Chap 6
Chap 6
Inductors
Samuel Tesfay
Aksum University 1
Chap. 6, Capacitors and Inductors
Introduction
Capacitors
Series and Parallel Capacitors
Inductors
Series and Parallel Inductors
Aksum University 2
6.1 Introduction
Aksum University 3
Michael Faraday (1971-1867)
Aksum University 4
6.2 Capacitors
Aksum University 5
εA
C
d
Three factors affecting the value of capacitance:
1. Area: the larger the area, the greater the capacitance.
2. Spacing between the plates: the smaller the spacing,
the greater the capacitance.
3. Material permittivity: the higher the permittivity, the
greater the capacitance.
Aksum University 6
Fig 6.4
Aksum University 7
Fig 6.5
Variable capacitors
Aksum University 8
Fig 6.3
Aksum University 9
Fig 6.2
Aksum University 10
Charge in Capacitors
q Cv
q Linear
1F 1 C/V Nonlinear
Aksum University 11
Voltage Limit on a Capacitor
Aksum University 12
I-V Relation of Capacitor
dq dv
+ i q Cv, i C
C
dt dt
v
Aksum University 13
Physical Meaning
+
dv i
iC C
dt v
-
• when v is a constant voltage, then i=0; a constant
voltage across a capacitor creates no current through
the capacitor, the capacitor in this case is the same as
an open circuit.
• If v is abruptly changed, then the current will have an
infinite value that is practically impossible. Hence, a
capacitor is impossible to have an abrupt change in
its voltage except an infinite current is applied.
Aksum University 14
Fig 6.7
Abrupt change
Aksum University 15
dv 1 t +
v() 0
i
iC v(t ) idt
dt C v C
1 t
v(t ) idt v(to)
C to
v(to) q(to) / C -
Aksum University 16
Energy Storing in Capacitor
dv
p vi Cv
dt
t t dv v (t ) 1 2
w pdt C v dt C v ( ) vdv Cv v (t )
v ( )
dt 2
1
w(t ) Cv 2 (t ) ( v ( ) 0) + i
2 C
v
q 2 (t )
w(t ) -
2C
Aksum University 17
Model of Practical Capacitor
Aksum University 18
Example 6.1
Aksum University 19
Example 6.1
Solution:
(a) Since q Cv,
12
q 3 10 20 60pC
1 2 1 12
w Cv 3 10 400 600pJ
2 2
Aksum University 20
Example 6.2
Aksum University 21
Example 6.3
3000t
(1 e )V
Aksum University 22
Example 6.4
Aksum University 23
Example 6.4
Solution:
The voltage waveform can be described
mathematically as
50t V 0 t 1
100 50t V 1 t 3
v(t )
200 50t V 3t 4
0 otherwise
Aksum University 24
Example 6.4
50 0 t 1 10mA 0 t 1
6 50 1 t 3 10mA 1 t 3
i (t ) 200 10
50 3 t 4 10mA 3t 4
0 otherwise 0 otherwise
Aksum University 25
Example 6.4
Aksum University 26
Example 6.5
Aksum University 27
Example 6.5
Solution:
Under dc condition, we replace each capacitor with
an open circuit. By current division,
3
i (6mA) 2mA
3 2 4
v1 2000 i 4 V, v 2 4000i 8 V
1 1 3
w1 C1v1 (2 10 )(4) 16mJ
2 2
2 2
1 1 3
w2 C2 v2 (4 10 )(8) 128mJ
2 2
2 2
Aksum University 28
Fig 6.14
Ceq C1 C 2 C3 .... C N
Aksum University 29
6.3 Series and Parallel Capacitors
i i1 i2 i3 ... iN
dv dv dv dv
i C1 C2 C3 ... C N
dt dt dt dt
N
dv dv
C K Ceq
k 1 dt dt
Ceq C1 C2 C3 .... C N
The equivalent capacitance of N parallel-connected
capacitors is the sum of the individual capacitance.
Aksum University 30
Fig 6.15
1 1 1 1 1
...
Ceq C1 C2 C3 CN
Aksum University 31
Series Capacitors
v(t ) v1 (t ) v2 (t ) ... v N (t )
1 t 1 1 1 1 t
Ceq id ( C1 C2 C3 ... C N )id
q (t ) q (t ) q (t ) q (t )
Ceq C1 C2 CN
1 1 1 C1C2
Ceq
Ceq C1 C2 C1 C2
Aksum University 32
Summary
Aksum University 33
Example 6.6
Aksum University 34
Example 6.6
Solution:
20 F and 5 F capacitors are in series:
20 5
4 F
20 5
4 F capacitor is in parallel with the 6 F
and 20 F capacitors :
4 6 20 30 F
30 F capacitor is in series with
the 60 F capacitor.
30 60
Ceq F 20 F
30 60
Aksum University 35
Example 6.7
Aksum University 36
Example 6.7
Aksum University 37
Example 6.7
Solution:
Two parallel capacitors:
1
Ceq 1 1 1 mF 10mF
60 30 20
Total charge 3
q Ceq v 10 10 30 0.3 C
q 0 .3
v2 3
10 V
C2 30 10
Aksum University 40
6.4 Inductors
N A
2
L
l
Aksum University 41
Fig 6.22
N 2 A
L
l
r 0
0 4 10 7 (H/m)
N : number of turns.
l :length.
A:cross sectional area.
: permeability of the core
Aksum University 42
Fig 6.23
(a) air-core
(b) iron-core
(c) variable iron-core
Aksum University 43
Flux in Inductors
Li
ψ Linear
1H 1 Weber/A
Nonlinear
Aksum University 44
Energy Storage Form
Aksum University 45
I-V Relation of Inductors
An inductor consists of i
a coil of conducting +
wire.
d di
v L v
L
dt dt
-
Aksum University 46
Physical Meaning
d di
v L
dt dt
Aksum University 48
1 1 t
di vdt i v (t ) dt
L L +
v
1 t
i v(t )dt i (to )
L
L to -
Aksum University 49
Energy Stored in an Inductor
di
P vi L i +
dt
t t di v
L
w pdt L idt
dt -
i (t ) 1 2 1 2
L i ( ) i di Li (t ) Li () i () 0,
2 2
Aksum University 51
Example 6.8
1 t 2 t3
i 0 30t dt 0 6 2t 3 A
5 3
Aksum University 53
Example 6.9
6
5 t 5
w pdt 0 60t dt 60
5
156.25 kJ
60
Alternatively, we can obtain the energy stored using
Eq.(6.13), by writing
1 2 1
w(5) w(0) Li (5) Li (0)
2 2
1
(5)(2 5 ) 0 156.25 kJ
3 2
2
as obtained before.
Aksum University 54
Example 6.10
Aksum University 55
Example 6.10
Solution:
(a ) Under dc condition : capacitor open circuit
inductor short circuit
12
i iL 2 A, vc 5i 10 V
1 5
(b) 1 1
wc Cvc (1)(10 ) 50J,
2
2
2 2
1 2 1
wL Li (2)(2 2 ) 4J
2 2
Aksum University 56
Inductors in Series
Leq L1 L2 L3 ... LN
Aksum University 57
Inductors in Parallel
1 1 1 1
Leq L1 L2 LN
Aksum University 58
6.5 Series and Parallel Inductors
Applying KVL to the loop,
v v1 v2 v3 ... v N
Substituting vk = Lk di/dt results in
di di di di
v L1 L2 L3 ... LN
dt dt dt dt
di
( L1 L2 L3 ... LN )
dt
N
di di
LK Leq
K 1 dt dt
Leq L1 L2 L3 ... LN
Aksum University 59
Parallel Inductors
Using KCL,
i i1 i2 i3 ... iN
But 1 t
ik t vdt ik (t0 )
Lk o
1 t 1 t 1 t
i t vdt i1 (t0 ) t vdt is (t0 ) ... t vdt iN (t0 )
Lk 0
L2 0 LN 0
1 1 1 t
... t vdt i1 (t0 ) i2 (t0 ) ... iN (t0 )
L1 L2 LN 0
N 1t N
1 t
t vdt ik (t0 ) vdt i (t0 )
k 1 Lk Leq
0 t 0
k 1
Aksum University 60
The inductor in various connection has the same
effect as the resistor. Hence, the Y-Δ transformation
of inductors can be similarly derived.
Aksum University 61
Table 6.1
Aksum University 62
Example 6.11
Aksum University 63
Example 6.11
Solution:
Aksum University 64
Practice Problem 6.11
Aksum University 65
Example 6.12
Aksum University 66
Example 6.12
Solution:
10 t
(a ) i (t ) 4(2 e )mA i (0) 4(2 1) 4mA.
i1 (0) i (0) i2 (0) 4 (1) 5mA
(b) The equivalent inductance is
Leq 2 4 || 12 2 3 5H
di 10 t 10 t
v(t ) Leq 5(4)(1)( 10)e mV 200e mV
dt
di 10 t 10 t
v1 (t ) 2 2(4)(10)e mV 80e mV
dt
10 t
v2 (t ) v(t ) v1(t ) 120e mV
Aksum University 67
Example 6.12
1 t
(c) i 0 v(t ) dt i (0)
L
1 t 120 t 10t
i1 (t ) 0 v2 dt i1 (0) e dt 5 mA
4 4 0
10 t t
3e 5 mA 3e 10t 3 5 8 3e 10t mA
0
1 t 120 t 10t
i2 (t ) 0 v2 dt i2 (0) e dt 1mA
12 12 0
10 t t
e 1mA e 10t 1 1 e 10t mA
0
Note that i1 (t ) i2 (t ) i (t )
Aksum University 68