Applied Econometric
Time-Series Data Analysis
逢甲大學財務金融系主任
張倉耀 教授
Types of Data
1 Time series data
Data have been collected over a period of
time on one or more variables.
Data have associated with them a particular
frequency of observation (daily, monthly or
annually…) or collection of data points.
2 Cross-sectional data
3 Panel data
The Procedure to Analysis
Economic
Economic or
or Financial
Financial Theory
Theory
Summary
Summary Statistics
Statistics of
of Data
Data
Luukkonen et al. (1988) Linearity Test
not reject
If reject
Linear
Linear Model
Model Nonlinear
Nonlinear Model
Model
Basic Advanced
Econometric Econometric
The Procedure to Analysis
Time
Time Series
Series Data
Data
Unit
Unit Root
Root Test
Test
Non-Stationarity Staionaruty
Dickey-Fuller
Augmented DF
Orders of Integration H0: Yt ~ I(1)
The same Difference H1: Yt ~ I(0)
Phillips-Perron
VAR in
E-G DF-GLS, NP
Level
J-J ARDL
Bounding H0: Yt ~ I(0)
H-I KPSS
KPSS
Test
H1: Yt ~ I(1)
Cointegration Test
The Procedure to Analysis
Unit
Unit Root
Root Test
Test
Staionaruty
Cointegration
Cointegration Test
Test
Yes No
EG,JJ, KPSS ARDL
UECM
(Pesaran
VECM et al., VAR in
VAR in
2001) Level
differ
Model
Model Specification
Specification
The Procedure to Analysis
Model
Model Estimation
Estimation
Economic or Finance
Implication
Impulse Variance Granger
Resp Dec Causality
The Procedure to Analysis
Heteroskedastic Goodness-of-fit
ACH-LM Teat R square
Normality Diagnostic Error specification
Checking
Jarque-Bera N Ramsey’s RESET
Series autocorrelation
sationarity
Ljung-Box Q, Q2
CUSUM (square)
Econometric Soft Packages
Package
EViews
Rats
GAUSS
Matlab
Microfit
EasyReg
STATA
TSP
Sources of Data
DataBase Website
AREMOS http://140.111.1.22/moecc/rs/pkg/tedc/tedc1.htm
TEJ Data bank http://www.tej.com.tw/
National Statistic,
http://www.stat.gov.tw/mp.asp?mp=4
ROC
DataStream Thomson Financial DataStream
CRSP http://www.crsp.chicagogsb.edu/
http://www2.standardandpoors.com/portal/site/
Compustat sp/en/us/page.product/dataservices_compustat/
2,9,2,0,0,0,0,0,0,0,0,0,0,0,0,0.html
Example: PPP
Variables Frequency Sources
Currency exchange rate ls=Log (S)
Annual Hayashi
Price index of UK lukwpi=log (ukwpi)
(1979-1990) (2000)
Price index of US luswpi=log (uswpi)
Real exchange rate
et lst luswpit lukwpit
Summary Statistics of Data
No trend
Summary Statistics of Data
Stationary Time Series
Time Series modeling
A series is modeled only in terms of its own past values
and some disturbance.
Autoregressive, AR (1)
yt 0 1 yt ut ut ~ WN (0, 2 )
Moving Average, MA (1)
ut t t 1
Stationary Time Series
Box-Jenkins (1976) ARMA (p, q) model
yt 0 1 yt 1 p yt p ut 1ut 1 q ut q
p q
0 i yt i i u1i
i 1 i 0
The necessary and sufficient stationarity condition
i 1
i 1
Stationary Time Series
The determination of the order of an ARMA process
Autocorrelation function (ACF)
cov( yt , yt por q )
( por q)
var( yt )
Partial ACF (PACF)
p j 1 ( p 2, j pp p 2, p j ) p j
p 1
( p) , p3
1 j 1 ( p 2, j pp p 2, p j ) j
p 1
Ljung-Box Q statistic
p
i2
Q( p ) T (T 2) ~ p2
i 1 T -i
Stationary Time Series
process ACF PACF
Finite: cuts off after lag
AR (p) Infinite: damps out
p
Finite: cuts off after lag
MA (q) Infinite: damps out
q
ARMA(p,
q)
Infinite: damps out Infinite: damps out
Stationary Time Series
e series is AR(1)
P* = 1
Non-stationary Time Series
Autoregressive integrated moving average
(ARIMA) model
If
p
i 1
i 1 Y series is explosive
If
p
i 1
i 1 Y series has a unit root
Non-stationary Time Series
How to achieve stationary?
DSP = Difference stationary process
d 1
• Yt ~ I(1) = D yt yt yt 1 yt
d 2
• Yt ~ I(2) =D yt yt yt 1 2 yt
TSP = Trend stationary process
yt 0 1t t ŷt
Non-stationary Time Series
Unit Root Test
ADF Test
p
: Yt Yt 1 i Yt i t De-data
i 1 p
t : Yt t Yt 1 i Yt i t De-trend
i 1
p
u : Yt Yt 1 i Yt i t De-mean
i 1
KPSS
iid
Yt t rt t t ~ N (0, 2 )
Non-stationary Time Series
Selection Criteria of the Lag Length
Schwartz Bayesian Criterion (SBC)
SSR k ln T
min SBC ln( ) Small sample
T T
Akaike Information Criterion (AIC)
SSR
min AIC T ln( ) 2k Big sample
T
k parameters
T observations
SSR sum of squared residuals
Non-stationary Time Series
Reject H0
Non-stationary Time Series
Engle-Granger 2-Stage Cointegration Test
Step 1: regress real exchange rate
et 0 1lst 2luswpit 3lukwpit ut
Step 2: error term
ut ut 1 t ADF Unit Root Test
Hypothesis
H0 : 0
H1 : 0
If reject H0, ut ~ I (0)
We support PPP
Non-stationary Time Series
Name as ppp
Non-stationary Time Series
Error – Correction Model (ECM)
d d
et 0 ecmt 1 et i xt i t
i 1 i 1
Where x is independent variables
Residual ( t ) Diagnostic Test
Non-stationary Time Series
逢甲大學財務金融系主任
張倉耀 教授