0% found this document useful (0 votes)
132 views9 pages

HW #1 7th Ed PDF

Uploaded by

DeangeloSeguban
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
132 views9 pages

HW #1 7th Ed PDF

Uploaded by

DeangeloSeguban
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

G't; 't-'?

4) -It S~
H-W:ti=' I ('-; tj 'U.)
6.1 1. Active 6.6 Old technology:
2. Saturation 10- 3 = 2 x lO' J5 e VsEiVT
3. Active
4. Saturation VSE = 0.025 In ( ,.2 x10-3 )
, 15. = 0.673 V
10-
5. Active
6. Cutoff New technology:
10-3 2 x 1O-18eVllElVT
G h e EB junctions have a 4: 1 area ratio.
10-3 )
Ie = /seVBE/VT VBE = 0.025 In ( 2 x 10- 18 0.846 V

0.5 x 10- 3 lSI x

=> lSI = 4.7 X 10- 17 A


6.7 5 x 10- 3 I s eo,7 6 /Q,025 (I)
16
/s2 = 4Ln 1.87 x 10- A
Ie /se ,70/0,025
Q
(2)
Dividing Eq. (2) by Eq. (1) yields
6.3 Ie IseVsEIVT
Ie 5x
200 x 10- 6 = Ise 30
0,45 rnA
=> Is = 1.87 X 10- 11 A
For Ie = 5 f.LA,
For the transistor that is 32 times larger,
(3)
Is 32 x 1.87 x 10- 17
Dividing Eq. (3) by Eq. (1) yields
= 6 X 10- 16 A 10- 3
At VilE = 30 VT, the larger transistor conducts a
current of
VilE 0.76 + 0.025 In(1O-3 )
= 0.587 V
Ie 32 x 200 ILA = 6.4 rnA

At Ie = 1 rnA. the base-ernitter voltage of the


larger transistor can be found as
6.8 Ia 10 p.A
1 x 10- 3 = 6 x 1O~J6eVBE;VT

Ie = 800 ILA
3
Ix 10- ) Ie
VBE = VT In ( 1
6 x 10- 6
= 0.704 V Ii = - = 80
1/3

= 80 = 0.988

IS! AEI
6.4 - = - - =
200 x 200
250,000
Ii + I 81

IS2 A£2

Ie! ISlevYElIVT

6.9
Ie2 Is2 e VEn/ V,

For In = Iez we have


lSI
250,000
IS2

V ilE2 - V ilEI = 0.025 In(250,000) 6.10

0.31 V

6.5 let = 1O-13 e 700/25 0.145A 145 rnA

Iez = 1O-18e700/25 1.45 f1A


6.11 Ii = (1)
For the first transistor 1 to conduct a current of I-a
1,45 p.A, its VBE must be a -+ a + D.a
6
1.45 x 10- )
VBE1 0.025 In (
-' 10-13­

= 0,412 V
(2)
Chapter 6-2

Subtracting Eq. (1) from Eq. (2) gives 6.14 For i8 = 10 J..LA,

6fi
a+6a
~.~-- .. -- a
.. ~
Ie iE i8 = 1000 - 10 = 990 J..LA

a 6.a a
f! = Ie := 990 = 99

i8 10

6.fi (3)
- a - 6a)(l a)
iY = ~ =0.99

Dividing Eq. (3) by Eq. (1) gives Ii + 1 100

For in 20 J..LA,

ie = iE - iE = 1000 20 = 980 J..LA

For 6a 1, the second factor on the right-hand Ii = is;. = 980 = 49

side is approximately equal to f!. Thus in 20


49
6fJ : : :. f3 (6iY.) a = - = 0.98
Q.E.D. fi + 1 50

fJ a

For in = 50 J..LA,

613

For /1- := - 10% and Ii 100, ie = iE is 1000 50 950 J..LA

ie 950

-6a -10%
: : :. -~- = -0.1% 13
iE 50

= 19
a 100
19

a 0.95

l'i + 1 20

6.12 Transistor is operating in active region:


13 = 50 -4300 EseeTa~
In = 10 J..LA
6.16 First we determine Is, f3, and a:

Ie = filn 0.5 rnA -4 3 rnA


1 x 10"3 = fse 700/25

Ie = (f3 + l)18 0.51 rnA -4 3.01 rnA


=} Is = 6.91 X 10- 16 A

Maximum power dissipated in transistor is


Ie 1 rnA

fi 100

In x 0.7 V + Ie x Ve 18 10 J..LA

100
0.01 x 0.7 +3 x 10:::::. 30mW a = = --. = 0.99
li+l101

Then we can determine ISE and IsB :

6.13 ie IsevBE/VT
5 xlO-15eO.7/0.025 = 7.2 rnA
ISE Is 6.98 X 10- 16 A

= IiIs = 6.91
.. 7.2 7.2

iB w1ll be m the range 50


rnA to 200 rnA, that is, IS8 X 10-
18
A
144 IlA to 36 J..LA
The figure on next page shows the four
iE will be in the range (7.2 + 0.144) rnA to large-signal models, corresponding to Fig. 6.5(a)
(7.2 + 0.036) rnA, that is, 7.344 rnA to 7.236 rnA. to (d), together with their parameter values,

This table belongs to Problem 6.15.


Chapter 6-9

G (a)

8) Ie a 0.26
0.255 mA
+1.5 Y

2.7 kn
Ve 1.5 0,255 X 2.7 0.81 V
@In IE
---3>--

..L +
-=- 0.8V
CD r
IE
-O.g - (-1.5)
2,7
0.26mA
tr 2.7kn
VE =-0,8V(D

15 V

1.5 V
(b)
- 1.5 - 0.8
I E- 2
= 0.35 rnA -'-0.8Y G)

Vc -1.5 + 2 x 0.343
f7\ Ie ~ x 0,35
0' f -0.81 Y G)
\V = 0.98 x 035
0= 0.343

-1.5V
(c) +3Y
3 - 1.8 .I.
IE 10 = 0,12mA 'f
10kH

+1 V CD 1.8 Y CD
A O,8Y
..0­
le/50 = 2.4 f.LA

o Ie =
=
0' X 0.12

0,98 x 0,12

=0,118mA

-'-3Y
(d)
t
Ve 3 0,147 x 8,2 1.8 V
L5Y
~

3 f.LA ---3>-­ +
Is
0.8V
V CD 1.5 - 0.8 = 0.7 CD
IE=~
4.7

0.7
4.7 = ° 15mA
., -=­

In all circuits shown in P6,35, we assume indicated on the conesponding circuit diagrams:
active-mode operation and that this is the the order of the steps is shown by the circled
case at the end of the solution, The solutions are numbers,
Chapter 6-16

Ga) Vs=OV (c)


-1-5 V
+5V

~
1.3 = 2.7 rnA ®
......---.--DVe = 2.7 X I
2.7V®

~0.7V CD
1 kO.

~5V

Figure 1
Figure 3

The analysis is shown on the circuit diagram in


Figure 3 shows the transistor at the edge of
Fig. L The circled numbers indicate the order of
saturation. Here VCE = 0.3 V and
the analysis steps.
Ie ale :::::: Ie. A node eqnation at the emitter
(b) The transistor cuts off at the value of VB that gives
causes the 2-mA current of the current source
h = 2 + VB 0.7 VB + 1.3 rnA
feeding the emitter to flow through the l-krt
resistor connected between the emitter and A node equation at the collector gives
ground. The circuit under these conditions is
shown in Fig. 2. Ie = 4 (VB 0.4) = 4.4 VB rnA

Imposing the condition Ie :::::: Ie gives


+5V
4.4 VB VB + 1.3
=} VB +1.55 V

4mA Correspondingly,

~~F'OVc +4V VE +0.85 V

Ve = +1.15 V
IkD.

VB = -1.5V 6.55

0.1 mA t
lkD.
-5V
VB = +1.2 V
Figure 2

Observe that VE = -2 rnA xl kQ -2 V,


IkD.
h = 0, and VB = VE + 0.5 1.5 V. Since
Ie 0, all the 4 rnA supplied by the current
source feeding the collector flows through the
collector l-kQ resistor, resulting in Ve +4 V Figure 1
Chapter 6-20 f,5

~
~ +3V (c) +3V

Ie ==.0.5 mAt+ 3.6 kf!


t
V7 = 3 - 0.5 X 3.6

~
V2=3-0'5X3'6
= +L2V
43 kfl -r1.2 V

JO~
-1 ",,0 OV
8
4.7kfl
I ,}IE
0.5 rnA t 4.7
-3V 0.5 rnA

(b) (d)
+3V
+3V

t~'2kD v8-
' - 0..T),O..7

-
V, 3 - 0.5 X 3.6 +0.75 V
1,45 V
= +1.2 V t'" OmA

V9 =, -3+ 0.25 x 10
VE -0.7V -O.5V
lOW
+4.7kfl .
t
! 14 = -0.7 - (-3) = 0.5 rnA
t 4.7 --3 V
-3V

Ce) +3V

1
480
0.0125 rnA
t "--~= = 0.25 rnA

VIl = 0.75 + 0.7 1.45 V

VIO = -3 + 0.0125 X 300


= +0.75 V
300kfl

-3V

For the solutions and answers to parts Ca) through


(e), see the corresponding circuit diagrams.
Chapter 7-19
f)
Substituting for i from Eq. (2) into Eq. (I) yields @ R e f e r to the circuit of Fig. P7.125.
CI(VBS - VBE )
Ie = ------O~--

Thus RE +
fl+l
Vo gmR~
where
V'ig 1 + flgmR~
R2 15
I/fl VBB Vee - - - = 15 x - - - = 5.357 V
R2 + RI 15 + 27
RB = Rl !i R2 = 151127 = 9.643 kQ
_ 0.99(5.357 -- 0.7) _ 1 8
I+(RdR 1) Ie - 9.643 - . 5 mA
Q.E.D (3)
1 + 1 + RdR 1­ 2.4+ 101

, gmR~

Ie 1.85 mA
74 rnA/V
The input resistance Rin can be obtained as gm = Vr = 0.025 V
follows:
100
1.35 kQ
gm 74
Substituting for i from Eq. (1) yields Replacing the BJT with its hybdd-7T model
results in the equivalent circuit shown at the
bottom of the page:

Rin Rl II R211 rn RR II r;r 9.643 il1.35


and replacing by the inverse of the gain
Va
= 1.18kQ
expression in Eq. (3) gives
VIi Rin 1.18
- - - =0.371 V/V
Rin = RD[ + T+ (;dRl) ] Vsig Rill + R,lg 1.18 + 2

Rin 1 [ 1+ RI ] Q.E.D
gm Rj +R2 -74(39112) = -97.83
(d) Substituting numerical values:
110 = -0.371 x 97.83 -36.3 V IV
'Vsig

1 + 1 x (82.4 111000) 7.126 Refer to the circuit of P7.125.


2 DC design:
-._-:::;-- = L95 VIV

1 + 76.13
VB = 5 V, VBE = 0.7 V

Note that the gain::::: 1 +


Rl
-=R,
= 2, similar to that
VE

For
= 4.3 V

of an op amp connected in the noninverting


configuration! h = 2mA, 2.15 kQ

f[ 05
1 + 1 x (82.41: 1000) -c:-_.--:--: ] 5
25 kQ
0.2
= 39.1 kQ
h 2
IR = - - = - ::::: 0.02 rnA
{3+1101
This figure belongs to Problem 7.125.
R sig

+
V 1T rw g",v"rr Re RL

- - 1- 1-
Chapter 7-52

This figure belongs to Problem 7.130.


,1

G e f e r to the circuit of Fig. 1'7.130.


Ie 0.1 rnA
gm = V c::: 0.025 V = 4 mA/V
T
(a) DC analysis of each of the two stages:
Note that the emitter has a resistance
Ro 47 Re 250 Q.
V --"-­ ---=4.8V
ee Rl +R2 ­ 100+ 47

Rin 200 kQ I (fJ + 1)(re + R,,)


RB=R11IR2 1001147=32kQ

= 200 11[101 x (0.25 + 0.25)]


200 I 50.5 40.3 kQ
'{)h Rio 40.3
- - - = 0.668 V IV
0.7 V'ig Rio + R,ig 40.3 + 20
--~~ = 0,97 rnA c::: rnA

Vo Total resistance in collector


3.9+­ - =-Ci
101 Vb Total resistance in emitter
Ie = alE c::: 1 rnA 20120
-20 V/V
0.25 + 0.25
Ve Vee - [eRe = 15 1 x 6.8 = 8.2 V
71
(b) See figure above. G" 0 = -0.668 20 -13.4 V IV
VEig

Ie For Vbe to be limited to 5 mV, the signal between


gm = - 40mA/V
VT base and ground will be 10 m V (because of the
5 m V across Re). The limit on Vs;g can be obtained
r" f3 = 2.5 kQ by dividing the 10 mV by

(c) RillI Rl II R211 r" Rs II rJ( = 32112.5 WmV


=15mV
0.668
= 2.32kQ
Correspondingly, at the output we have
VbI Rin 2.32
- - - = 0.32 V IV 13.4 x 15 = 200mV = 0.2 V
Vsig Kn + 2.32 + 5

(d) Rin2 Rl II R211 Y" Rio! = 2.32 kQ

= -40(6.8112.32) = -69.2 V IV

= -40(6.8112) = -61.8 V jV
Vo Va 11h2 Vbl
(f ) - = x-x -61.8 200kD
Vsig Vb2 Vbi Vsig

x 69.2 X 0.32 1368.5 V IV

7.131 Refer to the circuit in Fig. 1'7.131:

h = 0.1 rnA
25mV
= 250Q
0.1 rnA Figure]
Chapter 7-53

From 1 we see that

Ie 0.495 rnA

Vc = IB X 200 kQ +h x 0.2 kQ + VBE


= 0.005 x 200 + 0.5 x 0.2 + 0.7
= 1.18 V
(b)

v" - v, ~,
200

200kfi

-Vsig
Q 0.1 leQ
At the output node,
Vo = -ai,(5 !I 100)
0.1 (5 i1100)

5 II 100
1J ig = a 0.1 ~ 47.6 V IV
Figure 2 s

From Fig. 2, we have


0.495
0.025 ::::: 20 rnA/V

2.3
-~~=0.78mA
1 +-.
51
VE = !eRE = 0.78 V
0.25 kQ
VB = VE +0.7 = 1.48 V
Node equation at the output:
I') 200:
Vo • ai + v" - v, _ 0
20 200­ 2.3
T
h = ---== = 1.54 rnA
1 •
Vo + 0.99 x 4v +~ - 2 = 0 T 201
20 ' 200 200
1 VE = hRE 1.54 V
VO (2 0+ ~O) = -V; (4 x 0.99 - 2~()) VB = VE + 0.7 2.24 V
v
o = -71.9 V/V
(b) Rill 100 Ii (fJ + 1)[re + (\ ,II)]
Vi

100" (/') + 1)(r, + 0.5)


fJ = 50:
7,133 Refer to the circuit in Fig. P7 .133.
VT 25 mV
The de emitter current is equal to 0.5 rnA, and r, = - = --- 32.1 Q
h 0.78mA
Ie a h ::::: 0.5 rnA; also,
Rill 100" [51 x (0.0321 + 0.5)J
V 25 mV
re = -T = - - = 50 Q 21.3 kQ
h 0.5 mA
Rill re = 50 Q fJ = 200;
VI' 25 mV
re = - = -'-- = 16.2 Q
Iii 1.54 rnA
Chapter 7-54

~Lp;I~
~Rn = 100 II [201 x (0.0162 + 0.5)] 130.4
= 0.964 x 65.2
Vh 2
50.9 kQ
62.9 A/A
• 100

Rout 3.3!1 (re + fJ + 1

Va (l111) 500
- - - e r e in Q) 100)
Vh (1 111) + re 500 + r" = 3.3 II ( 0.0463 + Wi
{) 50:
= 0.789 kQ 789 Q
Vb
21.3 = 0.68 V V
Vsig 21.3 + 10 /
7.136 Refer to the circuit in Fig. P7.136.
Va 500
0.94 V/V For dc analysis, open-circuit the two coupling
Vb 500 + 32.1
capacitors. Then replace the 9-V source and the
Va
0.68 X 0.94 0.64 V/V two 20-kQ resistors by their Th6venin equivalent,
Vsig namely, a 4.5-V source and a 10-kQ series
fJ = 200: resistance. The latter can be added to the lO-kQ
resistor that is connected to the base. The result is
50.9 the circuit shown in 1, which can be used to
-=-50--.9-+-1-0 = 0.836 V /V
Vsig calculate IE.
Vo 500
= 0.969 V /V
50O + 16 .2 +9V

+4~

Va
- = 0836 X 0,969 = 0.81 V /V
Vsig

7.135 Refer to the circuit in Fig. P7.135.

h=
3 0.7
11£
[nn
3.3 + fJ + 1
2.3

-----,1""'0"0:"0 = 0.54 rnA

Figure 1
3.3 + 101

25mV
4.5 - 0.7
- - - =46.3Q (a) Ie
0.54 rnA 20

2+-­

Rin = (fJ + l)[re + (3.3 12)] fi+l


101 X (0.0463 + 1.245) 3.8
1.73 rnA
20
= BOA kQ 2+
Wi
13004 Ie ale = 0.99 x 1.73 rnA
13004 + 100
= 1.71 rnA
0.566 V/V Ie
gm = V 6804 mA/V
Va 3.3112 T

Vb (3.3 112) + re re VT = 25 mV = 14.5 Q


= 0.964 V/V Ie 1.73 rnA
= 0.0145 kQ
~ = 0.566 0.964 = 0.55 V IV
Vsig r" = (fJ + l)re = 101 x 0.0145
1.4645 kQ
2kQ
. Vi l)b
(b) Replacing the BJT with its T model (without
l[=- ro) and replacing the capacitors with short circuits
Rn BOA kQ

You might also like