Page 42 - 1
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
SUMMARY for TANK and FOUNDATION
tare 741 k tank
test 6254 k water weight
LN2 5012 k liquid weight full
406888337.xls
test 6995 k tank + weight at test
Normal 5753 k normal max operating weight
W contents 4200 k contents that move w/ tank during an event
diameter 53 ft approximate loaded diameter 60' row 13
area 2206 ft2 (53 /2)^2 * PI()
q operate 2.61 k/ft2 Normal /area
3.5' Elevated Deck
h 3.5 ft 3.5' deck
DL 1839 k from AutoCAD massprop calculations 15'
area 3503 ft2 1,839 /(42 /12 * 0.15)
4' cap
Piling row 23
Top 1.59 k 24"Ф x 1/2" wall steel casing
0.5 * 24 * PI() /144 * 485 * 12.5 /1000
5.89 k concrete top 12.5'
12^2 * PI() /144 * 0.15 * 12.5
7.48 k per arbitrary 12.5' trib length of composite pile
#VALUE!
columns 21 each above the pile cap row 33
157 k sum of piling weight above pile cap
wt steel 485 lb/ft3
4.0' Pile Cap wt conc. 150 lb/ft3
h 4 ft
DL 2102 k 1k 1000 lbs
gross opr 5753 k tank + contents operating weight Liquid
1839 k top deck
157 k columns row 43
2102 k pile cap
sum 9851 k operating load to bottom of pile cap
sum 11093 k test load H2O
A flat bottom 60 foot diameter, 60 foot tall, liquid nitrogen storage tank
is supported on a pile foundation at 15' above grade.
Pile foundation and pedestal structure to support:
Tank and contents normal operating weight of 5,753,000 lbs. row 53
Test weight of 6,995,000 Lbs.
Life of the structure is 30 years.
Planar tilt is limited to 1/2" in 60' during the life of the structure. Out-of-plane, differential
settlement is limited to 1/8" in 30' and 1/4" in 60' during the life of the structure.'
Settlements will govern this design as much or more than seismic and wind forces.
row 63
Page 42 - 2
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
DESIGN LOADS for FRAME ANALYSIS PROGRAM
This frame is an elastic ordinary moment resiting frame. The design is for elastic
response only and does not use yielding of any member for energy absorbtion.
The value of R for ordinary moment resisting frames is the same as
the R for elevated tanks on unbraced legs.
406888337.xls
Estimate story shear (V story) to the top of the pile cap
Ca 0.36 factor for vertical accelerations
I 1.25 importance factor
V 0.304 *W from seismic worksheet row 73
ρ estimate 1 estimated redundancy factor
C factor 1.1 '97 UBC 1612.2.2.1 Exception 2
for concrete columns
seismic
DL shear ult Structure Movement weight
tank 741 741
32.1 ft CG of effective
W contents 5012 33.85 contents mass 5012
and tank 1183 k ASD API calculations
E tank and contents 692 1656 k ult
49.10 1839
deck 1839 769 11.5
15.25 15.0 157
col/piles 157 66
2102
row 93
springs
V story 7749 1527 k ult to top of deck inflection
pile cap 2102 879
restraint
D 9851 2405 k ult approximate DL +
Liquid to top of piling
#VALUE!
Check Redundancy row 103
Overly simplify the model: apply loads to the nodes of the mid-line frame.
Area 3503 ft2 surface area of the deck and/or the pile cap
Redundancy factor for an ordinary moment frame ASCE 7-02 9.5.2.4.2
Item 3 Σ any two adjacent column shears / story shear
column 4 110 k ult from preliminary frame analysis
column 7 112 k ult
sum cols 222 112 + 110 row 113
V story 1527 k ult
r 0.145 222 / 1,527 ratio of any two adjacent column shears to the sum of all column shears
ρ -0.324 2 - 20 / (rmax x √ Ax ) 1.0 ≤ ρ ≤ 1.5 max
2 - 20 /[0.145 × 3,503^0.5 ]
ρ 1 unitless minimum required ρ redundancy factor
row 123
Page 42 - 3
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
EXTEND PILING THROUGH PILE CAP to DECK
Pile Lateral Resistance
45 piling total 82
406888337.xls
Pile lateral 90 k → at 8 diameters through 1" deflection
82 82 82
pile @ 14' 17 each Structue
82 82 82
82 k/each
1387 k 82 82 82
Earth Movement
pile @ 7' 28 each 82 82 82
52 k/each
82 82 82
1457 k
pile sum 2843 k service pile soil lateral 82
soil lat 250 pcf #VALUE!
face 78 ft
depth 4 ft row 143
soil p 156 k pile cap resistance 90 k
52 k 22.5
pile cap 2999 k ASD sum soil and pile lateral resist 82 k
16 k
V pile cap 2405 k ult from calculations above
14 ft 7 ft 6 k
compare 1 logic #VALUE!
V pile cap 1718 k ASD 2,405 /1.4 = 1,718 < 2,999 versus capacity.
OK
row 153
structure seismic movement
Piling below the pile cap is considered to be buoyant. grade top moment at pile cap
Top of piling fixed within pile cap. spring / soil 200 k-ft
Spring restraint to resemble soil lateral resistance applied at
soil/pile cap interface.
Concrete and rebar cage top 25' of pile.
row 163
The deck is designed as a two-way slab supported by 21 columns.
For this analysis, S-Frame 3D finite analysis program was 0.25 * top moment
used to calculate moments, axial loads, and deflections along 50 k-ft
the midline of the structure. #VALUE!
forces.
row 173
row 183
Page 42 - 4
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
LOADS to DECK MID-LINE
Design for the '97 UBC ultimate strength of columns. Spring values at grade are given an arbitrary factor of 1.0.
E = ρ Eh + Ev = ρ V D + 0.5 Ca I D multiply this by 1.1 for concrete '97 UBC 1612.2.2.1 Exception 2
406888337.xls
horizontal component vertical component
E 1.0 * 1,527 * 1.1 + 0.5 * 0.360 * 1.25 * 9,851 * 1.1
1679 + 2438
row 193
Basic Load Combinations '97 UBC 1612
ratio 0.238 = 5 mid-line columns /21 columns total
D horizontal component vertical component
2345 ↓ 400 ← 581 ↕
Create load cases for D, Eh, and Ev where: note that D = D + stored liquid
hence:
Eh 0.170 * D Eh / D row 203
400 /2,345
and
Ev 0.248 * D Ev / D
581 /2,345
Per '97 UBC
(12-1) 1.4 D
(12-5) 1.2 D + 1.0 Eh + 1.0 Ev row 213
(12-6) 0.9 D ± 1.0 Eh ± 1.0 Ev
The load cases are:
1 (12-1) 1.4 D
2 (12-5) 1.2 D + 0.170 D horizontal + 1.0 E per API calc + 0.248 D vertical
3 (12-6) a 0.9 D + 0.170 D horizontal + 1.0 E per API calc + 0.248 D vertical row 223
4 (12-6) b 0.9 D + 0.170 D horizontal + 1.0 E per API calc - 0.248 D vertical
row 233
row 243
Page 42 - 5
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
SUMMARY of LOADS to DECK MID-LINE for FINITE ELEMENT ANALYSIS
Input D + stored liquid for these nodes:
1,656 * 0.238 ultimate load
394 ← API Calculations
nodes 22 node 15 at CG of tank and contents 23
406888337.xls
ratio 0.238
tank + LN2 5753 1370 for tank + LN2 as DL only
deck 1839 for vertical loads including tank, LN2, deck, columns row 253
columns 79
sum 1918 457 1,918 * 0.238 for horizontal loads
sum 7671 457 + 1,370
1826 7,671 * 0.238 for vertical loads including tank, LN2, deck, and columns
horizontal← 57 114 114 114 57 k 457
vertical ↕ 228 457 457 457 228 1826
nodes 3 6 12 18 21 node
row 263
columns 79
pile cap 2102
2181 519
sum ↕ 43 87 87 87 87 87 43 k 519
nodes 2 5 8 11 14 17 20
spring resistance 82 52 52 52 52 52 82 k/inch
row 273
nodes 1 4 7 9 13 16 19
row 283
row 293
row 303
Page 42 - 6
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
LOADS to DECK MID-LINE by CASE and LOAD COMBINATIONS per '97 UBC
Load combinations are:
1 (12-1) 1.4 D
406888337.xls
1.4 x Case 1 D only 228 457 457 457 228
node 3 6 12 18 21
43 87 87 87 87 87 43
node 2 5 8 11 14 17 20 row 313
2 (12-5) 1.2 D + 0.170 D horizontal + 0.248 D vertical
1.448 x Case 1 D 228 457 457 457 228 where: 1.2 + 0.248
0.148 x Case 2 E 57 114 114 114 57
1.0 x Case 3 E API 394
node 3 6 15 12 18 21
1.448 x Case 1 D 43 87 87 87 87 87 43 where: 1.2 + 0.248
0.148 x Case 2 E 43 87 87 87 87 87 43
node 2 5 8 11 14 17 20
3 (12-6) a 0.9 D + 0.170 D horizontal + 0.248 D vertical
1.148 x Case 1 D 228 457 457 457 228 where: 0.90 + 0.248
0.148 x Case 2 E 57 114 114 114 57
1.0 x Case 3 E API 394
node 3 6 15 12 18 21
1.448 x Case 1 D 43 87 87 87 87 87 43 where: 0.90 + 0.248
0.148 x Case 2 E 43 87 87 87 87 87 43
node 2 5 8 11 14 17 20
4 (12-6) b 0.9 D + 0.170 D horizontal ─ 0.248 D vertical
0.652 x Case 1 D 228 457 457 457 228 where: 0.90 ─ 0.248
0.148 x Case 2 E 57 114 114 114 57
1.0 x Case 3 E API 394
node 3 6 15 12 18 21
0.652 x Case 1 D 43 87 87 87 87 87 43 where: 0.90 ─ 0.248
0.148 x Case 2 E 43 87 87 87 87 87 43
node 2 5 8 11 14 17 20 row 343
Axial and moment forces were generated from a subsequent computer run.
These loads are:
axial 460 k ult
moment 1174 k ult
row 353
row 363
Page 42 - 7
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
LOADS to DECK MID-LINE USING ASCE 7-02 STRENGTH DESIGN
This frame is an elastic ordinary moment resisting frame.
ρ. 1.0 unitless from above
406888337.xls
SDS 0.719 g ult short period spectral response 9.4.1.2.5-1
Cs 0.299 g ult seismic response coefficient 9.5.5
D 9851 k from above
row 373
Vert story 1417 k ult 0.2 * 0.719 * 9,851
V story 2945 k ult 0.299 * 9,851
Basic Load Combinations ASCE 7-02
ratio 0.238 = 5 mid-line columns /21 columns total
D horizontal component vertical component
2345 701 337 ratioed loads
0.238 * 9,851 0.238 * 2,945 0.238 * 1,417
row 383
Eρ1 ρQE + 0.2 SDS D Eq. 9.5.2.7 - 1
Case 5 2.3.2 1.2 D ± ρ Eρ1 ± 0.2 SDS D
2815 vertical ± 701 horizontal ± 337 vertical
1.2 * 2,345 1.0 * 701 337
Eρ2 ρQE - 0.2 SDS D Eq. 9.5.2.7 - 2
Case 8 2.3.2 0.9 D ± ρ Eρ2 ± 0.2 SDS D row 393
2111 vertical ± 701 horizontal ± 337 vertical
0.9 * 2,345 1.0 * 701 337
Create load cases for D, QE, and 0.2 SDS D
where: ρ QE /D = 701 /2,345 = 0.299 * D
and 0.2 SDS D /D = 337 /2,345 = 0.144 * D
These factors are to be used in the computer finite element analysis "Load Combinations." row 403
The load cases are:
1 D only 1.4 D
2 5 2.3.2 1.2 D + 0.299 D horizontal + 1.0 E per API calc + 0.299 D vertical
row 413
3 8 2.3.2 a 0.9 D + 0.299 D horizontal + 1.0 E per API calc + 0.144 D vertical
4 8 2.3.2 b 0.9 D + 0.299 D horizontal + 1.0 E per API calc ─ 0.144 D vertical
These results are slightly less conservative than the '97 UBC results above
row 423
Page 42 - 8
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
LOADS to DECK MID-LINE USING ASCE 7-05 STRENGTH DESIGN for Comparison
This frame is an elastic ordinary moment resisting frame.
ρ. 1.00 unitless from above
SDS 406888337.xls
0.719 g ult short period spectral response 9.4.1.2.5-1
Cs 0.299 g ult seismic response coefficient 9.5.5
D 9851 k from above
row 433
Vert story 1417 k ult 0.2 * 0.719 * 9,851 7-05 0.2 SDS D 12.4-4 and 12.14-6
V story 2945 k ult 0.299 * 9,851 7-05 V = Cs W 12.8-1
Basic Load Combinations ASCE 7-05 Where 12.4.2.3 is used in lieu of 2.3.2
ratio 0.238 = 5 mid-line columns /21 columns total
D horizontal component vertical component
2345 701 337 ratioed loads
0.238 * 9,851 0.238 * 2,945 0.238 * 1,417
row 443
Case 5 (1.2 + 0.2 SDS) D + ρQE + L + 0.2 S
1.2 D ± ρ Eρ5 ± 0.2 SDS D
2815 vertical ± 701 horizontal ± 337 vertical
1.2 * 2,345 1.0 * 701 337
Case 6 (0.9 - 0.2 SDS) D + ρQE + 1.6 H
0.9 D ± ρ Eρ6 ± - 0.2 SDS D row 453
2111 vertical ± 701 horizontal ± 337 vertical
0.9 * 2,345 1.0 * 701 337
Create load cases for D, QE, and 0.2 SDS D
where: ρ QE /D = 701 /2,345 = 0.299 * D
and 0.2 SDS D /D = 337 /2,345 = 0.144 * D
These factors are to be used in the computer finite element analysis "Load Combinations." row 463
The load cases are:
1 D only 1.4 D
2 Case 5 1.2 D + 0.299 D horizontal + 1.0 E per API calc + 0.299 D vertical
row 473
3 Case 6 0.9 D + 0.299 D horizontal + 1.0 E per API calc + 0.144 D vertical
row 483
Page 42 - 9
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
GENERATE ASD ASCE 7-02 LOADS for DEFLECTION CALCULATIONS
ρ 1.0 unitless from above
SDS 0.719 g ult short period spectral response
Cs 0.299 g ult seismic response coefficient 406888337.xls
D 9851 k from above
Vert story 1417 k ult 0.2 * 9,851 * 0.719
V story 2945 k ult 9,851 * 0.299 row 493
Basic Load Combinations ASCE 7-02
ratio 0.238 = 5 mid-line columns /21 columns total
D horizontal component vertical component
2345 701 337
Eρ1 ρQE + 0.2 SDS D Eq. 9.5.2.7 - 1
row 503
Case 5 2.4.1 1.0 D ± 0.7 Eρ1 + 0.2 SDS D
2345 vertical 491 horizontal 337 vertical
Eρ2 ρQE - 0.2 SDS D Eq. 9.5.2.7 - 2
Case 8 2.4.1 0.6 D ± 0.7 Eρ2 - 0.2 SDS D
1407 vertical ± 491 horizontal - 337 vertical
row 513
Create load cases for D, QE, and 0.2 SDS D Note that the reciprocal of 0.7 is
approximately 1.4. This is the standard
where: ρ QE /D = 491 /2,345 = 0.209 * D way to reduce LRFD seismic to
and 0.2 SDS D /D = 337 /2,345 = 0.144 * D ASD levels.
The load cases are: row 523
1 5 2.4.1 1.0 D + 0.209 D horizontal + 0.144 D vertical
2 8 2.4.1 a 0.6 D + 0.209 D horizontal + 0.144 D vertical
3 8 2.4.1 b 0.6 D + 0.209 D horizontal ─ 0.144 D vertical
Use these applied strength design (ASD) loads to compute deflections in the computer finite element analysis
"Load Combinations."
row 533
Page 42 - 10
PILE FOUNDATION TANK SUPPORT
A B C D E F G H I J K L M N
GENERATE ASD ASCE 7-05 LOADS for DEFLECTION CALCULATIONS for Comparison
ρ 1.0 unitless from above
SDS 0.719 g ult short period spectral response
Cs 0.299 g ult seismic response coefficient 406888337.xls
D 9851 k from above
QE 2945 k ult 9,851 * 0.299 where QE = V row 543
Basic Load Combinations ASCE 7-05 Where 12.4.2.3 is used in lieu of 2.4.1
ratio 0.238 = 5 mid-line columns /21 columns total
D horizontal component
2345 701
Case 5 (1.0 + 0.14 SDS) D + H + F + 0.7 ρQE
1.0 D + 0.7 QE + 0.2 SDS D row 553
2345 vertical 491 horizontal 337 vertical
Case 6 (1.0 + 0.105 SDS) D + H + F + 0.525 ρQE + 0.75 L + 0.75 (Lr or S or R)
1.0 D + 0.525 QE + 0.105 SDS D
2345 368 177
Case 8 (1.0 - 0.14 SDS) D + 0.7 ρQE + H
0.6 D + 0.7 QE ─ 0.14 SDS D row 563
1407 vertical + 491 horizontal ─ 236 vertical
Note that the reciprocal of 0.7 is
approximately 1.4. This is the standard
way to reduce LRFD seismic to
ASD levels.
The load cases are:
1 Case 5 1.0 D + 0.209 D horizontal + 0.144 D vertical row 573
2 Case 6 0.6 D + 0.157 D horizontal + 0.075 D vertical
3 Case 8 0.6 D + 0.209 D horizontal ─ 0.101 D vertical
Use these applied strength design (ASD) loads to compute deflections in the computer finite element analysis
"Load Combinations."
row 583
row 593