0% found this document useful (0 votes)
272 views7 pages

Fault Calculation Source Data:: Short Circuit Current (As Per /data)

The document calculates fault currents at a 33kV bus and 11.5kV bus. It provides short circuit current and MVA values for 3-phase and single-phase faults at the 33kV bus. Line and transformer impedance values are also included. Manual calculations are shown to determine minimum and maximum 3-phase and single-phase fault currents at the 11.5kV bus under different transformer configurations. The maximum 3-phase fault current is 11.59kA and the minimum is 6.163kA. The maximum single-phase fault current is 12.773kA and the minimum is 6.681kA.

Uploaded by

Mustafa Hamid
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
272 views7 pages

Fault Calculation Source Data:: Short Circuit Current (As Per /data)

The document calculates fault currents at a 33kV bus and 11.5kV bus. It provides short circuit current and MVA values for 3-phase and single-phase faults at the 33kV bus. Line and transformer impedance values are also included. Manual calculations are shown to determine minimum and maximum 3-phase and single-phase fault currents at the 11.5kV bus under different transformer configurations. The maximum 3-phase fault current is 11.59kA and the minimum is 6.163kA. The maximum single-phase fault current is 12.773kA and the minimum is 6.681kA.

Uploaded by

Mustafa Hamid
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

FAULT CALCULATION

 Source Data:

 Short Circuit Current (As per \data):

No. Description 33 kV BUS


1 Three phase Fault (Maximum) at 33 kV Bus in kA 20.03
3 Single phase Fault (Maximum) at 33 kV Bus in kA 3.000

 Short Circuit MVA:

No. Description 33 kV BUS


1 Three phase Fault (Maximum) at 33 kV Bus in MVA 1144.0
3 Single phase Fault (Maximum) at 33 kV Bus in MVA 171.4730

1.3. 33kV Line Data:


UG-1
 33 kV, 3C, 300 mm2

Positive Sequence impedance = 0.080+0.105i Ω/km


Negative Sequence impedance = 0.080+0.105i Ω/km
Zero Sequence impedance = 0.130+0.270i Ω/km
Cable Length ≈ 100m = 1.0 km
UG-2
Positive Sequence impedance = 0.080+0.105i Ω/km
Negative Sequence impedance = 0.080+0.105i Ω/km
Zero Sequence impedance = 0.130+0.270i Ω/km
Cable Length = 3.3337 km
OHL-1
Positive Sequence impedance = 0.2276+0.3378i Ω/km
Negative Sequence impedance = 0.2276+0.3378i Ω/km
Zero Sequence impedance = 0.4046+1.6290i Ω/km
Cable Length = 2.8 km

 Transformers Data:

Transformer TR-1 TR-2


HV Side Voltage 33000 33000
LV Side Voltage 11500 11500
SC impedance Zsc % 12.53 12.52
X/R Ratio 24 24
 Manual Calculation:

 Per Unit Transformation

Ipu = ISC / Ib

Ib = MVAb/ KVb

Zb = (KVb)2 / MVAb Ω

Zpu = Zactual / Zb

Zpu new = Zpu old x [ (KVb old)2 / (KVb new)2 x (MVAb new) / (MVAb old) ]

Isc pu 1-ph = 3 x Io = 3 x E / (Z1pu + Z2 pu + Zo pu)

 @ Source:

KVb = 33 kV & MVAb = 20 MVA

Zb = 332 / 20 = 54.45 Ω

Ib = 20000 / ( = 349.9 A
 3-ph fault:

Z1 pu min = j 0.017472

 1-ph fault:

Assume Z1 = Z2

Z1 pu = j 0.116686
ISC = 20030 A & Ib = 349.9 A
Ipu = 20030 / 349.9 = 57.22

Isc pu 3-ph = 3 x Io = 3 x E / (Z1pu + Z2pu + Zopu)

57.22 = 3 x 1 / (j 0.116686+ j 0.116686 + Zo pu)

∴ Zo pu min = j 0.18094

 For Cables:

Cable-1
Z1 pu =Z2 pu = (0.08 + 0.105i) *1/ 54.45 = 0.001469 + j 0.001928
Zo pu = (0.130 + 0.270i) *1/ 54.45 = 0.0023875 + j 0.0049587
OHL -1
Z1 pu =Z2 pu = (0.2276+0.3378i)*2.8/54.45 =0.0117+0.01737i
Zo pu = (0.4046+1.6290i)*2.8/54.45 =0.0208+0.08376i
Cable-2
Z1 pu =Z2 pu = (0.08 + 0.105i) *3.337/ 54.45 = 0.004898 + j 0.006428
Zo pu = (0.130 + 0.270i)*3.337/ 54.45 = 0.007967+ j 0.016547
LINE-1 = Z C1 + Z OHL-1
Z1 pu =Z2 pu = 0.013169 + j 0.019298
Zo pu = 0.0231875 + j 0.088718
LINE-2 = Z C2
Z1 pu =Z2 pu = 0.004898 + j 0.006428
Zo pu = 0.007967 + j 0.016547
 For Transformers:

 TR-1&2:

Z1 pu = 0.1252 & X/R = 24

(R2+x2) = 0.12522,
R = 0.004929,
X = 0.118297

Assume Z1 pu=Z2 pu=Zo pu= 0.005212+j 0.12509


 Per unit impedances summary refer to 20 MVA base:

Source
line 1& line 2
Item Max 3- Max 1-ph TR-1&2
ph Fault Fault L-1 L-2
Pos. seq.
impedance
j0.017472 j 0.116686 0.013169 + j 0.019298 0.004898 + j 0.006428 0.005212+j 0.12509

Neg. seq. Not


impedance Required
j 0.116686 0.013169 + j 0.019298 0.004898 + j 0.006428 0.005212+j 0.12509

Zero seq. Not


impedance Required
J 0.18094 0.0231875 + j 0.088718 0.007967 + j 0.016547 0.005212+j 0.12509
 Max 3-ph Fault current @11.5 kV bus when both transformers working in
parallel:

For balance 3-ph fault the sequential circuit will be as in fig (1)

Z T pu = ZS1 min pu + (ZL1 1 pu + ZTR1 1 pu ) // ( ZL2 1 pu + ZTR2 1 pu )

= j 0.017472 +( 0.013169 + j 0.019298 + 0.005212+j 0.12509) //


(0.007967 + j 0.016547+ 0.005212+j 0.12509))

=0.0069408+j0.08634
= 0.08662 85.403°

IF pu = E / Z T pu (Assume the pre fault voltage equal to nominal voltage, E= 1pu)

∴IF pu = 1 / 0.07650 85.403°


= 11.5446 85.40° Lag.

@ 11.5 kV bus

Ibase = 20 / (1.732 x 11.5) = 1004 A


Isc = Ib x Ipu = 11.544x 1004 = 11590.8 -85.403° A

Isc 3-ph max = 11.59KA

 Min 3-ph Fault current @11.5 kV bus when each Transformer working
separately (11 kV bus section open)

For balance 3-ph fault the sequential circuit will be as in fig (2)

Fig (2)

Z T pu = (ZS1 pu +ZLine-2 pu + ZTR2 1 pu)


= j 0.017472 +0.013169 + j 0.019298+ 0.005212+j 0.12509
= 0.018381+j0.16186
= 0.1629 83.5°

IF pu = E / Z T pu (Assume the pre fault voltage equal to nominal voltage , E= 1 pu)

∴IF pu = 1/0.1629 83.5


= 6.138 83.5° Lag.

@ 11.5 kV bus
Ibase = 20 / (1.732 x 11.5) =1004 A
Isc = Ib x Ipu = 6.138 x 1004 = 6163.2775 -85.5° A
Isc 3-ph min = 6.163 KA

 Max 1-ph Fault current @11.5 kV bus when both transformers working in
parallel

For 1-ph fault the sequential circuit will be as in fig (3)

Z T pu = ZS1 min pu + (ZL1 1 pu + ZTR1 1 pu ) // ( ZL2 1 pu + ZTR2 1 pu ) +


ZS2 min pu + (ZL1 2 pu + ZTR1 2 pu ) // ( ZL2 2 pu + ZTR2 2 pu )+ ((ZTR1 o pu) // (ZTR2 o pu))

= j 0.017472 +( 0.013169 + j 0.019298 + 0.005212+j 0.12509) //


(0.007967 + j 0.016547+ 0.005212+j 0.12509)) + j 0.017472 +( 0.013169 + j 0.019298 +
0.005212+j 0.12509) // (0.007967 + j 0.016547+ 0.005212+j 0.12509)) +(0.005212+j 0.12509)//
(0.005212+j 0.12509)

= 0.01648+j0.23522
= 0.2358 86°
IF pu = E / Z T pu (Assume the pre fault voltage equal to nominal voltage, E= 1pu)
∴Io pu = 1 / 0.2358 86° = 4.24 86°Lag.
IF pu = 3 x Io pu = 3 x 4.24=12.722
= 12.722 87.965° Lag.

@ 11.5 kV bus
Ibase = 20 / (1.732 x 11.5) = 1004 A
Isc = Ib x Ipu = 12.722 x 1004 = 12773.2 - 86.0° A

Isc 1-ph max = 12.77 KA

 Min 1-ph Fault current @11.5 kV bus when each Transformer working
separately (11 kV bus section open)

For 1-ph fault the sequential circuit will be as in fig (4)

Z T pu = [(j 0.017472 +0.013169 + j 0.019298+ 0.005212+j 0.12509)+ (j 0.017472 +0.013169 + j


0.019298+ 0.005212+j 0.12509)+ (0.005212+j 0.12509)]
= 0.04197+j 0.4488 = 0.4507 87.78°

IF pu = E / Z T pu (Assume the pre fault voltage equal to nominal voltage , E= 1pu)

∴Io pu = 1 / 0.2065 87.78° 2.218 84.65° Lag.

IF pu = 3 x Io pu = 3 x 2.2184 = 6.655 84.6° Lag.


@ 11.5 kV bus

Ibase = 20 / (1.732 x 11.5) = 1004 A


Isc = Ib x Ipu = 6.655 x 1004 = 6681.92 84.65° A

Isc 1-ph max = 6.68 K

You might also like