Name: Chevaunne Sinclair
Id Number: 18085139
Course: Organic Chemistry II
Lab Session: Tuesday- Thursday 8-11
Lab #: 1
Chevaunne Sinclair 18085139
Title: Grignard Preparation and Reaction
Aim:
To prepare a Grignard reagent for use in a reaction.
To form triphenyl methanol using methyl benzoate and phenylmagnesium bromide.
Abstract:
This lab was a dry lab, and so was conducted theoretically. It has as its aims to prepare a
Grignard reagent and to use this reagent along with an ester to prepare an alcohol.
The Grignard reaction is an organometallic chemical reaction in which alkyl- or aryl-
magnesium halides (Grignard reagents) act as nucleophiles andattack electrophilic carbon
atoms that are present within polar bonds to yield a carbon-carbon bond, thus
altering hybridization about the reaction center. When one mole of Grignard reagent is
reacted with an ester, an intermediate ketone, which cannot be isolated, is formed.
Another mole of Grignard reagent will form the alcohol. In this lab, the Grignard reagent
is prepared using magnesium chips, ether, bromobenzene and a setup of reflux apparatus.
This Grignard reagent will then react with methyl benzoate to form triphenyl methanol.
This lab was a dry lab, and so was conducted theoretically.
Chevaunne Sinclair 18085139
Introduction: The French chemist François Auguste Victor Grignard discovered an
organometallic chemical reactionreaction in alkyl- or aryl-magnesium halides (Grignard
reagents), act as nucleophiles, attack electrophilic carbon atoms that are present within
polar bonds like a carbonyl group to yield a carbon-carbon bond, which also results in an
altering of hybridization about the reaction center. This reaction is integral in the
formation of carbon-carbon bonds and other carbon-heteroatom bonds. Reaction
mechanisms are outlined below:
This lab would utilize various reagents. Their basic information and structures are
outlined below.
Chevaunne Sinclair 18085139
Phenylmagnesium bromide is a magnesium-containing organometallic compound. Its
molecular formula is C6H5MgBr, It is a Grignard reagent and is commercially available
as solutions of diethyl ether or THF. It may be prepared in the laboratory by
treating bromobenzene with magnesium metal, usually in the form of ribbon. A small
amount of iodine may be used to activate the magnesium to initiate the reaction.
Bromobenzenes are a group of halobenzenes formed in a substitution
reaction between bromineand benzene with a hydrogen bromide by-product. The name
strictly refers to monobromobenzene, a clear pale yellow liquid with a molecular formula
of C6H5Br, however it can be used to refer to a benzene containing any number of
bromine molecules.
Chevaunne Sinclair 18085139
Methyl benzoate is an ester with the chemical formula C6H5COOCH3. It is formed by the
condensation of methanol and benzoic acid. It is a colorless to slightly yellow liquid that
is insoluble with water, but miscible with most organic solvents. It has a pleasant smell,
strongly reminiscent of the fruit of the feijoa tree, and it is used in perfumery. It also finds
use as a solvent and as apesticide used to attract insects.
Triphenylmethanol (also known as triphenylcarbinol) is an aromatic organic compound.
Its molecular formula is C19H16O. It is a white crystalline solid that is insoluble in water
and petroleum ether, but well soluble in ethanol, diethyl ether and benzene. In strongly
acidic solutions, it produces an intensely yellow color, due to the formation of a stable
carbocation. It can be prepared
rom methylbenzoate or benzophenone and bromobenzene.
Chevaunne Sinclair 18085139
Ether is a class of organic compounds that contain an ether group —
an oxygen atom connected to two alkyl or aryl groups — of general formula R–O–R. A
typical example is the solvent and anesthetic diethyl ether, commonly referred to simply
as "ether" (CH3-CH2-O-CH2-CH3). Ethers are slightly polar as the COC bond angle in the
functional group is about 110 degrees, and the C - O dipoles do not cancel out. Ethers are
more polar than alkenes but not as polar as alcohols, esters or amides of comparable
structure. However, the presence of two lone pairs of electrons on the oxygen atoms
makes hydrogen bonding with water molecules possible, causing the solubility of
alcohols. The general formula is shown below:
Magnesium is a chemical element with the symbol Mg, atomic number 12, atomic
weight 24.3050 and common oxidation number +2. Magnesium, an alkaline earth metal,
is the ninth most abundant element in the universe by mass.
Chevaunne Sinclair 18085139
Hydrochloric acid is the solution of hydrogen chloride (HCl) in water. It is a
highly corrosive,strong mineral acid and has major industrial uses. It is found naturally
in gastric acid.
Petroleum ether, also known as benzine, VM&P Naphta, Petroleum Naphta, Naptha
ASTM, Petroleum Spirits, X4 or Ligroin, is a group of various volatile, highly
flammable, liquid hydrocarbon mixtures used chiefly as nonpolar solvents.
Water covers 71% of the Earth's surface. It has a liquid form or state, a solid state, ice,
and a gaseous state, water vapor or steam. Water has a density 0.998 g/cm³ of, a boiling
point of 99.974 °C and a melting point of 0 °C (273.15 K) (32 °F).
Chevaunne Sinclair 18085139
Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a
common substance found in rock in all parts of the world, and is the main component
of shells of marine organisms, snails, pearls, and eggshells. Calcium carbonate is the
active ingredient in agricultural lime, and is usually the principal cause of hard water.
Materials/Apparatus:
Materials Apparatus
Bromobenzene Claisen adapter
Mg metal Hotplate
Phenylmagnesium bromide Condenser
Methyl Benzoate Separting funnel
Hydrochloric acid Round bottom flask
Ether Stirring rod
Calcium chloride stopcock
ice 100-mL reaction flask
water Magnetic stir bar
Ligroin 50-mL Erlenmeyer flasks,
100-mL graduated cylinder
Chevaunne Sinclair 18085139
Diagram showing apparatus used in experiment:
Chevaunne Sinclair 18085139
Method:
Place a 250-mL beaker half-full with water to warm (45-50 oC) on the hot plate.
Generate the Grignard Reagent
Have an ice-water bath on hand. Formation of the Grignard reagent is exothermic.
The Grignard reagent is prepared in a dry 100-mL reaction flask fitted with a long reflux
condenser. A calcium chloride drying tube inserted in a cork that will fit either the flask
or the top of the condenser is also made ready. Assemble the reaction flask containing the
magnetic stir bar with the condenser and drying tube. Allow the set-up to cool to room
temperature. The flask on cooling pulls dry air through the calcium chloride. Weigh out 2
g of magnesium. Crush with a pestle in a mortar to break up some of the oxide coating
and expose some fresh metal surface. Add to the 100-mL reaction flask. Follow with 10
mL of THF. Prepare in a 50-mL Erlenmeyer flask a solutionco ntaining 8 mL of
bromobenzene in 15 mL of THF. Now, add 5 mL of the bromobenzene solution dropwise
(via syringe) down the condenser into the 100-mL reaction flask containing the
magnesium in THF with warming in the water bath. The THF will start to boil. The
solution should soon turn colorless but cloudy. When it is evident that the reaction has
started add dropwise (via syringe) another 5 mL of the bromobenzene solution. Maintain
moderate reflux with intermediate heating and cooling (raise the reaction flask out of the
warm water bath and, if needed, into the ice-water bath). If the reaction is occurring too
vigorous, raise the set-up out of the warm water bath, allow the reactionto cool and
subside, and add 5 mL of THF. Add the remainder of the bromobenzene solution
dropwise (via syringe) down the condenser. Again, maintain a moderate reflux rate of the
reaction mixture. Raise the reaction flask out of the water bath if the reflux looks to be
Chevaunne Sinclair 18085139
too vigorous and cool the reaction with the ice-water bath but do not cool the reaction so
much that it stops. When all the bromobenzene has been added and the reaction stops
refluxing spontaneously, heat the reaction for 20-30 minutes to ensure complete
formation of the Grignard reagent.
Add the Carbonyl Compound (Methyl benzoate)
While the Grignard reagent is processing, prepare the solution of carbonyl compound in
the same 50-mL Erlenmeyer flask with 15 mL of dry ether. Cool the reaction mixture for
several minutes. Add the solution of Methyl Benzoate dropwise (via the same syringe)
down the condenser. After addition of 5 mL of solution, place back in the water bath to
begin warming again. Continue adding the methyl Benzoate. When addition is complete,
rinse the 50-mL Erlenmeyer flask with 5 mL of THF and add. Reflux for another 15-20
minutes.
Quench the Grignard Reaction
Cool the reaction mixture. Place 25 mL of 1 M Hydrochloric acid and 25 g of ice in a
250-mL beaker. Set aside 10-20 mL of this cold aqueous acid solution. Pour the reaction
mixture into the 250-mL beaker. Rinse the reaction flask with the reserve aqueous acid
solution and pour into the beaker. Stir the mixture until the salts and bits of unreacted
magnesium dissolve.
Chevaunne Sinclair 18085139
Isolation the Crude Triphenylmethanol
While the mixture is allowed to stir, set up for an extraction using a 125-mL separatory
funnel. Filter the solution through a cotton-plugged funnel into the separatory funnel.
Shake, vent, and separate the layers. Then proceed as directed:
1. Return the aqueous layer and extract with 50 mL of ether;
2. Wash the combined organic layer in succession with 25 mL of water 25 mL saturated
aqueous sodium bicarbonate solution, and 25 mL of saturated aqueous sodium
chloride solution;
3. Dry the organic layer over a drying agent.
Filter the solution through another cotton-plugged funnel into a 125-mL Erlenmeyer
flask. Add 20 mL of ligroin or hexanes and set on a hot plate to slowly concentrate.
Concentration allows for the crystallization of triphenylmethanol from the mixed
solvents. When crystallization begins, remove from the hot plate and allow the solution
to cool to room temperature then to 0oC. Collect the first crop of triphenylmethanol by
vacuum filtration using a Hirsch or Büchner funnel. Weigh the dry product. Check the
melting point to determine whether a recrystallization is needed. A second crop could be
obtained by concentrating the mother liquor.
Recrystallization (Purification) of the Crude Triphenylmethanol
After checking the melting points of all crops, determine if recrystallization is needed. If
any crop is deemed pure, use that for the carbocation formation. Recrystallization of
triphenylmethanol can be accomplished by dissolve the crude material in hot
Chevaunne Sinclair 18085139
dichloromethane and adding four times the volume of hexanes. Heat to dissolve and
allow to cool. Collect by vacuum filtration and determine yields.
Expected results: When this Grignard reagent is added to the methyl benzoate, the
formation of crystals after crystallization will indicate that the reaction has produced
triphenylmethanol. The major product is triphenylmethanol and the minor product is
produced in a side reaction which is biphenyl.
Discussion: The purpose of this experiment was to synthesize the tertiary alcohol
triphenylmethanol from a Grignard reagent, phenyl magnesium bromide. In a reaction
between an ester and a Grignard reagent, two moles of Grignard reagent are used. The
first mole reacts with the ester to form an intermediate ketone (however, this is not a
synthesis reaction for ketones as they cannot be isolated in this reaction) and the other
mole reacts with the ketone to give a tertiary alcohol. The Grignard reagent is easily
formed by reaction of an alkyl halide, in particular a bromide, with magnesium metal in
anhydrous diethyl ether or tetrahydrofuran (THF).
The Grignard reagent is a strong base and a strong nucleophile. As a base, it will react
with all protons that are more acidic than those found on alkenes and alkanes. Thus
Grignard reagents react readily with water, alcohols, amines, thiols, etc., to generate the
alkane:
Chevaunne Sinclair 18085139
The reaction proceeds satisfactorily only if the reagent and the apparatus are thoroughly
dry. If a wet solvent/solvent that contains traces of water is used, the Grignard reagent is
destroyed as fast as it is formed. The magnesium metal, in the form of a course powder,
has a coat of oxide on the outside. A fresh surface can be exposed by crushing a piece
under the absolutely dry ether in the presence of the organic halide. Reaction will begin
at the exposed surface, as evidenced by a slight turbidity in the solution and evolution of
bubbles. Once the exothermic reaction starts, it proceeds easily, the magnesium dissolves,
and a solution of the Grignard reagent is formed. The solution is often turbid and gray
due to impurities in the magnesium.
The Grignard reagent was synthesized from Bromobenzene and magnesium and then
reacted with methyl benzoate to produce triphenylmethanol. The reaction of phenyl
magnesium bromide and benzophenone was quenched with hydrochloric acid, and an
extraction was performed in order to separate the organic phase containing the
triphenylmethanol from the aqueous phase. The triphenlmethanol was then isolated and
purified by crystallization and vacuum filtration.
Mechanism:
Formation of the Grignard reagent form the insertion of magnesium between the aryl and
the halo groups.
Chevaunne Sinclair 18085139
The primary impurity in the present experiment is biphenyl, formed by the reaction of
phenylmagnesium bromide with unreacted bromobenzene. The most effective way to
lessen this side reaction is said to be to add the bromobenzene slowly to the reaction
mixture so that it will react with the magnesium and not be present in high concentration
to react with previously formed Grignard reagent. The impurity is easily eliminated,
since it is much more soluble in hydrocarbon solvents than triphenylmethanol.
One equivalent of the Grignard reagent is added to the electrophilic center of the
carbonyl compound, methyl benzoate, to form benzophenone. However, benzophenone is
more reactive than methyl benzoate and immediately reacts with a second equivalent of
Grignard reagent. In order to produce triphenylmethanol, two equivalents of the Grignard
reagent is required to react with the ester.
Chevaunne Sinclair 18085139
Limitations:
1. Apparatus must be free of water, or water will react with the reagent to produce
benzene.
2. The ether compound evaporate easily at RTP, this could affect the results.
3. The side reaction that occurs, if not removed could also affect your results.
4. Accuracy of amount of reagent used could affect expected percentage yield.
Precautions:
1. Diethyl ether is extremely flammable. Use only in a fume hood and keep
away from flames and heat sources, such as hot plates.
2. be sure to use dry glass wear.
References: : Organic chemistry by John Mcmurry the 7th edition, Organic chemisty by
L.G Wade the 6th edition, Chemistry by Raymond Chang, Wikipedia the free
encyclopedia, sparknotes.com, Websters dictionary, Msnencartaonline.com, Perry's
Chemical Engineers' Handbook (7th Edition ed.). McGraw-Hill.
http://infohost.nmt.edu/~jaltig/Chem333LGrignard.pdf
Hornback, Joseph M. Organic Chemistry 2nd Edition, Cengage Learning, 2005
Chevaunne Sinclair 18085139
Chevaunne Sinclair 18085139