Precalculus                            Summer Algebra Review                                                                 Page 1 of 10
The Laws and Properties of Exponents
      Operation                   Action                           Law/Property                                  Example(s)
Multiplication           Add exponents of the                       a m a n = a m+n                               x 3x 4 = x 7
                         same base
Division                 Subtract exponents of                       am                                               x7
                         the same base                                  = a m−n                                          = x4
                                                                     an                                               x3
Power to a Power         Multiply exponents
                                                                    (a ) = a
                                                                       m n          mn
                                                                                                            (x ) = x    4 3           12
Power to a Power of a    Multiply exponents                         (ab)       = a nb n                 (3x ) = 3 x = 27 x
                                                                                                              2 3
                                                                         n                                                    3   6            6
Product
                                                                     ⎛ a ⎞ an                                     ⎛ y ⎞ y3
                                                                           n                                             3
Power to a Power of a    Multiply exponents
Quotient                                                             ⎜ ⎟ = n                                      ⎜ ⎟ = 3
                                                                     ⎝b⎠ b                                        ⎝x⎠ x
Zero Exponent                                                       a 0 = 1, a ≠ 0                      5 0 = 1, (2 x 3 y 2 ) = 1
                                                                                                                                           0
Negative Exponents       Take reciprocal of the                                1                                        1
                         base and change the                        a −n =                                  x −3 =
                                                                               an                                       x3
                         sign of exponent to
                         positive
                                                                    a −n b n                                x −3 y 4
                                                                        =                                       =
                                                                    b −n a n                                y−4 x 3
                                                                        −n
                                                                    ⎛a⎞  ⎛b⎞
                                                                                      n                          −3
                                                                                                            ⎛x⎞  ⎛ y ⎞ y3
                                                                                                                      3
                                                                    ⎜ ⎟ =⎜ ⎟                                ⎜ ⎟ =⎜ ⎟ = 3
                                                                    ⎝b⎠  ⎝a⎠                                ⎝y⎠  ⎝x⎠ x
Simplify with only positive exponents.
1.   (3x )(4 x )
          3         5
                                 2.
                                       x5 y3                                             3.   (x y )
                                                                                                3 2 4
                                       x2 y
4. (2 x 3 y 2 )                     ⎛ 2x 3 ⎞                                             6. (5x 0 y 3 )
                4                                  3                                                    2
                                 5. ⎜ 2 ⎟
                                    ⎝ 3y ⎠
7.
     x −5 y 4                       ⎛ 3x 2 ⎞
                                 8. ⎜ 3 ⎟
                                                   −3
                                                                                         9.   (x )(3x )(4x )
                                                                                                5       2           7
      w −3                          ⎝ y ⎠
10. (2x 4 y−3 )                          (3y )(2y )
                    −2                                                                                      −2
                                               3             2 3                             ⎛ 3x 5 y 4 ⎞
                                 11.                                                     12. ⎜ 0 −3 ⎟
                                            (y )       4 3                                   ⎝x y ⎠
Precalculus   Summer Algebra Review   Page 2 of 10
Precalculus                         Summer Algebra Review                                                                         Page 3 of 10
The Laws and Properties of Radicals
      n
In        a , n is the index.
Operation                       Law                   Example                                  Law                         Example
  Product                 n
                              ab = n a n a        50 = 25 ⋅ 2 = 5 2                     n
                                                                                            a n a = n ab                   2⋅ 3= 6
Same index
 Quotient                              a na            5 35 35                              n
                                                                                                a na       200   200
Same index                     n        =          3    =   =                                     =            =     = 100 = 10
                                       b nb            8 38   2                             n
                                                                                                b   b       2     2
     Radical                  m n
                                       a = mn a        3
                                                           64 = 6 64 = 2
     within a
     Radical
                      n
Properties of             a , where n is a positive integer.
                                       Property                            Examples when the index equals the exponent
          ( a ) = a if ( a ) is a real number                              ( 5) = 5                            ( −8 ) = −8
                  n                                                                 2                                      3
              n                    n                                                                               3
(1)
(2)       n
              a n = a if a ≥ 0                                                 5 2 =5                          3
                                                                                                                   23 = 2
              a n = a if a < 0 and n is odd                                    (−2) = − 2                      (−2)        = −2
          n                                                                             3                              5
(3)                                                                        3                               5
              a n = a if a < 0 and n is even                                   (−3)         = −3 =3                (−2)    = −2 = −2
          n                                                                             2                              4
(4)                                                                                                        4
Additional Examples
Simplify each radical. Assume all variables represent positive real numbers.
Example 1a: Using Perfect Squares                                          75
                                                                           75 = 25 ⋅ 3 = 5 3
Example 1b: Using Prime Factorization                                          75
                                                                           75 = 5 2 ⋅ 3 = 5 3
                                                                       3
Example 2a: Using Perfect Cubes                                            320
                                                                       3
                                                                           320 = 3 64 ⋅ 5 = 3 64 ⋅ 3 5 = 4 3 5
                                                                       3
Example 2b: Using Prime Factorization                                      320
                                                                       3
                                                                           320 = 3 2 6 ⋅ 5 = 3 2 6 ⋅ 3 5 = 4 3 5
Example 3:                                                                 3x 2 y 3 ⋅ 6 x 5 y
                                                                           3x 2 y 3 ⋅ 6 x 5 y = 18 x 7 y 4 = 3x 3 y 2 2 x
Precalculus                            Summer Algebra Review                              Page 4 of 10
Simplify, remove radicals if at all possible. Assume all variables represent positive real numbers.
1. 98                                      3                               27
                                  2.                                 3.
                                           4                               36
4. 16x 8                          5. 3 125                           6. 3 108
7. 5 −64                          8.   4
                                           81x 5 y 8                 9. 3 16xy 2 ⋅ 3 3x 2 y 2
In problems 10-15 determine the exponent needed to remove the radical symbol
10.       5 ⋅ 5? = 5              11.      7
                                               4 2 ⋅ 7 4? = 4        12.   5
                                                                               32 ⋅ 5 3? = 3
13.   8
          x 3 ⋅ 8 x? = x          14.      3
                                               y ⋅ 3 y? = y          15.   5
                                                                               z 4 ⋅ 5 z? = z
Precalculus                                          Summer Algebra Review                                                 Page 5 of 10
Multiplication of Polynomials
Example 1:            Distributive Property               5x (2x − 3)
                                                          5x (2x − 3) = 10x 2 −15x
Example 2:           Multiplying binomials                (4x + 5)(3x − 2)
                                                          (4 x + 5)(3x − 2) = 12x 2 − 8x +15x −10 = 12x 2 + 7x − 10
Product Formulas
                           Formula                                                                   Example
                    (x + y)(x − y) = x 2 − y2                                                 (x + 5)(x − 5) = x 2 − 25
                                  or                                                                      or
                    (x − y)(x + y) = x 2 − y2                                                 (x − 5 )(x + 5) = x 2 − 25
                    (x + y) = x 2 + 2xy + y 2                      (2x + 3) = (2x ) + 2 (2x )(3) + (3) = 4x 2 +12x + 9
                           2                                                  2                 2                   2
                    (x − y) = x 2 − 2xy + y 2                      (2x − 3) = (2x ) − 2 (2x )(3) + (3) = 4x 2 −12x + 9
                           2                                               2       2                  2
                (x + y) = x 3 + 3x 2 y + 3xy 2 + y 3                (2x + 3) = (2x ) + 3 (2x ) (3) + 3 (2x )(3) + (3)
                       3                                                     3       3        2                2     3
                                                                                   = 8x 3 + 36x 2 + 54x + 27
                (x − y)    = x 3 − 3x 2 y + 3xy 2 − y 3                (2x − 3) = (2x ) − 3 (2x ) (3) + 3 (2x )(3) − (3)
                       3                                                       3       3          2               2     3
                                                                                              = 8x 3 − 36x 2 + 54x − 27
Multiply, use product formulas when they apply.
1. 3x (2x 2 + 5x − 3)                                             2.    (x + 5)(x + 7)
3.   (3x + 4 )(2x − 7)                                            4.    (x − 3)
                                                                                  2
     (x + 5)                                                            (3x − 2)
            2                                                                         2
5.                                                                6.
     (x + 3)                                                      8. (2x + 5 )
            3                                                                         3
7.
     (x − 4 )                                                            (3x −1)
               3                                                                          3
9.                                                                10.
Precalculus   Summer Algebra Review   Page 6 of 10
Precalculus                                 Summer Algebra Review                                            Page 7 of 10
Factoring Polynomials
Example 1:    Greatest Common Factor                       15x 3 − 25x
                                                           15x 3 − 25x = 5x (3x 2 − 5 )
Examples 2 through 4 are Trinomial Factoring of ax 2 + bx + c where a = 1
Example 2:    Factors of Same Signs                        x 2 + 7x +12
                                                           x 2 + 7x + 12 = (x +   )(x + )
                                                           x 2 + 7x + 12 = (x + 3 )(x + 4 )
Example 3:    Factors of Same Signs                        x 2 − 7x +12
                                                           x 2 + 7 x + 12 = (x −       )(x − )
                                                           x   2
                                                                   + 7 x + 12 = (x − 3 )(x − 4 )
Example 4:    Factors of Different Signs                   x 2 − 2x −15
                                                           x 2 − 2 x − 15 = (x −   )(x + )
                                                           x 2 − 2 x − 15 = (x − 5 )(x + 3 )
Examples 5: Trinomial Factoring of ax 2 + bx + c where a ≠ 1, a ≠ 0
              Factors of Same Signs                        6x 2 +19x +10
              Factors of a ⋅ c with sum of 19              6 ⋅10 = 60 , 4 +15 = 19
              Rewrite trinomial as                         6x 2 +19 x +10 = 6 x 2 + 4 x +15 x +10
              Group as two binomials                       6 x 2 +19 x +10 = (6 x 2 + 4 x )+ (15 x +10 )
              Factor Greatest Common Factor                6x 2 +19x +10 = 2x (3x + 2 ) + 5 (3x + 2 )
              Factor Greatest Common Factor                6x 2 +19x +10 = (3x + 2 )(2x + 5 )
Factoring Formulas
   Name                  Formula                                                        Example
Difference         x − y = (x + y )(x − y )
                    2     2
                                                                   9 x − 16 = (3x ) − (4 ) = (3x + 4 )(3x − 4 )
                                                                      2             2       2
of Two
Squares
Difference     x 3 − y 3 = (x − y )(x 2 + xy + y 2 )   8x 3 − 27 = (2x ) − (3) = (2x − 3)⎡⎣(2x ) + (2x )(3) + (3) ⎤⎦
                                                                        3     3                 2                2
of Two
Cubes                                                                        = (2 x − 3)(4 x 2 + 6 x + 9 )
Sum            x 3 + y 3 = (x + y )(x 2 − xy + y 2 )   8x 3 + 27 = (2x ) + (3) = (2x + 3)⎡⎣(2x ) − (2x )(3) + (3) ⎤⎦
                                                                        3     3                 2                2
of Two
Cubes                                                                        = (2 x + 3)(4 x 2 − 6 x + 9 )
Precalculus                        Summer Algebra Review           Page 8 of 10
Problems for Factoring Polynomials
Factor each completely.
1. 21x + 14                                   2. x 2 +12 x + 35
3. x 2 −10 x + 24                             4. x 2 − 4 x − 21
5. x 2 − 3x − 40                              6. x 2 +13x + 30
7. x 2 −1                                     8. 25 x 2 − 49 y 2
9. 2 x 2 − 98                                 10. 6 x 2 +13x + 5
11. 3x 2 −11x + 10                            12. 12 x 2 + x − 6
13. x 3 − 8                                   14. x 3 −125
15. x 3 + 27                                  16. 8 x 3 +125
Precalculus                             Summer Algebra Review                                  Page 9 of 10
Fractional Expressions
A fractional expression is a quotient of two algebraic expressions. As in any fraction, the denominator
may not equal zero, division by zero is not permitted. A special case of fractional expressions is the
quotient of two polynomials, which is referred to as a rational expression.
Follow these three steps in simplifying fractional expressions and rational expressions.
       Step 1          Factor the numerator and the denominator if possible
       Step 2          Determine any values that would make the denominator equal to zero.
       Step 3          Remove any factors of one, factors that are the same in the numerator and
                       denominator.
Example 1:      Simplify the fractional expression and determine any restricted values.
                                                      x 2 + 3x − 10
                                                         x 2 − 25
                                                      x 2 + 3x −10 (x + 5 )(x − 2 )
       Step 1 Factor                                              =
                                                         x 2 − 25   (x + 5)(x − 5)
       Step 2 Determine Restricted Values             x ≠ ±5
                                                      x 2 + 3x −10 (x + 5 )(x − 2 ) (x − 2 )
       Step 3 Remove Factors of One                               =                =
                                                         x 2 − 25   (x + 5)(x − 5) (x − 5)
Example 2:      Simplify the fractional expression and determine any restricted values.
                                                      3x 2 − 5 x − 2
                                                      x 2 + 3x − 10
                                                      3x 2 − 5 x − 2 (3x +1)(x − 2 )
       Step 1 Factor                                                =
                                                      x 2 + 3x −10 (x + 5 )(x − 2 )
       Step 2 Determine Restricted Values             x ≠ −5, x ≠ 2
                                                      3x 2 − 5 x − 2 (3x +1)(x − 2 ) (3x +1)
       Step 3 Remove Factors of One                                 =               =
                                                      x 2 + 3x −10 (x + 5 )(x − 2 ) (x + 5 )
Precalculus                            Summer Algebra Review               Page 10 of 10
Problems for Fractional Expressions
Simplify each if possible and state any restrictions.
1.
     (x + 2)(x − 4 )                                2.
                                                           5x + 20
     (x + 2)(x + 5)                                      x + 10x + 24
                                                           2
     x 2 + 13x + 30                                      x 2 + 12 x + 35
3.                                                  4.
          x2 − 9                                         x 2 − 3x − 40
         x 2 − 49                                        x 3 −125
5.                                                  6.
     x 2 + 14x + 49                                      x 2 − 25