0% found this document useful (0 votes)
155 views33 pages

State Transition Matrix

The document discusses state transition matrices and their properties. It provides methods for finding the state transition matrix including using the matrix exponential, diagonalization, and Cayley-Hamilton theorem. Examples are given to illustrate finding the state transition matrix using these different methods.

Uploaded by

Niranjan Behera
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PPT, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
155 views33 pages

State Transition Matrix

The document discusses state transition matrices and their properties. It provides methods for finding the state transition matrix including using the matrix exponential, diagonalization, and Cayley-Hamilton theorem. Examples are given to illustrate finding the state transition matrix using these different methods.

Uploaded by

Niranjan Behera
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PPT, PDF, TXT or read online on Scribd
You are on page 1/ 33

Lecture 05 Analysis (I)

Time Response and State Transition Matrix

5.1 State Transition Matrix


5.2 Modal decomposition --Diagonalization
5.3 Cayley-Hamilton Theorem

Modern Control Syst 1


d
x(t ) Ax(t ) Bu (t )
dt
y (t ) Cx (t ) Du (t )

The behavior of x(t) et y(t) :


1. Homogeneous solution of x(t)
2. Non-homogeneous solution of x(t)

Modern Control Syst 2


Homogeneous solution
x (t ) Ax(t ) 1 1
x(t ) L [( sI A) ]x(0)
sX ( s ) x(0) AX ( s )
e At x(0)
X ( s ) ( sI A) 1 x(0)
State transition matrix

(t ) e At L1[( sI A) 1 ]
x(t0 ) e At0 x(0)
At0
x(0) e x(t0 )
At At0 A( t t0 )
x(t ) e e x(t0 ) e x(t0 ) (t t0 ) x(t0 )
Modern Control Syst 3

Properties 1 1
(t ) e L [( sI A) ]
At

1. (0) I
1
2. (t ) (t )
3. x(0) (t ) x(t )
4. (t 2 t1 ) (t1 t0 ) (t 2 t0 )
k
5. (t ) (kt )

Modern Control Syst 4


Non-homogeneous solution
d
x(t ) Ax(t ) Bu (t )
dt
y (t ) Cx (t ) Du (t )

sX ( s ) x(0) AX ( s ) BU ( s )
( sI A) X ( s ) x(0) BU ( s )
1 1
X ( s ) ( sI A) x(0) ( sI A) BU ( s )
x(t ) L1[(sI A) 1 ]x(0) L1[( sI A) 1 BU ( s )]
t
x(t ) (t ) x(0) (t ) Bu ( )d Convolution
0

Homogeneous
Modern Control Syst 5
t
x(t ) (t ) x(0) (t ) Bu ( )d
0
t
x(t ) (t t0 ) x(t0 ) (t ) Bu ( )d
t0
t
y (t ) C (t t0 ) x(t0 ) C (t ) Bu ( )d Du (t )
t0

Zero-input response Zero-state response

Modern Control Syst 6


Example 1 x 1 0 1 x1 0
x 2 3 x 1u (t )
2 2
x(0) 0 0
T
let

2e t
e 2 t
e 1 e 2t
(t ) L1[(sI A) 1 ] e At t 2t
2 e 2 e e t 2e 2t

t
x(t ) (t ) x(0) (t ) Bu ( )d
0

x1 2e t e 2t
1 3
Ans: x 2 2 L1[( sI A) 1 BU ( s )]
2 2e 2e 2t
t

Modern Control Syst 7


x 1 0 1 x1 0
x 2 3 x 1u (t )
x 2 ( 0)
x1 (0)
s
2 2 s

x ( 0) 0 0
T
let
u 1 s 1 x2 s 1 x1 1 y

3
Using Maisons gain formula 2

1 3s 1 2 s 2
s 1 (1 3s 1 ) s 2 s 2
x1 ( s ) x1 (0) x2 (0) U (s)

2s 2 s 1 s 1
x2 ( s ) x1 (0) x2 (0) U ( s)

Modern Control Syst 8


How to find State transition matrix

1 1
(t ) e L [( sI A) ]
At

Methode 1: (t ) L1[( sI A) 1 ]

Methode 2: (t ) e At

Methode 3: Cayley-Hamilton Theorem

Modern Control Syst 9


1 1
Methode 1: (t ) L [( sI A) ]
x 1 0 1 0 x1 0 0
x 0 4 3 x 1 0 u1
2 2 u
x 3 1 1 2 x3 0 1 2
x1
y1 (t ) 1 0 0
y (t ) 0 0 1 x2
2 x
3

adj ( sI A)
( sI A) 1
sI A
s 2 6 s 11 s 2 3
1
3 s 2
2 3 s
s ( s 4)( s 2) 3 3s
s4 s 1 s 4 s
2

Modern Control Syst 10


Method 2: Diagonalization

Example 4.5 x 1 1 0 0 x1 1
x 0 2 0 x 1u diagonal matrix
2 2
x 3 0 0 3 x3 1
x1
y 6 6 1 x2

x3

e t 0 0

(t ) e At 0 e 2 t 0
0 0 e 3t

Modern Control Syst 11


Diagonalization via Coordinate Transformation

Plant: x Ax Bu A R n n
y Cx Du

Eigenvalue of A: i , satisfying Av i i vi , i 1, ,n
Assume that all the eigenvalues of A are distinct, i.e. 1 2 3 n

Then eigenvectors, v1, v2 , ,vn are independent.

Coordinate transformation matrix T [v1, v2 , ,vn ]


T 1 AT is a diagonal matrix.

Modern Control Syst 12


1 0
2
1
T AT


0 n

e At Te tT 1

e1t 0

e2t
where e t

nt
0 e

Modern Control Syst 13


New T -1 x
coordinate:
T 1 AT
A T 1 AT
1 1 0 0 0 1 B T 1 B

2 0 2 0 0 2 C CT
(4.1)
0

n 0 0 n n

i (t ) ii (t ), i 1, ,n
Solution of (4.1):
i (t ) ei ti (0), i 1, ,n
x (t ) T (t ) v1e1t 1 (0) v2e2t 2 (0) vn ent n (0), (0) T x (0)
1

The above expansion of x(t) is called modal decomposition.


Hence, system asy. stable all the eigenvales of A lie in LHP

Modern Control Syst 14


Example i distinct
2 1 1
x x , x ( 0 ) 2 1 1, 2 3
1 2
Find eigenvector
1 2 1 v11 v11 1
(1 I A)v1 0
1 1 2 v12 v12 1

3 2 1 v21 v1 1
(2 I A)v2 0
1 3 2 v22 v2 1

1 1 1 1 1 T 1 AT
1 0
T v1 v2
1
T 0 3
1 1 2 1 1

T 1 x

Modern Control Syst 15


1 0
(4.2)
0 3

1 11 1 (0)
(0) T x (0), (0)
1

3
2 2 2 ( 0 )

Solution of (4.1):

x (t ) T (t ) v1e1t 1 (0) v2e2t 2 (0)


3
1 2
(0) T x (0) (0)
1

2
3 t 1 3t
3 t 1 1 3t 1 2 e 2 e
x(t ) e e 3 1
2 1 2
1
e e
t 3 t

2 2

Modern Control Syst 16


In the case of A matrix is phase-variable form and
1 2 3 n

1 1 1
Vandermonde mat

P v1 v2 vn 1 2 n rix
for phase-variable
n 1 n 1 form

1 n 1
2 n

1
2
1
P AP
3

4
t 1
e Pe P
At

Modern Control Syst 17


Example: i distinct
Repeated eigenvalue case, i.e. i is not distinct
1 0 1 1 0 1
A 0 1 0 I A 0 1 0 ( 1)( 1)( 2)
0 0 2 0 0 2

1 2 0 0 1 v1

(1 I A)V1 0 0 0 v2 0
depend
0 0 1 v3

v1 1 v1 0
0v1 0v2 v3 0 v2 0 0v1 0v2 v3 0 v2 1
v3 0 v3 0
V1 V2
Modern Control Syst 18
3 2 1 0 1 v1
(3 I A)V3 0 1 0 v2 0
0 0 0 v3

v1 1
v1 0v2 v3 0 v2 0
v3 1

1 0 1 1 0 0
P V1 V2 V3 0 1 0 P 1 AP 0 1 0
0 0 1 0 0 2

Modern Control Syst 19


Case 3: i distinct Jordan form
1 2 3

P v1 v2 v3 P AP Jordan
1
form
Generalized eigenvectors

(1 I A)v1 0 1 1
(1 I A)v2 v1 1
P AP A 1 1
(1 I A)v3 v2 1
e 1t
te 1t t2
2e 1t
A t 1t
e e 1t te
e 1t

Modern Control Syst 20
Example:
3 1 3 1
A ( 2) 2
1 1 1 1

1 1 v11 v11 1
(1 I A)V1 0
1 1 v12 v12 1
1 1 v21 1 v21 1
(1 I A)V2
1 1 v22 1 v22 0

1 1 2 1
P V1 V2
1
P AP A
1 0 0 2
e 2 t
A t te 2t A t 1
e 2t
e Pe P
At

e
Modern Control Syst 21
Method 3: Cayley-Hamilton Theorem

Theorem: Every square matrix satisfies its char. equation .

Given a square matrix A, A R nn . Let f() be the char. polynomial of A.

Char. Equation:
f ( ) n an 1n 1 a1 a0 0
By Caley-Hamilton Theorem

f ( A) An an 1 An 1 a1 A a0 I 0

Modern Control Syst 22


An an 1 An 1 a1 A a0 I 0
An an 1 An 1 a1 A a0 I
An 1 an 1 An a1 A2 a0 A
an 1 ( an 1 An 1 a1 A a0 I ) a1 A2 a0 A

any f ( A) k0 I k1 A k 2 A2 k n An

f ( A) 0 I 1 A 2 A n 1 A
2 n 1

n 1

k 0
k A k

Modern Control Syst 23


Example: 1 2
A 100
? A
0 1
let f ( A) A100 0 I 1 A

1 2
( 1)( 2) 0 , 1 1, 2 2
0 2

f (1 ) 1
100
0 11 1
100
0 2 2100
f ( 2 ) 2
100
0 12 2 100
1 2100 1

1 0 1 2 1 2101
2
f ( A) A100 (2 2 )
100
(2 1)
100

0 1 0 1 0 1

Modern Control Syst 24


Example: 3 1
e ?
At
A
2 0
3 1
0 , 1 1, 2 2
2

f (1) e t 0 11 0 1 0 2e t e 2t
f (2) e 2t 0 12 0 1 2 1 e 2 t e t

t 2t 1 0 2t t 3 1
e 2e e
At
( e e )
0 1 2 0
2e 2 t e t e 2t e t
2t t 2t t
2e 2e e 2e

Modern Control Syst 25


Modern Control Syst 26
Modern Control Syst 27
Modern Control Syst 28
Modern Control Syst 29
Modern Control Syst 30
Modern Control Syst 31
Example:
2 0 1 1
x Ax bu 4 1 4 x 1u
2 0 1 0
y 1 0 1 x

1 1 0
0,1,1 v1 4, v 2 0, 1
2 1 0

Modern Control Syst 32


Example:
0 1 0 0
x Ax bu 0 0 1 x 0u
2 1 2 1
y 1 0 0 x

Modern Control Syst 33

You might also like