Vapor-cycle
Power Plants
Ideal Regenerative Rankine Cycle
with Open Feedwater Heater
Open Systems - Control Volume
Axial-flow
Hydraulic
Turbine
Compressors, pumps, and fans
Side view End view
Compressor
of pump of pump
Inflow and Outflow Velocity Triangles
Radial Flow Pump (Fan)
U = r
W
V
Relative Velocity – tangent to blade
Radial Flow Turbine
Absolute velocity – tangent to stator blade
V W
U = r
Relative velocity – tangent to rotor blade
Axial Flow Compressor (Pump)
Relative Velocity – tangent to rotor blade
U = r
Axial Flow Turbine
Relative
Velocity –
tangent to
rotor blade
U = r
Absolute
velocity –
tangent to
stator blade
Lawn Sprinkler
Water enters a rotating lawn sprinkler
through its base at the steady rate of 16
gal/min as shown in the figure. The exit
cross-sectional area of each of the two
nozzles is 0.04 in.2, and the flow leaving
each nozzle is tangential. The radius
from the axis of rotation to the centerline
of each nozzle is 8 in. (a) Determine the
resisting torque required to hold the
sprinkler head stationary. (b) Determine
the resisting torque associated with the
sprinkler rotating with a constant speed
of 500 rpm. (c) Determine the angular
velocity of the sprinkler if no resisting
torque is applied.
Lawn Sprinkler
absolute velocity : V V 2 ê
nozzle veloecity : U r2 ê
relative velocity : W W 2 ê V U V 2 r2 ê
Continuity equation
W n̂dA V1 ê z A1 ê z 2 W 2 ê A2 ê 0
CS
m Q V1 A1 2 W 2 A2 Relative velocity W2
slugs gal min ft 3 slugs
1.94
3
16
7.48 gal 0 . 0692
ft min 60 s s
Q 16 gal / min min ft 3 144 in 2
W2 64.17 ft / s
2 A2 2 0.04 in
2
60 s 7.48 gal ft
2
Lawn Sprinkler
Moment-of-momentum equation
Tshaft Tshaft ê z
r V W n̂dA
CS
dm
r1 ê r V1 ê z V1 ê z A1 ê z r2 ê r V 2 ê 2 W 2 ê A2 ê
m m
0 m 2 r2V 2 ê z m r2V 2 ê z
slugs 8 ft ft
Tshaft m r2V 2 0.0692 64.17
(a) U2 = 0 , s 12 s
slugs ft 2
V2 = W2 2.96 2
2.96 lb - ft
s
Lawn Sprinkler
rad 8 ft
U 2 r 500 2 ft 34.91
s 12 s
ft ft
(b) = 500 rpm V 2 W 2 U 2 64.17 34.91 29.26
s s
slugs 8 ft ft
Tshaft m r2V 2 0.0692 29.26 1.35 lb - ft
s 12 s
Tshaft 0 V 2 0
ft
(c) Tshaft = 0 W 2 U 2 r 64.17
s
W 64.17 ft / s s 1 rev rev
2 60 920
r2 8 / 12 ft min 2 rad min
Lawn Sprinkler
The two-nozzle law sprinkler discharge water at a rate of 1 ft3/min
and rotates at 1 rev/s. The length from pivot to nozzle exit is 12
in., and the nozzles produce jets that are ¼ in. in diameter.
Determine the resisting torque due to friction in the bearing.
W = Vrel
Lawn Sprinkler
absolute velocity : V Vr ê r V ê
nozzle velocity : U r2 ê
relative velocity : W W 2 cos ê r W 2 sin ê
Continuity equation
W n̂dA Q 2 W 2 n̂ A2 n̂ 0
CS
m Q 2 W 2 A2
ft 3
2 1
Q Q 2Q min 1 min ft
W 2 24. 45
2 A2 2 πD /4 D
2
2
1
ft
2
60 s s
48
Lawn Sprinkler
Moment-of-Momentum equation
V 2 U 2 W 2 W 2 cos ê r W 2 sin r2 ê
Tshaft Tshaft ê z r V W n̂dA
CS
dm
m
r2 ê r W 2 cos ê r W 2 sin r2 ê 2 W 2 ê A2 ê
m r2 W 2 sin r2 ê r ê m r2 W 2 sin r2 ê z
Tshaft m r2 W 2 sin r2 Qr2 W 2 sin r2
slugs 1 ft 3 12 ft rad 12
1.94 3
ft 24.45 sin 25
2 ft
ft 60 s 12 s s 12
slugs ft 2
0.131 2
0.131 lb - ft
s
Hydraulic Turbine
A simplified sketch of a hydraulic
turbine runner is shown in the
figure. Relative to the rotating
runner, water enters at section (1)
(cylindrical cross section area A1
at r1 = 1.5m) at an angle of 100o
and leaves at an angle of 50o from
the tangential direction. The blade
height at sections (1) and (2) is
0.45 m and the volume flow rate
through the turbine is 30 m3/s.
The runner speed is 130 rpm in
the direction shown. Determine
the shaft power developed.
Hydraulic Turbine
rev 1 min rad m
U
1 r 130 2 1.5 m 20.4
Rotating
1
min 60 s s s
speed U r 130 rev 1 min 2 rad
0.85 m 11 .6 m
2 2
min 60 s s s
m V Anˆ V eˆ r A VR A
kg m 3 kg
m1 m 2 Q 1000 3 30
30 ,000
m s s
Q Q 30 m 3 / s m
Continuity V
R, 1 A 7 . 07
2r1 h1 2 1.5 m 0.45 m s
equation
1
V Q Q 30 m 3 / s m
12 .5
R , 2 A2 2r2 h2 2 0.85 m 0.45 m s
Velocity Triangles
U1 = r1
U2 = r2
U2 < U1
Relative velocity – tangent to turbine blade
Velocity Triangle
Inflow 100o 50o Outflow
10o 40o
V1 V2 W2
W1 VR,1 VR,2
U1 = r1 V,2
V,1 U2 = r2
V ,1 V1 cos 1 U 1 W 1 sin 10 o V ,2 V 2 cos 2 U 2 W 2 sin 40 o
V R ,1 V1 sin 1 W 1 cos 10 V R ,1 V 2 sin 2 W 2 cos 40
o o
Turbine blade tip Turbine blade root
Relative velocity – tangent to turbine blade
Shaft Power
Inflow 100o 50o Outflow
10o 40o
V1 V2 W2
W1 VR,1 VR,2
U1 = r1 V,2
V,1 U2 = r2
V , 1 U 1 W 1 sin 10 o
r1 V R , 1 tan 10 o
20. 4 7 .07 tan 10 o
ms 21.6 ms
2 2 2 R ,2
V U W sin 40 o r V tan 40 o 11 .6 12.5 tan 40 o
,2
ms 1.11 ms
kg m m m m
W shaft m U 2V ,2 U 1V ,1 30 ,000 11 .6 1.11 20.4 21.6
s s s s s
1.283 10 7 W 12.83 MW
Prob. 5.75: Axial Flow Pump
An axial flow gasoline pump consists
of a rotating row of blades (rotor)
followed downstream by a stationary
row of blades (stator). The gasoline
enters the rotor axially (without any
angular momentum) with an absolute
velocity of 3 m/s. The rotor blade inlet
and exit angles are 60o and 45o from
the axial direction. .The pump annulus
passage cross-sectional area is constant V1=
Consider the flow as being tangent to
the blades involved. Sketch velocity
triangles for flow just upstream and
downstream of the rotor. How much
energy is added to each kilogram of
gasoline?
Velocity Triangles
U1 = U2
W2
W1
U1=rm U2=rm
45o
2
60o V2
V1
V x ,1 V1 W 1 cos 60 o V x ,2 V 2 cos 2 W 2 cos 45 o
V ,1 0 V ,2 V 2 sin 2
Continuity V n̂ V cos V cos V V 3 m/s
1 1 2 2 x ,1 x ,2
equation
V1 3m / s m
W
1 cos 60 o cos 60 o 6
s
U W sin 60 o V tan 60 o 3 m tan 60 o 5.20 m
1 1 1
s s
Velocity
Triangle V x ,2 V1 3m / s m
W
2 o
o
o
4 . 24
s cos 45 cos 45 cos 45 s
m
U
2 U 1 5 .20
s
(same arithmetic mean radius)
m m m
V
,2 U 2 W 2 sin 45 o
5 . 20 4 .24 sin 45 o
2 . 20
s s s
V1
V ,2
2 tan
1
tan 1 2.20 m / s 36.25 o (outflow direction)
V x ,2 3m / s
V 3m / s m
V 2 x ,2 3 . 72
cos 2 cos 36.25 o s
Shaft W shaft m m N N m
w shaft U 2V ,2 5.20 2.20 1 11 . 44
Power m s s kg m / s 2 kg
Turbine Power Output
The hydraulic turbine has an efficiency of 90 percent. The 10oC
water flow rate is 10,000 m3/min. Determine the turbine output
power in watts for frictionless pipe flow.
(1)
Control
Volume
Analysis
(2)
Turbine Power Output
Assume steady state and constant water density = 1000 kg/m3 at 10oC.
Continuity equation m 1 m 2 m Q
Energy equation
CS
eV n̂dA Q net W net
in in
loss uout uin q net 0
in
p V2 p V2
No loss m out gz m in gz W shaft
2 out 2 in net in
Turbine Power Output
p1 p 2 0
(Head water and tail water)
V1 V 2 0
W net m gz 2 gz 1 Qg z 2 z 1
in
10 ,000 m
3
kg m
1000 3 9.81 2 0 m 120m
m 60 s s
m2 N
1.962 10 kg 2
8
2
1 .962 10 8
N m 196.2 Mw
s kg m / s
Turbine output power
W t W net 0.9 196.2 Mw 176.6 Mw
in
Head Loss
Problem 5.20R: A hydroelectric power plant operates under the
condition illustrated in the figure. The head loss associated with
flow from the water level upstream of the dam, section (1), to the
turbine discharge at atmospheric pressure, section (2), is 20 m.
How much power is transferred from the water to the turbine blade?
(1)
(2)
p 2 p1 V 22 V12
Energy g z 2 z 1 Q net W shaft
m u 2 u1
equation 2 in net in
p 2 p1 V 22 V12
g z 2 z 1 w shaft 1 loss 2
2 net in
p1 p 2 patm
V1 0 , V 2 2 m / s
V 22
w shaft w shaft g z 1 z 2 1 loss 2 loss ghL
net out net in 2
V 2
Shaft W shaft m w shaft Q g z 1 z 2 hL
2
2
power net out net out
kg
999 3 30
m 3
m
9.81 2 100 m 20 m
2 m / s 2
m s s 2
23.5 10 6 N m / s 23.5 Mw
Head loss hL = 20 m, reduces the available elevation
head from 100 m to 80 m.
Energy Equation
Problem 5.120: A liquid enters a fluid machine at section (1) and
leaves at sections (2) and (3) as shown in the figure. The density
of the fluid is constant at 2 slugs/ft3. All of the flow occurs in a
horizontal plane and is frictionless and adiabatic. For the above-
mentioned and additional conditions indicated in the figure,
determine the amount of shaft power involved.
Solution: Continuity Equation
CS
V n̂dA V1 A1 V 2 A2 V 3 A3 m 1 m 2 m 3 0
slugs ft 30 2 slugs
m 1 V1 A1 2 3
15 ft 6.25
ft s 144 s
m V A 2 slugs 45 ft 5 2
ft 3.125
slugs
3 3 3 ft 3
s 144 s
slugs slugs
m 2 m 1 m 3 6.25 3.125 3.125
s s
2 m 3
Note: in general m
Solution: Energy Equation
CS eV n̂dA V1 A1 e 1 V2 A2 e 2 V3 A3 e 3 m 1 e 1 m 2 e 2 m 3 e 3 0
Q net 0 & loss m 1 u1 m 2 u2 m 3 u3 0 (adabatic & frictionless)
in
p1 V12 p 2 V 22 p 3 V 32
W shaft m 1
m 2 m 3
2
net in 2 2
6.25
slugs
80 lb / in
2
in
2
1
12 15 1
2
ft lb
3 2
s 2 slugs / ft ft 2 s slugs ft / s
3.125
slugs 50 lb / in 2 in
2
1
12 35 1
2
ft lb
3 2
s 2 slugs / ft ft 2 s slugs ft / s
3.125
slugs 14.7 lb / in 2 in
2
1
12 45 1
ft
2
lb
3 2
s 2 slugs / ft ft 2 s slugs ft / s
lb ft 1 hp Net shaft power
17067.5 31.03hp
s 550 lb ft / s is out of the CV