Chapter 17
Introduction to Transaction Processing
         Concepts and Theory
              17.1 - 17.3 p 551-563
Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition
                 Copyright © 2004 Pearson Education, Inc.
                         Note
These slides have been edited (improved by adding slides,
     figures and symbols, and in minor ways) by Dr.
                     JDBrownsmith
                Chapter Outline
1 Introduction to Transaction Processing
2 Transaction and System Concepts
3 Desirable Properties of Transactions
4 Characterizing Schedules based on Recoverability
5 Characterizing Schedules based on Serializability
6 Transaction Support in SQL
                                                Chapter 17-4
     17.1.1 Introduction to Transaction
                 Processing
Single-User System: At most one user at a time can
  use the system.
Multiuser System: Many users can access the system
  concurrently.
Concurrency
   – Interleaved processing: concurrent execution of
     processes is interleaved in a single CPU
   – Parallel processing: processes are concurrently
     executed in multiple CPUs.
                                                       Chapter 17-5
Figure 17.1 Interleaved processing versus
    parallel processing of concurrent
               transactions.
                                     Chapter 17-6
     17.1.2 Introduction to Transaction
                 Processing
A Transaction: logical unit of database processing that
 includes one or more database access operations (read
 -retrieval, write - insert or update, delete).
A transaction (set of operations) may be stand-
 alone specified in a high level language like SQL
 submitted interactively, or may be embedded within a
 program.
Transaction boundaries: Begin and End transaction.
An application program may contain several
 transactions separated by the Begin and End
 transaction boundaries.
                                                    Chapter 17-7
Whoa
       Chapter 17-8
                  Postgres SQL BEGIN
                                              optional keywords
BEGIN [ WORK | TRANSACTION ] ;
BEGIN initiates a transaction block.
All statements after BEGIN command will be executed in a single
transaction until an explicit COMMIT or ROLLBACK is given.
By default (without BEGIN), PostgreSQL executes transactions in
"autocommit" mode.
That is, each statement is executed in its own transaction; a
commit is implicitly performed at the end of the statement
if execution was successful, otherwise a rollback is done.
                                                            Chapter 17-9
                  Postgres BEGIN
BEGIN is a PostgreSQL language extension.
There is no explicit BEGIN command in the SQL standard;
In the SQL standard, transaction initiation is always implicit.
and transaction termination is either with a COMMIT or
ROLLBACK statement.
                                                        Chapter 17-10
             Pseudocode Example
BEGIN;
  // move $$$ from account A to account B
 UPDATE account A;
 UPDATE account B;
 if (everything worked fine)
    then COMMIT;
    else ROLLBACK;
                               ends the transaction
                                                      Chapter 17-11
                Recall: Basic Definitions
 Database System: The DBMS software together with the data
  itself. Sometimes, the applications are also included.
         database system
                                              database
          Application          DBMS            data
                                               catalog
  e.g., the student records database system
                                                         Chapter 17-12
  Introduction to Transaction Processing
                                                  database
Simple model of a database (for purposes
  of discussing transactions):                     data
                                                   catalog
A database - collection of named data items
Granularity of data - the size of a data item
                                                 Chapter 17-13
Introduction to Transaction Processing
                DBMS
            Buffer Manager
                                    Chapter 17-14
  Introduction to Transaction Processing
Basic operations are read and write
   – read_item(X): Reads a database item named X into a
     program variable. To simplify our notation, we assume
     that the program variable is also named X.
   – write_item(X): Writes the value of program variable X
     into the database item named X.
                                                 database
                               read_item(X)
Application
                  DBMS         write_item(X)      data
                                                  catalog
                                                      Chapter 17-15
  Introduction to Transaction Processing
READ AND WRITE OPERATIONS:
 Basic unit of data transfer from the disk to the 
   computer main memory is one block. In general, a 
   data item (what is read or written) will be the field 
   of some record in the database, although it may be a 
   larger unit such as a record or even a whole block.
                                               database
                              read_item(X)
Application
                 DBMS         write_item(X)     data
                                                catalog
                                                    Chapter 17-16
     Introduction to Transaction Processing
 read_item(X) command includes the following 
  steps:
2.    Find the address of the disk block that contains item X.
3.    Copy that disk block into a buffer in main memory (if that 
      disk block is not already in some main memory buffer).
4.    Copy item X from the buffer to the program variable named X. 
       
                                                          1.
                                                               database
     Application
       code               DBMS
                                                                data
                     3.   memory                2.              catalog
      memory               buffer
                                                                Chapter 17-17
     Introduction to Transaction Processing
      write_item(X)  command  includes  the  following 
       steps:
2.     Find the address of the disk block that contains item X.
3.     Copy  that  disk  block  into  a  buffer  in  main  memory  (if  that 
       disk block is not already in some main memory buffer).
4.     Copy  item  X  from  the  program  variable  named  X  into  its 
       correct location in the buffer.
5.     Store  the  updated  block  from  the  buffer  back  to  disk  (either 
       immediately or at some later point in time). 
                                                                   1.
                                                                        database
     Application
       code                  DBMS
                                                         2.
                                                                         data
      memory
                      3.     memory                                      catalog
                              buffer                     4.
                                                                         Chapter 17-18
Figure 17.2 Two sample transactions. (a) Transaction T1.
                  (b) Transaction T2.
                                                  Chapter 17-19
  Introduction to Transaction Processing
Why Concurrency Control is needed:
 The Lost Update Problem.
  This occurs when two transactions that access the same 
  database items have their operations interleaved in a 
  way that makes the value of some database item 
  incorrect. 
                                                  Chapter 17-20
Figure 17.3 Some problems that occur when concurrent
               execution is uncontrolled.
            (a) The lost update problem.
                                               Chapter 17-21
  Introduction to Transaction Processing
Why Concurrency Control is needed:
 The Temporary Update (or Dirty Read) Problem.
  This occurs when one transaction updates a database 
  item and then the transaction fails for some reason 
  (see Section 17.1.4). 
    
    The updated item is accessed by another transaction 
     before it is changed back to its original value.
                                                    Chapter 17-22
Figure17.3 (continued) Some problems that occur when
         concurrent execution is uncontrolled.
         (b) The temporary update problem.
                                               Chapter 17-23
  Introduction to Transaction Processing
Why Concurrency Control is needed (cont.):
 The Incorrect Summary Problem .
  If one transaction is calculating an aggregate 
  summary function on a number of records while other 
  transactions are updating some of these records, the 
  aggregate function may calculate some values before 
  they are updated and others after they are updated. 
                                                 Chapter 17-24
Figure17.3 (continued) Some problems that occur when
          concurrent execution is uncontrolled.
         (c) The incorrect summary problem.
                                              Chapter 17-25
     Introduction to Transaction Processing
Why recovery is needed:
(What causes a Transaction to fail)
1.   A computer failure (system crash): 
     A hardware or software error occurs in the computer 
     system during transaction execution. If the hardware 
     crashes, the contents of the computer’s internal memory 
     may be lost.
                                                     Chapter 17-26
    Introduction to Transaction Processing
Why recovery is needed:
(What causes a Transaction to fail)
2. A transaction or system error : 
     Some operation in the transaction may cause it to fail, 
    such as integer overflow or division by zero. 
    Transaction failure may also occur because of erroneous 
    parameter values or because of a logical programming 
    error. In addition, the user may interrupt the 
    transaction during its execution.
 
                                                       Chapter 17-27
  Introduction to Transaction Processing
Why recovery is needed
(What causes a Transaction to fail)
    3. Local errors or exception conditions detected by the 
      transaction: 
     certain conditions necessitate cancellation of the 
    transaction. For example, data for the transaction may 
    not be found. A condition, such as insufficient account 
    balance in a banking database, may cause a 
    transaction, such as a fund withdrawal from that 
    account, to be canceled. 
     a programmed abort in the transaction causes it to 
    fail.
                                                     Chapter 17-28
     Introduction to Transaction Processing
Why recovery is needed
(What causes a Transaction to fail)
4.    Concurrency control enforcement: 
      The concurrency control method may decide to abort 
      the transaction, to be restarted later, because it violates 
      serializability or because several transactions are in a 
      state of deadlock (see Chapter 18). 
                                                         Chapter 17-29
  Introduction to Transaction Processing
Why recovery is needed
(What causes a Transaction to fail)
5. Disk failure: 
       Some disk blocks may lose their data because of a read 
       or write malfunction or because of a disk read/write 
       head crash. This may happen during a read or a write 
       operation of the transaction. 
                                                     Chapter 17-30
  Introduction to Transaction Processing
Why recovery is needed
(What causes a Transaction to fail)
6.  Physical problems and catastrophes: 
       This refers to an endless list of problems that includes 
       power or airconditioning failure, fire, theft, sabotage, 
       overwriting disks or tapes by mistake, and mounting 
       of a wrong tape by the operator. 
                                                        Chapter 17-31
 17.2 Transaction and System Concepts
A transaction is an atomic unit of work that is either 
  completed in its entirety or not done at all. For 
  recovery purposes, the system needs to keep track of 
  when the transaction starts, terminates, and commits 
  or aborts.
Transaction states:
 Active state
 Partially committed state
 Committed state
 Failed state
 Terminated State 
                                                  Chapter 17-32
Figure17.4 State transition diagram illustrating the
         states for transaction execution.
                                               Chapter 17-33
DBMS Components
      DBMS
  Buffer Manager
 Recovery Manager
                    Chapter 17-34
     Transaction and System Concepts
Recovery manager keeps track of the           DBMS
  following operations:
 begin_transaction: This marks the beginning of 
  transaction execution.
 read or write: These specify read or write operations 
  on the database items that are executed as part of a 
  transaction.
                                                   Chapter 17-35
    Transaction and System Concepts
Recovery manager keeps track of the        DBMS
  following operations:
 end_transaction: This specifies that read and write 
  transaction operations have ended and marks the end 
  limit of transaction execution. 
 At this point it may be necessary to check whether 
  the changes introduced by the transaction can be 
  permanently applied to the database or whether the 
  transaction has to be aborted because it violates 
  concurrency control or for some other reason. ("Pre
  commmit")
                                                Chapter 17-36
     Transaction and System Concepts
                                                DBMS
Recovery manager keeps track of the 
  following operations (cont):
 commit_transaction: This signals a successful end of the 
  transaction so that any changes (updates) executed by 
  the transaction can be safely committed to the database 
  and will not be undone.
 rollback (or abort): This signals that the transaction has 
  ended unsuccessfully, so that any changes or effects that 
  the transaction may have applied to the database must 
  be undone.  
                                                     Chapter 17-37
    Transaction and System Concepts
                                       DBMS
Recovery techniques use the
  following operators:
undo: Similar to rollback except that it applies 
  to a single operation rather than to a whole 
  transaction.
redo: This specifies that certain transaction 
  operations must be redone to ensure that all the 
  operations of a committed transaction have been 
  applied successfully to the database. 
                                           Chapter 17-38
Figure17.4 State transition diagram illustrating the
         states for transaction execution.
                                               Chapter 17-39
     Transaction and System Concepts
The System Log
 Log or Journal : The log keeps track of all transaction 
  operations that affect the values of database items. This 
  information may be needed to permit recovery from 
  transaction failures. The log is kept on disk, so it is not 
  affected by any type of failure except for disk or 
  catastrophic failure. In addition, the log is periodically 
  backed up to archival storage (tape) to guard against 
  such catastrophic failures. 
 
 T in the following discussion refers to a unique 
  transactionid that is generated automatically by the 
  system and is used to identify each transaction: 
                                                      Chapter 17-40
     Transaction and System Concepts
The System Log (cont):
Types of log record: 
3. [start_transaction,T]: Records that transaction T has 
   started execution.
4. [write_item,T,X,old_value,new_value]: Records that 
   transaction T has changed the value of database item X 
   from old_value to new_value.
5. [read_item,T,X]: Records that transaction T  has read 
   the value of database item X.
6. [commit,T]: Records that transaction T has completed 
   successfully, and affirms that its effect can be 
   committed (recorded permanently) to the database.
7. [abort,T]: Records that transaction T has been aborted. 
                                                   Chapter 17-41
     Transaction and System Concepts
Recovery using log records:
If the system crashes, we can recover to a consistent 
     database state by examining the log and using one of 
     the techniques described in Chapter 19.
 Because the log contains a record of every write 
     operation that changes the value of some database 
     item, it is possible to undo the effect of these write 
     operations of a transaction T by tracing backward 
     through the log and resetting all items changed by a 
     write operation of T to their old_values.
 We can also redo the effect of the write operations of a 
     transaction T by tracing forward through the log and 
     setting all items changed by a write operation of T 
     (that did not get done permanently) to their 
     new_values.   
                                                    Chapter 17-42
     Transaction and System Concepts
Commit Point of a Transaction:
 Definition: A transaction T reaches its commit point 
  when all its operations that access the database have 
  been executed successfully and the effect of all the 
  transaction operations on the database has been 
  recorded in the log. 
 Beyond the commit point, the transaction is said to be 
  committed, and its effect is assumed to be permanently 
  recorded in the database.  The transaction then writes an 
  entry [commit,T] into the log. 
                                                   Chapter 17-43
     Transaction and System Concepts
Commit Point of a Transaction:
 Roll Back of transactions:  Needed for transactions 
  that have a [start_transaction,T] entry into the log but 
  no commit entry [commit,T] into the log. 
                                                    Chapter 17-44
     Transaction and System Concepts
Commit Point of a Transaction (cont):
 Redoing transactions: Transactions that have written 
  their commit entry in the log must also have recorded 
  all their write operations in the log; otherwise they 
  would not be committed, so their effect on the 
  database can be redone from the log entries. (Notice 
  that the log file must be kept on disk.  At the time of a 
  system crash, only the log entries that have been 
  written back to disk are considered in the recovery 
  process because the contents of main memory may be 
  lost.)
 When would you redo transactions (under what circumstances?
                                                     Chapter 17-45
     Transaction and System Concepts
Commit Point of a Transaction (cont):
 Force writing a log:  before a transaction reaches its 
  commit point, any portion of the log that has not been 
  written to the disk yet must now be written to the disk. 
  This process is called forcewriting the log file before 
  committing a transaction. 
                                                   Chapter 17-46
17.3 Desirable Properties of Transactions
ACID properties:
Atomicity: A transaction is an atomic unit of 
 processing; it is either performed in its entirety 
 or not performed at all.
Consistency preservation: A correct execution 
 of the transaction must take the database from 
 one consistent state to another.
                                              Chapter 17-47
   Desirable Properties of Transactions
ACID properties (cont.):
 Isolation: A transaction should not make its updates 
  visible to other transactions until it is committed; this 
  property, when enforced strictly, solves the temporary 
  update problem and makes cascading rollbacks of 
  transactions  unnecessary (see Chapter 21).
 Durability or permanency: Once a transaction changes 
  the database and the changes are committed, these 
  changes must never be lost because of subsequent 
  failure. 
                                                     Chapter 17-48
Notes
        Chapter 17-49
Notes
        Chapter 17-50
    Transaction and System Concepts
The System Log (cont):
 protocols for recovery that avoid cascading 
  rollbacks do not require that read operations 
  be written to the system log, whereas other 
  protocols require these entries for recovery. 
 strict protocols require simpler write entries 
  that do not include new_value (see Section 
  17.4). 
                                            Chapter 17-51
Notes
        Chapter 17-52
     17.4 Characterizing Schedules
      based on Recoverability (1)
 Transaction schedule or history: When transactions are
  executing concurrently in an interleaved fashion, the order of
  execution of operations from the various transactions forms
  what is known as a transaction schedule (or history).
 A schedule (or history) S of n transactions T1, T2, ..., Tn :
  It is an ordering of the operations of the transactions subject to
  the constraint that, for each transaction Ti that participates in
  S, the operations of T1 in S must appear in the same order in
  which they occur in T1. Note, however, that operations from
  other transactions Tj can be interleaved with the operations of
  Ti in S.
                                                           Chapter 17-53
 Characterizing Schedules based on
         Recoverability (2)
Schedules classified on recoverability:
Recoverable schedule: One where no transaction needs
 to be rolled back.
 A schedule S is recoverable if no transaction T in S commits
 until all transactions T’ that have written an item that T reads
 have committed.
Cascadeless schedule: One where every transaction reads
 only the items that are written by committed transactions.
 Schedules requiring cascaded rollback: A schedule in
 which uncommitted transactions that read an item from a
 failed transaction must be rolled back.
                                                        Chapter 17-54
 Characterizing Schedules based on
         Recoverability (3)
Schedules classified on recoverability (cont.):
Strict Schedules: A schedule in which a transaction
  can neither read or write an item X until the last
  transaction that wrote X has committed.
                                              Chapter 17-55
    17.5 Characterizing Schedules
      based on Serializability (1)
Serial schedule: A schedule S is serial if, for every
 transaction T participating in the schedule, all the
 operations of T are executed consecutively in the
 schedule. Otherwise, the schedule is called nonserial
 schedule.
Serializable schedule: A schedule S is serializable
 if it is equivalent to some serial schedule of the same
 n transactions.
                                                 Chapter 17-56
 Characterizing Schedules based on
          Serializability (2)
Result equivalent: Two schedules are called result
 equivalent if they produce the same final state of the
 database.
Conflict equivalent: Two schedules are said to be
 conflict equivalent if the order of any two conflicting
 operations is the same in both schedules.
Conflict serializable: A schedule S is said to be
 conflict serializable if it is conflict equivalent to
 some serial schedule S’.
                                                 Chapter 17-57
 Characterizing Schedules based on
          Serializability (3)
Being serializable is not the same as being serial
 Being serializable implies that the schedule is a 
  correct schedule.
  – It will leave the database in a consistent state. 
  – The interleaving is appropriate and will result in a 
    state as if the transactions were serially executed, yet 
    will achieve efficiency due to concurrent execution. 
                                                     Chapter 17-58
 Characterizing Schedules based on
          Serializability (4)
Serializability is hard to check.
  – Interleaving of operations occurs in an operating
    system through some scheduler
  – Difficult to determine beforehand how the
    operations in a schedule will be interleaved.
                                               Chapter 17-59
 Characterizing Schedules based on
          Serializability (5)
Practical approach:
Come up with methods (protocols) to ensure
  serializability.
It’s not possible to determine when a schedule begins
  and when it ends. Hence, we reduce the problem of
  checking the whole schedule to checking only a
  committed project of the schedule (i.e. operations
  from only the committed transactions.)
Current approach used in most DBMSs:
   – Use of locks with two phase locking
                                               Chapter 17-60
 Characterizing Schedules based on
          Serializability (6)
View equivalence: A less restrictive definition of
 equivalence of schedules
View serializability: definition of serializability
 based on view equivalence. A schedule is view
 serializable if it is view equivalent to a serial
 schedule.
                                                 Chapter 17-61
 Characterizing Schedules based on
          Serializability (7)
Two schedules are said to be view equivalent if the following
   three conditions hold:
2. The same set of transactions participates in S and S’, and S
   and S’ include the same operations of those transactions.
3. For any operation Ri(X) of Ti in S, if the value of X read by
   the operation has been written by an operation Wj(X) of Tj
   (or if it is the original value of X before the schedule started),
   the same condition must hold for the value of X read by
   operation Ri(X) of Ti in S’.
4. If the operation Wk(Y) of Tk is the last operation to write
   item Y in S, then Wk(Y) of Tk must also be the last operation
   to write item Y in S’.
                                                           Chapter 17-62
 Characterizing Schedules based on
          Serializability (8)
The premise behind view equivalence:
 As long as each read operation of a transaction reads
   the result of the same write operation in both
   schedules, the write operations of each transaction
   musr produce the same results.
 “The view”: the read operations are said to see the
   the same view in both schedules.
                                               Chapter 17-63
  Characterizing Schedules based on
           Serializability (9)
Relationship between view and conflict equivalence:
 The two are same under constrained write
   assumption which assumes that if T writes X, it is
   constrained by the value of X it read; i.e., new X =
   f(old X)
 Conflict serializability is stricter than view
   serializability. With unconstrained write (or blind
   write), a schedule that is view serializable is not
   necessarily conflict serialiable.
 Any conflict serializable schedule is also view
   serializable, but not vice versa.
                                                 Chapter 17-64
   Characterizing Schedules based on
           Serializability (10)
Relationship between view and conflict equivalence
   (cont):
Consider the following schedule of three transactions
T1: r1(X), w1(X);     T2: w2(X); and         T3: w3(X):
Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;
In Sa, the operations w2(X) and w3(X) are blind writes, since T1
    and T3 do not read the value of X.
Sa is view serializable, since it is view equivalent to the serial
     schedule T1, T2, T3. However, Sa is not conflict serializable,
     since it is not conflict equivalent to any serial schedule.
                                                          Chapter 17-65
    Characterizing Schedules based on
            Serializability (11)
Testing for conflict serializability
Algorithm 17.1:
    Looks at only read_Item (X) and write_Item (X) operations
    Constructs a precedence graph (serialization graph) - a graph
     with directed edges
    An edge is created from Ti to Tj if one of the operations in Ti
     appears before a conflicting operation in Tj
    The schedule is serializable if and only if the precedence graph
     has no cycles.
                                                           Chapter 17-66
Figure 17.7      Constructing the precedence graphs for schedules A and D from
   Figure 17.5 to test for conflict serializability. (a) Precedence graph for serial
schedule A. (b) Precedence graph for serial schedule B. (c) Precedence graph for
 schedule C (not serializable). (d) Precedence graph for schedule D (serializable,
                             equivalent to schedule A).
                                                                         Chapter 17-67
Figure 17.8 Another example of serializability testing. (a)
The READ and WRITE operations of three transactions T1,
                     T2, and T3.
                                                    Chapter 17-68
             FIGURE 17.8 (continued)
Another example of serializability testing. (b) Schedule E.
                                                     Chapter 17-69
FIGURE 17.8 (continued) Another example of
    serializability testing. (c) Schedule F.
                                           Chapter 17-70
  Characterizing Schedules based on
          Serializability (14)
Other Types of Equivalence of Schedules
 Under special semantic constraints, schedules that
   are otherwise not conflict serializable may work
   correctly. Using commutative operations of addition
   and subtraction (which can be done in any order)
   certain non-serializable transactions may work
   correctly
                                               Chapter 17-71
   Characterizing Schedules based on
           Serializability (15)
Other Types of Equivalence of Schedules (cont.)
Example: bank credit / debit transactions on a given item are 
      separable and commutative.
Consider the following schedule S for the two transactions:
Sh : r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);
Using conflict serializability, it is not serializable.
However, if it came from a (read,update, write) sequence as 
      follows: 
r1(X); X := X – 10; w1(X); r2(Y); Y := Y – 20;r1(Y); 
Y := Y + 10; w1(Y); r2(X); X := X + 20; (X);
Sequence explanation: debit, debit, credit, credit.
It is a correct schedule for the given semantics
                                                     Chapter 17-72
   17.6 Transaction Support in SQL2 (1)
A single SQL statement is always considered to
 be atomic. Either the statement completes
 execution without error or it fails and leaves the
 database unchanged.
With SQL, there is no explicit Begin Transaction
 statement. Transaction initiation is done
 implicitly when particular SQL statements are
 encountered.
Every transaction must have an explicit end
 statement, which is either a COMMIT or
 ROLLBACK.
                                                Chapter 17-73
      Transaction Support in SQL2 (2)
Characteristics specified by a SET
  TRANSACTION statement in SQL2:
 Access mode: READ ONLY or READ WRITE. The
  default is READ WRITE unless the isolation level of
  READ UNCOMITTED is specified, in which case
  READ ONLY is assumed.
 Diagnostic size n, specifies an integer value n,
  indicating the number of conditions that can be held
  simultaneously in the diagnostic area. (Supply user
  feedback information)
                                                    Chapter 17-74
      Transaction Support in SQL2 (3)
Characteristics specified by a SET
  TRANSACTION statement in SQL2 (cont.):
 Isolation level <isolation>, where <isolation> can be
  READ UNCOMMITTED, READ COMMITTED,
  REPEATABLE READ or SERIALIZABLE. The
  default is SERIALIZABLE.
  With SERIALIZABLE: the interleaved execution of 
  transactions  will adhere to our notion of 
  serializability. However, if any transaction executes 
  at a lower level, then serializability may be violated. 
                                                    Chapter 17-75
       Transaction Support in SQL2 (4)
Potential problem with lower isolation levels:
 Dirty Read: Reading a value that was written by a
  transaction which failed.
 Nonrepeatable Read: Allowing another transaction to
  write a new value between multiple reads of one
  transaction.
  A transaction T1 may read a given value from a table.
     If another transaction T2 later updates that value and
   T1 reads that value again, T1 will see a different value.
  Consider that T1 reads the employee salary for Smith.
  Next, T2 updates the salary for Smith. If T1 reads
  Smith's salary again, then it will see a different value for
   Smith's salary.
                                                         Chapter 17-76
      Transaction Support in SQL2 (5)
Potential problem with lower isolation levels
   (cont.):
 Phantoms: New rows being read using the same read
  with a condition. 
  A transaction T1  may read a set of rows from a 
  table,   perhaps based on some condition specified 
  in the SQL WHERE clause. Now suppose that a 
  transaction T2 inserts a new row that also satisfies 
  the WHERE clause condition of T1, into the table 
  used by T1.  If T1 is repeated, then T1 will see a row 
  that previously did not exist, called a phantom. 
                                                    Chapter 17-77
      Transaction Support in SQL2 (6)
Sample SQL transaction:
EXEC SQL whenever sqlerror go to UNDO;
EXEC SQL SET TRANSACTION
       READ WRITE
       DIAGNOSTICS SIZE 5
       ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT
      INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)
      VALUES ('Robert','Smith','991004321',2,35000);
EXEC SQL UPDATE EMPLOYEE
      SET SALARY = SALARY * 1.1
      WHERE DNO = 2;
EXEC SQL COMMIT;
      GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ...
                                                       Chapter 17-78
            Transaction Support in SQL2 (7)
Possible violation of serializabilty:
 
Type of Violation 
                                                     ___________________________________
  Isolation                                    Dirty       nonrepeatable         
   level                                          read              read                         phantom   
_____________________            _____ _________ ____________________
READ UNCOMMITTED           yes                yes                            yes   
READ COMMITTED                 no                 yes                            yes    
REPEATABLE READ                no                  no                             yes   
SERIALIZABLE                          no                 no                              no 
                                                                                                    Chapter 17-79
            Chapter 17
   Introduction to Transaction
Processing Concepts and Theory
 Figure17.2Two sample transactions.
(a) Transaction T1. (b) Transaction T2.
                                     Chapter 17-82
  Figure17.3 Some problems that occur when
concurrent execution is uncontrolled. (a) The lost
               update problem.
                                             Chapter 17-83
Figure17.3 (continued) Some problems that occur when
 concurrent execution is uncontrolled. (b) The temporary
                    update problem.
                                                  Chapter 17-84
Figure17.3 (continued) Some problems that occur when
 concurrent execution is uncontrolled. (c) The incorrect
                  summary problem.
                                                  Chapter 17-85
Figure17.4 State transition diagram illustrating the states for
                   transaction execution.
                                                       Chapter 17-86
 Figure17.5 Examples of serial and nonserial schedules
involving transactions T1 and T2. (a) Serial schedule A: T1
followed by T2. (b) Serial schedules B: T2 followed by T1.
                                                     Chapter 17-87
Figure17.5 (continued) Examples of serial and nonserial
   schedules involving transactions T1 and T2. (c) Two
    nonserial schedules C and D with interleaving of
                       operations.
                                                  Chapter 17-88
Figure 17.6 Two schedules that are result equivalent for the
   initial value of X = 100 but are not result equivalent in
                           general.
                                                     Chapter 17-89
Figure 17.7 Constructing the precedence graphs for schedules A and
 D from Figure 17.5 to test for conflict serializability. (a) Precedence
graph for serial schedule A. (b) Precedence graph for serial schedule
    B. (c) Precedence graph for schedule C (not serializable). (d)
Precedence graph for schedule D (serializable, equivalent to schedule
                                  A).
                                                                Chapter 17-90
 Figure 17.8 Another example of serializability
testing. (a) The READ and WRITE operations of
        three transactions T1, T2, and T3.
                                          Chapter 17-91
Figure17.8 (continued) Another example of
   serializability testing. (b) Schedule E.
                                         Chapter 17-92
FIGURE 17.8 (continued)
Another example of serializability testing. (c) Schedule F.
                                                      Slide 17-93
Figure 17.8
(continued)
Another example
of serializability
testing.
(d) Precedence graph
for schedule E.
(e) Precedence graph
for schedule F.
(f) Precedence graph
with two equivalent
serial schedules.
                       Slide 17-94