Correlations for Convective Heat Transfer
1.) Forced Convection Flow Inside a Circular Tube
All properties at fluid bulk mean temperature (arithmetic mean of inlet and outlet
temperature).
Nusselt numbers Nu0 from sections 1-1 to 1-3 have to be corrected for temperature-
dependent fluid properties according to section 1-4.
1-1 Thermally developing, hydrodynamically developed laminar flow (Re <
2300)
Constant wall temperature:
                                                          (Hausen)
Constant wall heat flux:
                                                                  (Shah)
1-2 Simultaneously developing laminar flow (Re < 2300)
Constant wall temperature:
                                                        (Stephan)
                                                                                     1
Constant wall heat flux:
which is valid over the range 0.7 < Pr < 7 or if Re Pr D/L < 33 also for Pr > 7.
1-3 Fully developed turbulent and transition flow (Re > 2300)
Constant wall heat flux:
                                                      (Petukhov, Gnielinski)
                             where
Constant wall temperature:
For fluids with Pr > 0.7 correlation for constant wall heat flux can be used with
negligible error.
1-4 Effects of property variation with temperature
Liquids, laminar and turbulent flow:
Subscript w: at wall temperature, without subscript: at mean fluid temperature
Gases, laminar flow:
                                       Nu = Nu0
Gases, turbulent flow:
Temperatures in Kelvin
                                                                                    2
2.) Forced Convection Flow Inside Concentric Annular Ducts,
Turbulent (Re>2300)
                                          Dh = Do - Di
                                 All properties at fluid bulk
                                 mean temperature (arithmetic
                                 mean of inlet and outlet
                                 temperature).
Heat transfer at the inner wall, outer wall insulated:
                                            (Petukhov and Roizen)
Heat transfer at the outer wall, inner wall insulated:
                                              (Petukhov and Roizen)
Heat transfer at both walls, same wall temperatures:
                                                            (Stephan)
                                                                        3
3.) Forced Convection Flow Inside Non-Circular Ducts, Turbulent
(Re > 2300)
Equations for circular tube with hydraulic diameter
4.) Forced Convection Flow Across Single Circular Cylinders and
Tube Bundles
D = cylinder diameter, um = free-stream velocity, all properties at fluid bulk mean
temperature. Correction for temperature dependent fluid properties see section 4-4.
4-1 Smooth circular cylinder
                                                      (Gnielinski)
                         where
Valid over the ranges 10 < Rel < 107 and 0.6 < Pr < 1000
                                                                                      4
4-2 Tube bundle
                            Transverse pitch ratio
                           Longitudinal pitch ratio
                           Void ratio                for b > 1
                                             for b < 1
                            Nu0,bundle = fANul,0 (Gnielinski)
Nul,0 according to section 4-1 with                instead of Rel.
Arrangement factor fA depends on tube bundle arrangement.
 In-line arrangement:
                                                                     5
 Staggered arrangement:
4-3 Finned tube bundle
                          6
In-line tube bundle arrangement:
                                                            (Paikert)
Staggered tube bundle arrangement:
                                                            (Paikert)
4-4 Effects of property variation with temperature
Liquids:
Subscript w: at wall temperature, without subscript: at mean fluid temperature.
Gases:
Temperatures in Kelvin.
                                                                                  7
5.) Forced Convection Flow over a Flat Plate
                 All properties at mean film temperature
Laminar boundary layer, constant wall temperature:
                                                    (Pohlhausen)
valid for ReL < 2·105, 0.6 < Pr < 10
Turbulent boundary layer along the whole plate, constant wall temperature:
                                                         (Petukhov)
Boundary layer with laminar-turbulent transition:
                                                    (Gnielinski)
                                                                             8
6.) Natural Convection
All properties at
                                          L = characteristic length (see below)
                                   Nu0            "Length" L
Vertical wall                      0.67               H
Horizontal cylinder                0.36               D
Sphere                             2.00               D
For ideal gases:          (temperature in K)
                                                       (Churchill, Thelen)
valid for 10-4 < Gr Pr < 4·1014,
0.022 < Pr < 7640, and constant wall temperature
7.) Film Condensation
All properties without subscript are for condensate at the mean temperature
Exception:      = vapor density at saturation temperature Ts
                                                                                  9
7-1 Laminar film condensation
Vertical wall or tube:
                                          (Nusselt)
Tw = mean wall temperature
Horizontal cylinder:
                                           (Nusselt)
Tw = const.
7-2 Turbulent film condensation
For vertical wall
Re = C Am
Recrit = 350
                       turbulent film:   (Grigull)
8.) Nucleate Pool Boiling
Tw = temperature of heating surface
Ts = saturation temperature
Heat transfer at ambient pressure:
                                                       10
                                                                (Stephan and Preuكer)
' saturated liquid
'' saturated vapor
Bubble departure diameter
Angle      =    rad for water
           = 0.0175 rad for low-boiling liquids
           = 0.611 rad for other liquids
For water in the range of 0.5 bar < p < 20 bar and 104 W/m2 <    < 106 W/m2
the following equation may be applied:
                                                          (Fritz)
List of Symbols
cp        specific heat capacity at constant pressure
D, d      diameter
g         gravitational acceleration
h         mean heat transfer coefficient
          enthalpy of evaporation
H         height
k         thermal conductivity
L         length
          heat flux
T         temperature
u         flow velocity
          thermal diffusivity
          coefficient of thermal expansion
          dynamic viscosity
          kinematic viscosity
                                                                                        11
        density
        surface tension
Subscripts
h       hydraulic
i       inside
m       mean
o       outside
s       saturation
w       wall
Dimensionless numbers
Gr      Grashof number
Nu      mean Nusselt number
Pr      Prandtl number
Re      Reynolds number
                              12
References
   1. Churchill, S.W.: Free convection around immersed bodies. Chapter 2.5.7 of
       Heat Exchanger Design Handbook, Hemisphere (1983).
   2. Fritz, W.: In VDI-Wنrmeatlas, Düsseldorf (1963), Hb2.
   3. Gnielinski, V.: Neue Gleichungen für den Wنrme- und den Stoffübergang in
       turbulent durchstrِmten Rohren und Kanنlen. Forschung im Ingenieurwesen
       41, 8-16 (1975).
   4. Gnielinski, V.: Berechnung mittlerer Wنrme- und
       Stoffübergangskoeffizienten an laminar und turbulent überstrِmten
       Einzelkِrpern mit Hilfe einer einheitlichen Gleichung. Forschung im
       Ingenieurwesen 41, 145-153 (1975).
   5. Grigull, U.: Wنrmeübergang bei der Kondensation mit turbulenter
       Wasserhaut. Forschung im Ingenieurwesen 13, 49-57 (1942).
   6. Hausen, H.: Neue Gleichungen für die Wنrmeübertragung bei freier und
       erzwungener Strِmung. Allg. Wنrmetechnik 9, 75-79 (1959).
   7. Nusselt, W.: Die Oberflنchenkondensation des Wasserdampfes. VDI Z. 60,
       541-546 and 569-575 (1916).
   8. Petukhov, B.S.: Heat transfer and friction in turbulent pipe flow with variable
       physical properties. Adv. Heat Transfer 6, 503-565 (1970).
   9. Petukhov, B.S. and L.I. Roizen: High Temperature 2, 65-68 (1964).
   10. Pohlhausen, E.: Der Wنrmeaustausch zwischen festen Kِrpern und
       Flüssigkeiten mit kleiner Reibung und kleiner Wنrmeleitung. Z. Angew. Math.
       Mech. 1, 115-121 (1921).
   11. Shah, R.K.: Thermal entry length solutions for the circular tube and parallel
       plates. Proc. 3rd Natnl. Heat Mass Transfer Conference, Indian Inst. Technol
       Bombay, Vol. I, Paper HMT-11-75 (1975).
   12. Stephan, K.: Wنrmeübergang und Druckabfall bei nicht ausgebildeter
       Laminarstrِmung in Rohren und ebenen Spalten. Chem.-Ing.-Tech. 31, 773-778
       (1959).
   13. Stephan, K.: Chem.-Ing.-Tech. 34, 207-212 (1962).
   14. Stephan, K. and P. Preuكer: Wنrmeübergang und maximale
       Wنrmestromdichte beim Behنltersieden binنrer und ternنrer
       Flüssigkeitsgemische. Chem.-Ing.-Tech. 51, 37 (1979).
   15. VDI-Wنrmeatlas, 7th edition, Düsseldorf 1994.
                                                                                        13