Transition Metals and Coordination
Chemistry
Transition Metals
Similarities within a given period
and within a given group.
Last electrons added are inner electrons (d’s, f’s).
20_431
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg
Ac Unq Unp Unh Uns Uno Une Uun Uuu
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
20_432
d-block transition elements
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La* Hf Ta W Re Os Ir Pt Au Hg
Ac† Unq Unp Unh Uns Uno Une Uun Uuu
f-block transition elements
*Lanthanides Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
† Actinides Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
20_435
0.2
La
1st series (3d)
Y 2nd series (4d)
Hf 3rd series (5d)
Atomic radii (n m)
Zr
Sc Ta
Au
Nb W Ag
0.15 Re
Mo Os Pt
Ti Tc Ru Ir
V Rh Pd
Cr Fe Cu
Mn Co Ni
0.1
Atomic number
Multiple Oxidation States
Metallic Behavior/Reducing Strength
Lower oxidation state = more metallic
Color and Magnetism
e- in partially filled d sublevel absorbs visible light
moves to slightly higher energy d orbital
Magnetic properties due to unpaired electrons
Electronegativity increases down column
Chromium
Chemical properties reflect oxidation state
Valence-State Electronegativity
Electronegativity, EN:
electron “pulling power”
Valence-state EN:
metal in higher oxidation state
is more positive
has stronger pull on electrons
is more electronegative
“Effective EN”
Manganese
Silver
Weak Reducing Agent, H2Q
Mercury
Coordination Compound
Consist of a complex ion and necessary counter ions
[Co(NH3)5Cl]Cl2
Complex ion: [Co(NH3)5Cl]2+
Co3+ + 5 NH3 + Cl-
= 1(3+) + 5 (0) + 1(1-)
= 2+
Counter ions: 2 Cl-
[Co(NH3)6]Cl3 [Pt(NH3)4]Br2
Complex ion remains intact upon dissolution in water
Complex Ion
Species where transition metal ion is surrounded
by a certain number of ligands.
Transition metal ion: Lewis acid
Ligands: Lewis bases
Co(NH3)63+
Pt(NH3)3Br+
Ligands
Molecule or ion having a lone electron pair that
can be used to form a bond to a metal ion
(Lewis base).
coordinate covalent bond: metal-ligand bond
monodentate: one bond to metal ion
bidentate: two bond to metal ion
polydentate: more than two bonds to a metal
ion possible
Formulas of Coordination Compounds
1.Cation then anion
2.Total charges must balance to zero
3.Complex ion in brackets
K2[Co(NH3)2Cl4]
[Co(NH3)4Cl2]Cl
Names of Coordination Compounds
1.Cation then anion
2.Ligands
in alphabetical order before metal ion
neutral: molecule name*
anionic: -ide -o
prefix indicates number of each
3.Oxidation state of metal ion in () only if more
than one possible
4.If complex ion = anion, metal ending -ate
Examples
K2[Co(NH3)2Cl4]
potassium diamminetetrachlorocobaltate(II)
[Co(NH3)4Cl2]Cl
tetraamminedichlorocobalt(III) chloride
20_441
Isomers
(same formula but different properties)
Structural Stereoisomers
isomers (same bonds, different
(different bonds) spatial arrangements)
Geometric
Coordination Linkage Optical
(cis-trans)
isomerism isomerism isomerism
isomerism
Structural Isomerism 1
Coordination isomerism:
Composition of the complex ion varies.
[Cr(NH3)5SO4]Br
and [Cr(NH3)5Br]SO4
Structural Isomerism 2
Ligand isomerism:
Same complex ion structure but point of
attachment of at least one of the ligands differs.
[Co(NH3)4(NO2)Cl]Cl
and [Co(NH3)4(ONO)Cl]Cl
Linkage Isomers
[Co(NH3)5(NO2)]Cl2 [Co(NH3)5(ONO)]Cl2
Pentaamminenitrocobalt(III) Pentaamminenitritocobalt(III)
chloride chloride
Stereoisomerism 1
Geometric isomerism (cis-trans):
Atoms or groups arranged differently spatially
relative to metal ion
Pt(NH3)2Cl2
20_444
Cl
Cl
H3N NH 3
H3N NH3
Co Co
H3N NH3 H3N Cl
Cl NH 3
Cl Cl
Co Co
Cl
Cl
(a) (b)
Stereoisomerism 2
Optical isomerism:
20_446
Have opposite effects on plane-polarized light
(no superimposable mirror images)
Polarizing
filter
Tube
containing
Unpolarized
sample
light
Polarized
light
Rotated
polarized light
20_448
Mirror image
of right hand
Left hand Right hand
20_449
N N
Mirror image
Co
N N of Isomer I
N
N N
N N N N
Co Co
N N N N
Isomer I Isomer II
N N
20_450
Cl The trans isomer and Cl Isomer II cannot be
its mirror image are superimposed exactly
N N identical. They are not N N on isomer I. They are
Co isomers of each other. Co not identical structures.
N N N Cl
Cl Cl Cl
Cl N
N N N Cl N N
trans Co cis Co Co
N N N N N Cl
Cl Isomer I N Isomer II N
Isomer II has the same
structure as the mirror
(a) (b) image of isomer I.
Crystal Field Theory
Focus: energies of the d orbitals
Assumptions
1.Ligands: negative point charges
2.Metal-ligand bonding: entirely ionic
strong-field (low-spin): large splitting of d orbitals
weak-field (high-spin): small splitting of d orbitals
20_454
eg(d z2, d x 2 – y2)
t2g (d xz, d yz, d xy)
D = crystal field splitting
Free metal ion
3d orbital
energies
High spin Low spin
[V(H2O)6]2+ [V(H2O)6]3+
[Cr(NH3)6]3+ [Cr(NH3)5Cl]2+s
20_459
Tetrahedral Complexes
– dz 2 dx2 – y2
– –
– –– –
– –
–
dxy dxz dyz
(a) (b)
20_461
Square Planar & Linear Complexes
dx2 - y2
dz2
E
E dxy dxz dyz
dz2
dxy dx2 - y2
dxz dyz
Free metal ion Complex
Free metal ion Complex
M
M z
y
(a) (b)
Approach along x-and y-axes Approach along z-axis
Hemoglobin & Oxyhemoglobin