Two port Networks
Unit 6
1
Objectives:
At the end of this topic, you should be able to:
familiarize the related parameter of the two
port network
define impedance parameters, admittance
parameters and hybrid parameter.
calculate the parameters required
2
Impedance Parameters z parameter
Impedance parameters are very useful in
designing impedance matching and power
distribution system. Two port network can either
be voltage or current driven. The input and
output terminal voltage can be presented as
follows:
V1 = z11I1 + z12I2 equ 1
V2 = z21I1 + z22I2 equ 2
3
Impedance Parameters z parameter
Rewrite equation (1) and (2) into matrix form as:
V1 z 11 z12 I1
V z z22 I 2
2 21
where impedance parameters of the system is z = z 11 z12
z z 22
21
To find the parameters of the circuit, set I1 and I2 equal to zero as shown
in Figure 1 and Figure 2 respectively.
4
Impedance Parameters z
parameter
Figure 1 Figure 2
5
Problem 1:
Determine the z parameters for the circuit in Figure.
6
Problem 2:
Determine the z parameters for the circuit in Figure.
7
Types of Network
Reciprocal Network
Non-reciprocal Network
8
Problem 3:
Construct a 2- port network that realizes the following Z parameters.
9
Admittance Parameters y parameters
Where y12 short-circuit input impedance
y12 short-circuit transfer impedance from port 2 to 1
y21 short-circuit transfer impedance from port 1 to 2
y22 short-circuit output impedance
10
Admittance Parameters y parameters
Admittance parameters are very useful for describing the
network when impedance parameters may not be existed.
This is solved by finding the second set of parameters by
expressing the terminal current in term of the voltage. The
input and output terminal current can be presented as
follows:
11
Admittance Parameters y parameters
I1 = y11V1 + y12V2
I2 = y21V1 + y22V2
Rewrite into matrix form as:
I1 y 11 y12 V1
I y y 22 V2
2 21
where admittance parameters of the system is y = y 11 y12
y y 22
21
To find the parameters of the circuit, set V1 and V2 equal to zero
as shown in Figure 3 and Figure 4 respectively.
12
Admittance Parameters y parameters
13
Relationship between the parameters
14
Problem 4:
For the given network determine the equivalent Z parameters.
.
=
. .
15