0% found this document useful (0 votes)
39 views10 pages

Studiul Cinematic Determinarea Functiilor de Pozitie Ale Mecanismului de Suspensie

This document describes determining the position functions of a suspension mechanism. It contains equations relating the position of different bodies in the mechanism. The document contains equations for 4 bodies relating their x and y coordinates based on angle parameters. It also contains one equation relating the x and y coordinates of bodies 3 and 4, and one final equation relating bodies 1 and 4. Numerical values for angle parameters are provided to enable calculating the position functions.

Uploaded by

Cristi Spatariu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views10 pages

Studiul Cinematic Determinarea Functiilor de Pozitie Ale Mecanismului de Suspensie

This document describes determining the position functions of a suspension mechanism. It contains equations relating the position of different bodies in the mechanism. The document contains equations for 4 bodies relating their x and y coordinates based on angle parameters. It also contains one equation relating the x and y coordinates of bodies 3 and 4, and one final equation relating bodies 1 and 4. Numerical values for angle parameters are provided to enable calculating the position functions.

Uploaded by

Cristi Spatariu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 10

STUDIUL CINEMATIC DETERMINAREA FUNCTIILOR DE

POZITIE ALE MECANISMULUI DE SUSPENSIE

Pentru corpul 1

𝑋𝐴1 = 0

𝑌𝐴1 = 0

𝑋𝐹1 = −72,88

𝑌𝐹1 = 318,85
Pentru corpul 2

𝑋 (2)𝐴2 = 0

𝑌 (2)𝐴2 = 0

𝑋 (2) 𝐵2 = 0

𝑌 (2) 𝐵2 = 191,31

𝑋 (2) 𝐶2 = 18,22

𝑌 (2) 𝐶2 =132,09

𝑋𝐴1 ≠ 𝑋
Pentru corpul 3

𝑋(3) 𝐵3 = 0

𝑌(3) 𝐵3 = 0

𝑋(3) 𝐷3 = 118,43

𝑌(3) 𝐷3 = 0
Pentru corpul 4

𝑋(4) 𝐶4 = 0

𝑌(4) 𝐶4 = 0

𝑋(4) 𝑃4 =65,59

𝑌(4) 𝑃4 =0

𝑋(4) 𝐸4 =9,11

𝑌(4) 𝐸4 = 14,48

𝑋(4) 𝐺4 =200,42

𝑌(4) 𝐺4 = 0
1-2 R⇾ 2 ecuatii
𝐴1 = 𝐴2
𝐹1 𝑅 : 𝑋𝐴1 = 𝑋𝐴2

𝐹2 𝑅 : 𝑌𝐴1 = 𝑌𝐴2
(1) (1) (1)
𝑋𝐴1 𝑋01 𝑐𝑜𝑠𝜑1 −𝑠𝑖𝑛𝜑1 𝑋𝐴1 𝑋01 +𝑋𝐴1 𝑐𝑜𝑠𝜑1 − 𝑌𝐴1 𝑠𝑖𝑛𝜑1
[ ]=[ ]+[ ][ ]=[ ]
𝑌𝐴1 𝑌01 𝑠𝑖𝑛𝜑1 𝑐𝑜𝑠𝜑1 𝑌 (1) 𝑌01 +𝑋 (1) 𝑠𝑖𝑛𝜑 + 𝑌 (1) 𝑐𝑜𝑠𝜑
𝐴1 𝐴1 1 𝐴1 1

(2) (2) (2)


𝑋𝐴2 𝑋02 𝑐𝑜𝑠𝜑2 −𝑠𝑖𝑛𝜑2 𝑋𝐴2 𝑋02 +𝑋𝐴2 𝑐𝑜𝑠𝜑2 − 𝑌𝐴2 𝑠𝑖𝑛𝜑2
[ ]=[ ]+[ ][ ]=[ ]
𝑌𝐴2 𝑌02 𝑠𝑖𝑛𝜑2 𝑐𝑜𝑠𝜑2 𝑌 (2) 𝑌02 +𝑋 (2) 𝑠𝑖𝑛𝜑 + 𝑌 (2) 𝑐𝑜𝑠𝜑
𝐴2 𝐴2 2 𝐴2 2

(1) (1) (2) (2)


𝐹1 𝑅 ∶ 𝑋01 +𝑋𝐴1 𝑐𝑜𝑠𝜑1 − 𝑌𝐴1 𝑠𝑖𝑛𝜑1 − 𝑋02 − 𝑋𝐴2 𝑐𝑜𝑠𝜑2 + 𝑌𝐴2 𝑠𝑖𝑛𝜑2 = 0
(1) (1) (2) (2)
𝐹2 𝑅 ∶ 𝑌01 +𝑋𝐴1 𝑠𝑖𝑛𝜑1 + 𝑌𝐴1 𝑐𝑜𝑠𝜑2 − 𝑌02 − 𝑋𝐴2 𝑠𝑖𝑛𝜑2 − 𝑌𝐴2 𝑐𝑜𝑠𝜑2 = 0

2-3 R⇾ 2 ecuatii
𝐵1 = 𝐵2
𝐹3 𝑅 : 𝑋𝐵2 = 𝑋𝐵3

𝐹4 𝑅 : 𝑌𝐵2 = 𝑌𝐵3
(2) (2) (2)
𝑋𝐵 𝑋0 𝑐𝑜𝑠𝜑2 −𝑠𝑖𝑛𝜑2 𝑋𝐵2 𝑋0 +𝑋𝐵2 𝑐𝑜𝑠𝜑2 − 𝑌𝐵2 𝑠𝑖𝑛𝜑2
[ 2] = [ 2] + [ ] [ (2) ]=[ 2 ]
𝑌𝐵2 𝑌02 𝑠𝑖𝑛𝜑2 𝑐𝑜𝑠𝜑2 𝑌 𝑌02 +𝑋 (2) 𝑠𝑖𝑛𝜑 + 𝑌 (2) 𝑐𝑜𝑠𝜑
𝐵2 𝐵2 2 𝐵2 2

(3) (3) (3)


𝑋𝐵 𝑋0 𝑐𝑜𝑠𝜑3 −𝑠𝑖𝑛𝜑3 𝑋𝐵3 𝑋0 +𝑋𝐵3 𝑐𝑜𝑠𝜑3 − 𝑌𝐵3 𝑠𝑖𝑛𝜑3
[ 3] = [ 3] + [ ] [ (3) ]=[ 3 ]
𝑌𝐵3 𝑌03 𝑠𝑖𝑛𝜑3 𝑐𝑜𝑠𝜑3 𝑌 𝑌03 +𝑋 (3) 𝑠𝑖𝑛𝜑 + 𝑌 (3) 𝑐𝑜𝑠𝜑
𝐵3 𝐵3 3 𝐵3 3
(2) (2) (3) (3)
𝐹3 𝑅 ∶ 𝑋02 +𝑋𝐵2 𝑐𝑜𝑠𝜑2 − 𝑌𝐵2 𝑠𝑖𝑛𝜑2 − 𝑋03 − 𝑋𝐵3 𝑐𝑜𝑠𝜑3 + 𝑌𝐵3 𝑠𝑖𝑛𝜑3 = 0
(2) (2) (3) (3)
𝐹4 𝑅 ∶ 𝑌02 +𝑋𝐵2 𝑠𝑖𝑛𝜑2 + 𝑌𝐵2 𝑐𝑜𝑠𝜑2 − 𝑌03 − 𝑋𝐵3 𝑠𝑖𝑛𝜑3 − 𝑌𝐵3 𝑐𝑜𝑠𝜑3 = 0

2-4 R⇾ 2 ecuatii
𝐶2 = 𝐶4
𝐹5 𝑅 : 𝑋𝐶2 = 𝑋𝐶4

𝐹6 𝑅 : 𝑌𝐶2 = 𝑌𝐶4
(2) (2) (2)
𝑋𝐶 𝑋0 𝑐𝑜𝑠𝜑2 −𝑠𝑖𝑛𝜑2 𝑋𝐶2 𝑋0 +𝑋𝐶2 𝑐𝑜𝑠𝜑2 − 𝑌𝐶2 𝑠𝑖𝑛𝜑2
[ 2] = [ 2] + [ ] [ (2) ]=[ 2 ]
𝑌𝐶2 𝑌02 𝑠𝑖𝑛𝜑2 𝑐𝑜𝑠𝜑2 𝑌 𝑌02 +𝑋 (2) 𝑠𝑖𝑛𝜑 + 𝑌 (2) 𝑐𝑜𝑠𝜑
𝐶2 𝐶2 2 𝐶2 2

(4) (4) (4)


𝑋𝐶4 𝑋04 𝑐𝑜𝑠𝜑4 −𝑠𝑖𝑛𝜑4 𝑋𝐶4 𝑋04 +𝑋𝐶4 𝑐𝑜𝑠𝜑4 − 𝑌𝐶4 𝑠𝑖𝑛𝜑4
[ ]=[ ]+[ ][ ]=[ ]
𝑌𝐶4 𝑌04 𝑠𝑖𝑛𝜑4 𝑐𝑜𝑠𝜑4 𝑌 (4) 𝑌04 +𝑋 (4) 𝑠𝑖𝑛𝜑 + 𝑌 (4) 𝑐𝑜𝑠𝜑
𝐶4 𝐶4 4 𝐶4 4

(2) (2) (4) (4)


𝐹5 𝑅 ∶ 𝑋02 +𝑋𝐶2 𝑐𝑜𝑠𝜑2 − 𝑌𝐶2 𝑠𝑖𝑛𝜑2 − 𝑋04 − 𝑋𝐶4 𝑐𝑜𝑠𝜑4 + 𝑌𝐶4 𝑠𝑖𝑛𝜑4 = 0
(2) (2) (4) (4)
𝐹6 𝑅 ∶ 𝑌02 +𝑋𝐶2 𝑠𝑖𝑛𝜑2 + 𝑌𝐶2 𝑐𝑜𝑠𝜑2 − 𝑌04 − 𝑋𝐶4 𝑠𝑖𝑛𝜑4 − 𝑌𝐶4 𝑐𝑜𝑠𝜑4 = 0

3-4 RR⇾ 1 ecuație


𝐷3 𝐸4 = 𝑑1
𝐹7 𝑅𝑅 ∶ (𝑋𝐷3 − 𝑋𝐸4 )2 + (𝑌𝐷3 − 𝑌𝐸4 )2 = 𝑑12
(3) (3) (3)
𝑋𝐷 𝑋0 𝑐𝑜𝑠𝜑3 −𝑠𝑖𝑛𝜑3 𝑋𝐷3 𝑋0 +𝑋𝐷3 𝑐𝑜𝑠𝜑3 − 𝑌𝐷3 𝑠𝑖𝑛𝜑3
[ 3] = [ 3] + [ ] [ (3) ]=[ 3 ]
𝑌𝐷3 𝑌03 𝑠𝑖𝑛𝜑3 𝑐𝑜𝑠𝜑3 𝑌 𝑌03 +𝑋 (3) 𝑠𝑖𝑛𝜑 + 𝑌 (3) 𝑐𝑜𝑠𝜑
𝐷3 𝐷3 3 𝐷3 3

(4) (4) (4)


𝑋𝐸 𝑋0 𝑐𝑜𝑠𝜑4 −𝑠𝑖𝑛𝜑4 𝑋𝐸4 𝑋0 +𝑋𝐸4 𝑐𝑜𝑠𝜑4 − 𝑌𝐸4 𝑠𝑖𝑛𝜑4
[ 4] = [ 4] + [ ] [ (4) ]=[ 4 ]
𝑌𝐸4 𝑌04 𝑠𝑖𝑛𝜑4 𝑐𝑜𝑠𝜑4 𝑌 𝑌04 +𝑋 (4) 𝑠𝑖𝑛𝜑 − 𝑌 (4) 𝑐𝑜𝑠𝜑
𝐸4 𝐸4 4 𝐸4 4
(3) (3) (4) (4)
𝐹7 𝑅𝑅: (𝑋03 +𝑋𝐷3 𝑐𝑜𝑠𝜑3 − 𝑌𝐷3 𝑠𝑖𝑛𝜑3 − 𝑋04 +𝑋𝐸4 𝑐𝑜𝑠𝜑4 − 𝑌𝐸4 𝑠𝑖𝑛𝜑4 )2 +
(3) (3) (4) (4)
(𝑌03 − 𝑋𝐷3 𝑠𝑖𝑛𝜑3 − 𝑌𝐷3 𝑐𝑜𝑠𝜑3 − 𝑌04 − 𝑋𝐸4 𝑠𝑖𝑛𝜑4 − 𝑌𝐸4 𝑐𝑜𝑠𝜑4 )2 = 𝑑12

1-4 RT – 1 ecuatie
𝐹8 : (XG4-XF1)(YG4-YP4)-(YG4-YF1)(XG4-XP4)=0

𝐹9 : 𝑌𝑂3 =a±5 mm;0


Calculul numeric si reprezentarea grafica a functiilor de
pozitie ale mecanismului

𝑋𝑂2 𝑌𝑂2 𝜑2 𝑋𝑂3 𝑌𝑂3 𝜑3 𝑋𝑂4 𝑌𝑂4 𝜑4


0 0 43 º -129.9 141.65(a+5) 76 º -73 41.1 78 º
0 0 46 º -135.2 131.65(a-5) 79 º -80 25.3 85 º
0 0 44 º -132.9 136.65(a) 77 º -79 36.5 80 º

Pentru 𝑌𝑂3 =136,65 (a)


(1) (1) (2) (2)
𝐹1 𝑅 ∶ 𝑋01 +𝑋𝐴1 𝑐𝑜𝑠𝜑1 − 𝑌𝐴1 𝑠𝑖𝑛𝜑1 − 𝑋02 − 𝑋𝐴2 𝑐𝑜𝑠𝜑2 + 𝑌𝐴2 𝑠𝑖𝑛𝜑2 = 0

0+0*1-0*0-𝑋02 -0-𝑐𝑜𝑠𝜑2 +0*𝑠𝑖𝑛𝜑2 =0

=>𝑿𝟎𝟐 = 𝟎
(1) (1) (2) (2)
𝐹2 𝑅 ∶ 𝑌01 +𝑋𝐴1 𝑠𝑖𝑛𝜑1 + 𝑌𝐴1 𝑐𝑜𝑠𝜑2 − 𝑌02 − 𝑋𝐴2 𝑠𝑖𝑛𝜑2 − 𝑌𝐴2 𝑐𝑜𝑠𝜑2 = 0

0+0*0+0*1-𝑌02 -0*𝑠𝑖𝑛𝜑2 -0*𝑐𝑜𝑠𝜑2=0

=>𝒀𝟎𝟐 = 𝟎
(2) (2) (3) (3)
𝐹3 𝑅 ∶ 𝑋02 +𝑋𝐵2 𝑐𝑜𝑠𝜑2 − 𝑌𝐵2 𝑠𝑖𝑛𝜑2 − 𝑋03 − 𝑋𝐵3 𝑐𝑜𝑠𝜑3 + 𝑌𝐵3 𝑠𝑖𝑛𝜑3 = 0

0+0*𝑐𝑜𝑠𝜑2 -191.31*𝑠𝑖𝑛𝜑2 -𝑋03 =0

=>𝑋03 = -191.31*𝑠𝑖𝑛𝜑2 => 𝑿𝟎𝟑 =-132.9


(2) (2) (3) (3)
𝐹4 𝑅 ∶ 𝑌02 +𝑋𝐵2 𝑠𝑖𝑛𝜑2 + 𝑌𝐵2 𝑐𝑜𝑠𝜑2 − 𝑌03 − 𝑋𝐵3 𝑠𝑖𝑛𝜑3 − 𝑌𝐵3 𝑐𝑜𝑠𝜑3 = 0

0+0*𝑠𝑖𝑛𝜑2 +191.31*𝑐𝑜𝑠𝜑2-𝑌03 -0*𝑠𝑖𝑛𝜑3 -0*𝑐𝑜𝑠𝜑3 =0

(1) 191.31*𝑐𝑜𝑠𝜑2-𝑌03 =0
(2) 𝒀𝟎𝟑 =136,65 (a)

Din (1) si (2 ) => 𝑐𝑜𝑠𝜑2 =136.65/191.31 => 𝝋𝟐 =44º

(2) (2) (4) (4)


𝐹5 𝑅 ∶ 𝑋02 +𝑋𝐶2 𝑐𝑜𝑠𝜑2 − 𝑌𝐶2 𝑠𝑖𝑛𝜑2 − 𝑋04 − 𝑋𝐶4 𝑐𝑜𝑠𝜑4 + 𝑌𝐶4 𝑠𝑖𝑛𝜑4 = 0

0+18.22*𝑐𝑜𝑠𝜑2 -132.09*𝑠𝑖𝑛𝜑2 -𝑋04 =0

18.22*0.701-132.09*0.701=𝑋04

=>𝑿𝟎𝟒 =-79
(2) (2) (4) (4)
𝐹6 𝑅 ∶ 𝑌02 +𝑋𝐶2 𝑠𝑖𝑛𝜑2 + 𝑌𝐶2 𝑐𝑜𝑠𝜑2 − 𝑌04 − 𝑋𝐶4 𝑠𝑖𝑛𝜑4 − 𝑌𝐶4 𝑐𝑜𝑠𝜑4 = 0

(3) 0+18.22*𝑠𝑖𝑛𝜑2 +132.09*𝑐𝑜𝑠𝜑4-𝑌04 =0

(4) 𝝋𝟒 =80 º

Din (3) si (4) =>𝑌04 =18.22*0.701+132.09*𝑐𝑜𝑠𝜑4

=>𝒀𝟎𝟒 =35.6
(3) (3) (4) (4)
𝐹7 𝑅𝑅: (𝑋03 +𝑋𝐷3 𝑐𝑜𝑠𝜑3 − 𝑌𝐷3 𝑠𝑖𝑛𝜑3 − 𝑋04 +𝑋𝐸4 𝑐𝑜𝑠𝜑4 − 𝑌𝐸4 𝑠𝑖𝑛𝜑4 )2 +
(3) (3) (4) (4)
(𝑌03 − 𝑋𝐷3 𝑠𝑖𝑛𝜑3 − 𝑌𝐷3 𝑐𝑜𝑠𝜑3 − 𝑌04 − 𝑋𝐸4 𝑠𝑖𝑛𝜑4 − 𝑌𝐸4 𝑐𝑜𝑠𝜑4 )2 = 𝑑12

𝒅𝟏 =36

(-132.9+118.43𝑐𝑜𝑠𝜑3 -79-1.6+14)2 +(136.65-118.43𝑠𝑖𝑛𝜑3 -35.6-8.9-


2.5)2 =362

(-199.5+118.43𝑐𝑜𝑠𝜑3 )2 +(89.65+118.43𝑠𝑖𝑛𝜑3 )2=362

39601 – 47123.2𝑐𝑜𝑠𝜑3 + 14025.6𝑐𝑜𝑠 2 𝜑3 + 7921+ 21145.6𝑠𝑖𝑛𝜑3 +


14025.6𝑠𝑖𝑛2 𝜑3= 1296

31680-47123.2𝑐𝑜𝑠𝜑3+21145.6𝑠𝑖𝑛𝜑3+15445(𝑐𝑜𝑠 2 𝜑3 + 𝑠𝑖𝑛2 𝜑3)=1296

21145.6𝑠𝑖𝑛𝜑3 -47123.2𝑐𝑜𝑠𝜑3 = -53750


21145.6𝑠𝑖𝑛𝜑3 -47123.2√1 − 𝑠𝑖𝑛2 𝜑3 = -53750/2

447111025𝑠𝑖𝑛2 𝜑3 -2220577129-2220577129𝑠𝑖𝑛2 𝜑3=2889062500

=>𝑠𝑖𝑛𝜑3 =0.974 =>arcsin 0.974=>𝝋𝟑 =77 º

Analogic s-au obtinut urmatoarele valori pentru 𝑌𝑂3 =141.65(a+5):

𝑿𝟎𝟐 = 𝟎; 𝒀𝟎𝟐 = 𝟎; 𝝋𝟐 = 𝟒𝟒 º

𝑿𝟎𝟑 = −𝟏𝟐𝟗. 𝟗; ; 𝒀𝟎𝟑 = 𝟏𝟒𝟏. 𝟔𝟓; 𝝋𝟑 = 𝟕𝟔 º;

𝑿𝟎𝟒 = −𝟕𝟑; ; 𝒀𝟎𝟒 = 𝟒𝟏. 𝟏; 𝝋𝟒 = 𝟕𝟖 º;

pentru 𝑌𝑂3 =131.65(a-5):

𝑿𝟎𝟐 = 𝟎; 𝒀𝟎𝟐 = 𝟎; 𝝋𝟐 = 𝟒𝟔 º

𝑿𝟎𝟑 = −𝟏𝟑𝟓. 𝟐; ; 𝒀𝟎𝟑 = 𝟏𝟑𝟏. 𝟔𝟓; 𝝋𝟑 = 𝟕𝟗 º;

𝑿𝟎𝟒 = −𝟖𝟎; ; 𝒀𝟎𝟒 = 𝟐𝟓. 𝟑; 𝝋𝟒 = 𝟖𝟓 º;

90

80

70

60
Y=141.65
50
Y=131.65
40
Y=136.65
30

20

10

0
φ_2 φ_3 φ_4

You might also like