f(x)=x5-8x4+16x3+10 x2(5x2-32x+48)
f´(x)=5x4-32x3+48x2 x1=0
f´´(x)=20x3-96x2+96x x2= 4 x3= 2.4
f´´(0)=20x3-96x2+96x= 0 f´´(4)=20x3-96x2+96x= 128 f´´(2.4)=20x3-96x2+96x= -46.08
f(4)=x5-8x4+16x3+10= -10 f(2.4)=x5-8x4+16x3+10= 25.38 f(0)=x5-8x4+16x3+10= -10 (4,-10)
(2.4,25.38) (0,-1)
f(x)=x2ex f´(x)=2xex+x2ex f´´(x)=2ex+4xex+x2ex xex(2+x) x1=0 x2= -2
f´´(-2)=2ex+4xex+x2ex = -0.2706 maximo f´´(0)=2ex+4xex+x2ex = 2 minimo
f(-2)=x2ex =0.54 f(0)=x2ex = 0 (-2,0.54) (0,0)