I f D E ‫إذن إذا‬

15 ‫"! ا‬#

ℕ∗ ! ‫ ا‬4# n &
g (x ) = f (x ) − x n : ‫ا‬x * *, ‫ ا‬- g ‫ا ا ا د‬
[0,1] 3 4! ‫ ع دا‬9 E [ 0,1] ‫ ل‬9 ‫ ا‬3 4! g ‫ا ا‬
g (1) = f (1) − 1 ≤ 0 ‫ و‬g ( 0 ) = f ( 0 ) ≥ 0 # ‫و‬
‫أي‬ g (α n ) = 0 : L , [0,1] ! αn K 2 $ ‫ ا * [ ا‬#‫] ! ھ‬X+ H#! ‫ و‬g ( 0 ) × g (1) ≤ 0 ‫إذن‬
f (α n ) = α nn

16 ‫"! ا‬#

g (x ) = f (x ) − x : [a , b ] 3 ‫ ا‬g ‫ا ا‬
( [a , b ] 3 4 ! ‫ ع دا‬9 E ) [a,b ] 3 4! g ‫ا ا‬
f (b ) ∈ [a;b ] ‫ و‬f ( a ) ∈ [a;b ] ‫ن‬J [a;b ] , [a;b ] ! ! ‫ دا‬f ‫أن‬
g (b ) ≤ 0 ‫ و‬g (a ) ≥ 0 ‫ إذن‬f (b ) − b ≤ 0 ‫ و‬f ( a ) − a ≥ 0 ‫ أي‬f (b ) ≤ b ‫ و‬a ≤ f ( a ) H#! ‫و‬
g ( a ) × g (b ) ≤ 0 : ‫و‬
[a;b ] ‫ ل‬9 ‫ا‬ @AB‫ ا‬3 C+ @ *7 g ( x ) = 0 ‫د‬ ‫ا‬: 2 $ ‫ ا * [ ا‬#‫] ! ھ‬X+ ‫إذن‬
. [a;b ] ‫ ل‬9 ‫ا‬ @AB‫ ا‬3 C+ @ *7 f ( x ) = x ‫د‬ ‫ا‬: ‫و‬

つづく

18/18 Math.ma – 9/2017

You might also like