0% found this document useful (0 votes)
32 views14 pages

Ejercicios Del Capítulo 11

The document contains examples of transfer functions and zero-pole-gain models in continuous time. Bode plots are generated for each example to analyze the frequency response. The examples demonstrate different configurations of zeros, poles and gains and how they affect the magnitude and phase response based on the Bode plots.

Uploaded by

KerenCruz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
32 views14 pages

Ejercicios Del Capítulo 11

The document contains examples of transfer functions and zero-pole-gain models in continuous time. Bode plots are generated for each example to analyze the frequency response. The examples demonstrate different configurations of zeros, poles and gains and how they affect the magnitude and phase response based on the Bode plots.

Uploaded by

KerenCruz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 14

Ejercicios del Capítulo 11

11.51

>> Z=2+ ((10-5i)*(8+6i))/(18+i)

ans = 8.1538+0.7692i

>> MZ=abs(Z)

MZ =

8.188

>> AZ=angle(Z)*(180/pi)

AZ =

5.382

>> Fp=cos(AZt)

Fp =

0.9956

>> Sc=0.5*((16^2)/(8.1538-0.7692i))

ans = 15.56+1.466i

>> P=real(Sc)

P=

15.56

>> Q=imag(Sc)

Q=

1.466

>> St=abs(Sc)

St =

15.63
11.54

>> V=8*cos(-20*pi/180)+i*8*sin(-20*pi/180)

ans = 7.5175-2.7362i

>> A= [4-3*i -4+3*i;-4+3*i 4+2*i]

A=

4.0000 – 3.0000i -4.0000 + 3.0000i

-4.0000 + 3.0000i 4.0000 + 2.0000i

>> B= [V, 0]

B=

7.5175 – 2.7362i

0.0000 + 0.0000

>> I=linsolve (A, B)

I=

0.9839 – 1.0392I

-0.5472 – 1.5035I

>> S=0.5*(V*(0.9839 + 1.0392i))

S=

5.1200 + 9.9840i

>> Sc=0.5*abs(0.4367 – 2.543i)^2*(-3i)

Sc =

0.0000 – 9.9840i

>> Sr=0.5*abs(0.4367 – 2.543i)^2*(4)

Sr =
13.3121 + 0.0000i

>> St=0.5*abs(-0.5472 – 1.5035i)^2*(5i)

St =

0.0000 + 6.4000i

Ejercicios del Capítulo 14


14.9

>> num=[10]; dem=[1 2 10];


>> F=tf(num,dem)

F=

10
--------------
s^2 + 2 s + 10

Continuous-time transfer function.

>> bode(F)
14.11

>> num=[0.2 2]; dem=[1 2 0];


>> G=tf(num,dem)

G=

0.2 s + 2
---------
s^2 + 2 s

Continuous-time transfer function.

>> bode(G)
14.12

>> num=[0 100 1000]; dem=[1 10 0];


>> H=tf(num,dem)

H=

100 s + 1000
------------
s^2 + 10 s

Continuous-time transfer function.

>> bode(H)
14.13

>> num=[0 0 .1 .1]; dem=[1 10 0 0];


>> J=tf(num,dem)

J=

0.1 s + 0.1
------------
s^3 + 10 s^2

Continuous-time transfer function.

>> bode(J)
14.14

>> num=[0 0 250 250]; dem=[1 10 1 0];


>> K=tf(num,dem)

K=

250 s + 250
----------------
s^3 + 10 s^2 + s

Continuous-time transfer function.

>> bode(K)
14.15

>> zeros=[-1]; polos=[-2 -10]; k=[2];


>> M=zpk(zeros,polos,k)

M=

2 (s+1)
------------
(s+2) (s+10)

Continuous-time zero/pole/gain model.

>> bode (M)


14.16

>> num=[1.6]; dem=[1 1 16 0]


>> N=tf(num,dem)

N=

1.6
------------
s^3 + s^2 + 16s

Continuous-time transfer function.

>> bode (N)


14.17

>> zeros=[0]; polos=[-2 -2 -1]; k=[1];


>> O=zpk(zeros,polos,k)

O=

s
------------
(s+2)^2 (s+1)

Continuous-time zero/pole/gain model.

>> bode (O)


14.18

>> num=[7 1 4]; dem=[1 8 14 5];


>> P=tf(num,dem)

P=

7 s^2 + s + 4
----------------------
s^3 + 8 s^2 + 14 s + 5

Continuous-time transfer function.

>> bode(P)
14.19

>> zeros=[0]; polos=[-20 -10 -40]; k=[80];


>> Q=zpk(zeros,polos,k)

Q=

80s
--------------------
(s+20) (s+10) (s+40)

Continuous-time zero/pole/gain model.

>> bode(Q)
14.21

>> zeros=[0 -20]; polos=[-1 -52.3607 -7.63932]; k=[10];


>> S=zpk(zeros,polos,k)

S=

10 s (s+20)
-------------------------
(s+1) (s+7.639) (s+52.36)

Continuous-time zero/pole/gain model.

>> bode(S)

You might also like