0% found this document useful (0 votes)
24 views52 pages

Trig Practice

The document contains various trigonometric problems and proofs, including finding values for sin 2A, cos 2A, and tan 2A given tan A in the second quadrant. It also includes proofs for multiple trigonometric identities and relationships, demonstrating the application of fundamental trigonometric formulas. Additionally, it features a quiz section with questions regarding trigonometric formulas.

Uploaded by

ktm.ishanagl
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PPTX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views52 pages

Trig Practice

The document contains various trigonometric problems and proofs, including finding values for sin 2A, cos 2A, and tan 2A given tan A in the second quadrant. It also includes proofs for multiple trigonometric identities and relationships, demonstrating the application of fundamental trigonometric formulas. Additionally, it features a quiz section with questions regarding trigonometric formulas.

Uploaded by

ktm.ishanagl
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PPTX, PDF, TXT or read online on Scribd
You are on page 1/ 52

1.

Find the values of sin 2A, cos 2A and tan 2A, when A lies in the
second quadrant and
1
tan A =
7
11 6
2. If cos 2A = , show that cos A =
25 52
3. Prove the following identities:
(a) (sin  + cos )2 – (sin  – cos )2 = 2sin 2
(b) cos4  – sin4  = cos 2
(c) 2sin2  + cos2 2 + 2sin2 .cos 2 = 1
sin 3A cos 3A
(d) – =2
sin A cos A
sin3  + cos3  1 sin 2
(e) =1–
sin  + cos  2
cos   1  sin 2
f) tan 
sin   1  sin 2
(g) (2cos  + 1)(2cos  – 1)(2cos 2 – 1) = 2cos 4 + 1
(c) 2sin2  + cos2 2 + 2sin2 .cos 2 = 1
Proof:
LHS = 2sin2  + cos2 2 + 2sin2 .cos 2
= 2sin2  + 2sin2 .cos 2 + cos2 2 Rearrange
= 2sin2  (1 + cos 2) + cos2 2 Take common
= 2sin2 . 2cos2  + cos2 2 Use 1 + cos 2 = 2cos2 

= (2sin . cos )2 + cos2 2 Use 2sin .cos  = sin 2

= (sin 2)2 + cos2 2


Use sin2 A+ cos2 A = 1
= sin2 2 + cos2 2 = 1
RHS, proved.
sin 3A cos 3A
(d) – =2
sin A cos A
Proof:

LHS = sin 3A cos 3A



sin A cos A
sin 3A.cos A – cos3A. sin A Take LCM
=
sin A.cos A
sin (3A – A) Use: sin A. cos B – cos A. sin B =
=
sin A.cos A sin (A – B)
sin 2A 2sin A. cos A
= = =2
sin A.cos A sin A.cos A
RHS, proved.
sin3  + cos3  1 sin 2
(e) =1–
sin  + cos  2
Proof:
sin3  + cos3 
LHS = Use: a3 + b3 = (a + b)(a2 – ab + b2)
sin  + cos 
(sin  + cos )(sin2  – sin .cos  + cos2 )
=
(sin  + cos )

= sin2  – sin .cos  + cos2 


– 1 .2 sin .cos 
= sin  + cos 
2 2
2
=1– 1 sin 2
2 RHS, proved.
cos   1  sin 2
f) tan 
sin   1  sin 2

cos   1  sin 2
Proof: LHS =
sin   1  sin 2
cos   sin 2   cos 2   2 sin  .cos 

sin   sin 2   cos 2   2 sin  .cos 
cos   (sin   cos  ) 2

sin   (sin   cos  ) 2
cos   (sin   cos  ) cos   sin   cos   sin 
  
sin   (sin   cos  ) sin   sin   cos   cos 

= tan  RHS, proved.


(g) (2cos  + 1)(2cos  – 1)(2cos 2 – 1) = 2cos 4 + 1
Proof: LHS = (2cos  + 1)(2cos  – 1)(2cos 2 – 1)

= (4cos2  – 1)(2cos 2 – 1) Use: (a + b)(a – b) = a2 – b2

= {2 x (2cos2 ) – 1}(2cos 2 – 1) Use: 2cos2  = 1 + cos 2


= {2 x (1 + cos 2 ) – (2cos 2 – 1)
= (2 1}
+ 2cos 2 – 1) (2cos 2 – 1)
= (2cos 2 + 1)(2cos 2 – 1) Use: (a + b)(a – b) = a2 – b2
= 4cos2 2 – 1
= 2 + 2cos 4 – 1
= 2 x (2cos2 2) – 1 Use: 2cos2 A = 1 + cos 2A
= 2cos 4 + 1
= 2 x (1 + cos 2. 2 ) – 1 A = 2
= 2 x (1 + cos 4 ) – 1 RHS, proved.
4. Prove the following identities:
1 + sin 2 + cos 2
a) = cot 
1 + sin 2  cos 2

b) (1 + sin 2 + cos 2)2 = 4cos2 (1 + sin 2)


1 1
c)  = cot A
tan 2A  tan A cot 2A  cot A
3 1
d)  =4
sin 20 o cos 20 o

e) 2  2  2  2 cos 8 A 2 cos A
f) cos3A.cos 3A + sin3 A.sin 3A = cos3 2A
1 + sin 2 + cos 2
a) = cot 
1 + sin 2  cos 2
Proof:
1 + sin 2 + cos 2
LHS =
1 + sin 2  cos 2
2cos2  + 2sin .cos
=
2sin2  + 2sincos 
2cos(cos  + sin )
=
2sin(sin  + cos )
= cot 
= RHS, proved.
b) (1 + sin 2 + cos 2)2 = 4cos2 (1 + sin 2)

Proof:
LHS = (1 + sin 2 + cos 2)2
= {(1 + cos 2) + sin 2}2

= {2cos2  + 2sin .cos }2


= {2cos  (cos  + sin )}2
= 4cos2  (cos2  + sin2  + 2sin .cos )
= 4cos2 (1 + sin 2)
= RHS, proved.
1 1
c)  = cot A
tan 2A  tan A cot 2A  cot A
Proof: 1 1
LHS = 
tan 2A  tan A cot 2A  cot A
1 1
= 
sin 2A sin A cos 2A cos A
 
cos 2A cos A sin 2A sin A
1 1
= 
sin 2Acos A – cos 2AsinA sin Acos 2A – sin 2Acos A
cos 2Acos A sin 2Asin A
cos 2Acos A sin 2Asin A cos 2Acos A sin 2Asin A
=  = 
sin (2A – A) sin(A – 2A) sin A  sin A
cos 2AcosA+ sin 2Asin A cos(2A – A) cos A
= = = = cot A
sin A sin A sin A
= RHS,
3 1
d)  =4
sin 20 o cos 20 o

Proof:
Method - I
3 1
2. (
3
2
cos 20 o
1 .sin 20o
2
)
LHS =  =
sin 20o cos 20o 1
sin 2.20o
3.cos 20o  1.sin 20o 2
=
sin 20o.cos 20o 2 (sin 60o.cos 20o  cos 60o.sin 20o)
=
1
2. 1 (3.cos 20o  1.sin 20o) sin 40o
2 2
=
1 .2. sin 20o.cos 20o 4 sin (60o  20o)
=
2 sin 40o
= 4 = RHS, proved.
Proof:
Method - II
3 1
LHS = 
sin 20 o cos 20o sin (60o  20o)
=
tan 60o 1 1 1 .2. sin 20o.cos 20o
=  2 2
sin 20 o cos 20o
4 sin 40o
sin 60o 1 =
=  sin 40o
cos 60o sin 20o cos 20o
= 4 = RHS, proved.
sin 60o.cos 20o  cos 60o.sin 20o
=
cos 60o. sin 20o. cos 20o
e) 2 2 2  2 cos 8 A 2 cos A
Proof:
LHS = 2  2  2  2 cos 8A Take 2 common

 2  2  2(1  cos 8 A)

 2  2  2{1  cos 2(4 A)} Use 1 + cos 2A= 2cos2 A

 2  2  2.2 cos 4 A  2  2  2 cos 4 A Remove sq. root


2

 2  2(1  cos 4 A)  2  2.2 cos 2 2 A Repeat method

 2  2 cos 2 A  2(1  cos 2 A)

 2.2 cos 2 A 2 cos A


= RHS, proved.
f) cos3A.cos 3A + sin3 A.sin 3A = cos3 2A
Proof: LHS = cos3A.cos 3A + sin3 A.sin 3A
1 .4. (cos3A.cos 3A + sin3 A.sin 3A)
=
4
1 cos 3A = 4 cos 3
A  3cos A
= (4cos3A.cos 3A + 4sin3 A.sin 3A)
4 4cos3 A = cos 3A + 3cos A
1
= [(cos 3A+ 3cos A).cos 3A + (3sin A – sin 3A).sin 3A]
4
1
= [cos2 3A+ 3cos A.cos 3A + 3sin A.sin 3A – sin2 3A]
4 sin 3A = 3sin A  4 sin3 A
1
= 4sin
[cos2 3A – sin2 3A+ 3(cos A.cos 3A + sin 3
=A3sin
A.sin A  sin 3A
3A)]
4
1 1 1
= [cos 2.(3A) + 3cos(A – 3A)] = [cos 3.(2A) + 3cos 2A] = .4cos3 2A
4 4 3 4
= cos 2A = RHS, proved.
QUIZ
1. The formula of sin 2A is
A. 2sin A. cos A
B. 2cos 2A  1

C. 2tan A
1 - tan2 A
D. Both A and C

A
Answer
2. The formula of 2sin2 A is
A. cos 2A – 1
B. 1 – cos 2A

C. 2tan A
1 – tan2 A
D. 1 + cos 2A

Answer
B
3. The formula of tan 2A is

A. 2tan A
1 + tan2 A
B. 1 – cos 2A

C. 1 + cos 2A

D. 2tan A
1 – tan2 A

Answer
D
4. The formula of 3sin A is

A. 3sin A – 4sin3 A

B. 4 sin3 A + sin 3A

C. 4 sin3 A – sin 3A

D. 3sin A + 4sin3 A

Answer
B
5. The formula of 4cos3 A is

A. cos 3A + 3cos A

B. cos 3A – 3cos A

C. 4 cos3 A – cos 3A

D. 4 cos3 A + cos 3A

A
Answer
6. The correct RHS for 2  2 cos 4A is

A. 2sin 2A

B. cos 2A

C. 2cos 2A

D. sin 2A

Answer
C
7. The correct RHS for (2cos  +1)(2cos   1) is

A. 1 + 2cos 2

B. 2cos 2  1

C. 2cos 2 + 1

D. Both (A) and (C)

Answer
B
3
8. If cos  = , the value of sin 3 is
5
44
A.
125
4
B.
5
44
C. 
125
4
D. 
5

AnswerA
5. Prove the following identities:
1
a ) cos   sin   (3  cos 4 )
6 6

4
 1 
b) cos   sin  cos 2  1  sin 2 
6 6 2

 4 
1
c) cos   sin  1  sin 2  sin 4 2
8 8 2

8
1
d ) sin   (3  4 cos 2  cos 4 )
4

8
1
e) cos   (3  4 cos 2  cos 4 )
4

8
f ) sin 5 16 sin 5   20 sin 3   5sin 
6. Prove the following:
a) 8cos3 10º  8sin3 20º  6cos10o + 6sin20o = 23

b) 4(cos3 20º + sin3 20º) = 3(cos20o + sin10o)

o 3 o 3 1 o 3 1
3. c) If cos 330  , show that (i) sin165  (ii) cos165 
2 2 2 2 2
6. b) 4(cos3 20º + sin3 10º) = 3(cos20o +
sin10o)
Proof: 4cos 3
A = cos 3A + 3cos A
LHS = 4(cos3 20º + sin3 10º) 4sin3=A3sin A  sin 3A
= 4cos3 20º + 4sin3 10º
= cos 3(20º) + 3 cos 20º + 3sin 10º  sin 3(10º)

= cos 60º + 3 cos 20º + 3sin 10 – sin 30o


1 o o 1
  3(cos 20  sin10 ) 
2 2
= 3(cos20o + sin10o)
= RHS, proved.
3 3 1 3 1
3. c) If cos 330o  , show that (i) sin165o  (ii) cos165o 
2 2 2 2 2
Solution: (ii)
We have, o
o 330 
cos165 cos   42 3
 2  
Since 165 o
lies in 8 2nd
the
1  cos 330o  1  cos 
 quadrant 
cos where 3 only
2 sine
3 1
2 ratio 2
is positive 2
8
3
1
 3  2
2
3  1
2

 2

2 8

 3 1
2
2 3 2 3 1
   
4 2
2 2 
2
2 2
Proved
REVIEW OF
Trigo. Transformation Formulae
Transformation of product into sum or difference Transformation of sum or difference into product

a) 2sin A.cos B = sin(A+B) + sin(A – B) C + D C–D


a) sin C + sin D = 2sin .cos
2 2
b) 2cos A.sin B = sin(A+B) – sin(A – B)
C + D C–D
b) sin C – sin D = 2cos .sin
c) 2cos A.cos B = cos(A + B) + cos(A – B) 2 2
C–D
d) – 2sin A.sin B = cos(A + B) – cos(A – B) c) cos C + cos D = 2cos C + D .cos
2 2
OR D–C
d) cos C – cos D = 2sin C + D .sin
2sin A.sin B = cos(A – B) – cos(A + B) 2 2

Memorize them
Next…
2. Prove that:
d) sin(45o + A) + sin(45o – A) = 2 cos A
Solution: Use: sin C + sin D
LHS = sin(45o + A) + sin(45o – A) C + D .cos C – D
=2sin
o o
(45  A)  (45  A) o o
(45  A)  (45  A) 2 2
2sin .cos
2 2 OR
90o 2A
2sin .cos
2 2 Use: 2sin A.cos B =
2sin 45o.cos A sin(A+B) + sin(A – B)
1 LHS = sin(45o + A) + sin(45o – A)
2 .cos A
2 2sin 45o.cos A
 2 cos A = RHS 1
2 .cos A
Proved
2
 2 cos A = RHS Proved
e) 2co(45o – A).cos(45o + A) = cos 2A
Solution: Use: 2cos A.cos B
LHS = 2co(45o – A).cos(45o + A)
= cos(A + B) + cos(A – B)
= cos{(45o – A) + (45o + A)} + cos{(45o – A) – (45o + A)}

= cos90o + cos 2A

= 0 + cos 2A

= cos 2A

= RHS
Proved
 2   4 
g ) sin A  sin  A    sin  A   0
 3   3 
Solution:
 2   4 
LHS  sin A  sin  A    sin  A   Use: sin C + sin D
 3   3 
C+D C–D
=2sin .cos
  
 sin A  sin A  120o  sin A  240o  Since  = 180o 2 2

( A  120o )  ( A  240o ) ( A  120o )  ( A  240o )


 sin A  2sin .cos
2 2

2 A  360o  120o
 sin A  2sin .cos
2 2

 sin A  2sin(180o  A).cos 60o Since cos(-A) = cos A

1
 sin A  2(  sin A).  sin A  sin A  0 = RHS
2
Proved
3. Prove the following identities:
cos A  cos B AB A B
f) cot cot
cos B  cos A 2 2

Solution: C + D .cos C – D
Use: cos C + cos D = 2cos
cos A  cos B 2 2
LHS 
cos B  cos A C + D .sin D – C
and cos C – cos D = 2sin
2 2

A + B .cos A – B
2cos
2 2
=
A + B .sin A – B
2sin
2 2
A + B .cot A – B
= cot
2 2
= RHS
Proved
sin 2 A  sin 2 B tan( A  B)
e) 
sin 2 A  sin 2 B tan( A  B)
Solution:
Use: sin C + sin D
sin 2 A  sin 2 B
LHS  C + D .cos C–D
sin 2 A  sin 2 B =2sin
2 2
2 A  2B 2 A  2B
2sin .cos Use: sin C – sin D
2 2
= C+D C–D
2 A  2B 2 A  2B =2cos .sin
2 cos .sin 2 2
2 2
2( A  B) 2( A  B)
sin .cos
2 2
=
2( A  B) 2( A  B)
cos .sin
2 2

sin( A  B) cos( A  B) tan( A  B )


= tan( A  B) cot( A  B)  = RHS
cos( A  B) sin( A  B) tan( A  B) Proved
cos10o  sin10o o
h)  tan 35
cos10o  sin10o

Solution:
cos10o  sin10o
LHS 
cos10o  sin10o C + D .sin D – C
Use: cos C – cos D = 2sin
2 2
cos10o  sin (90o  80o ) C + D .cos C – D
= and cos C + cos D = 2cos
cos10o  sin (90o  80o ) 2 2

cos10o  cos80o

cos10o  cos80o

Do it yourself …
i ) cos 7  cos 5  cos 3  cos  4 cos  cos 2 cos 4

Solution:
LHS cos 7  cos 5  cos 3  cos  Use: cos C + cos D
(cos 7  cos  )  (cos 5  cos 3 ) C + D .cos C – D
= 2cos
2 2
7   7   5  3 5  3
2 cos cos  2 cos cos
2 2 2 2
2 cos 4 cos 3  2 cos 4 cos 

2 cos 4 (cos 3  cos  )


3   3  
2 cos 4 .2 cos cos
2 2
4 cos 4 cos 2 cos 
4 cos  cos 2 cos 4
= RHS
Proved
j ) sin 4 cos 2  cos 3 sin  sin 5 cos 

Solution:

LHS sin 4 cos 2  cos 3 sin  Use: 2sin Acos B =


sin(A + B) + sin(A – B)
1
 .(2sin 4 cos 2  2 cos 3 sin  ) &
2
1 [sin(4  2 )  sin(4  2 )  sin(3   )  sin(3   )] 2cos Asin B =

2 sin(A + B) – sin(A – B)
1
 (sin 6  sin 2  sin 4  sin 2 )
2 Use: sin C + sin D
1 .2sin 6  4 cos 6  4 C + D .cos C–D
 =2sin
2 2 2 2 2
sin 5 cos 

= RHS
Proved
4. Prove that:
cos 4 x  cos 3 x  cos 2 x
a) cot 3 x
sin 4 x  sin 3 x  sin 2 x
Solution:
cos 4 x  cos 3 x  cos 2 x
LHS 
sin 4 x  sin 3 x  sin 2 x
(cos 4 x  cos 2 x)  cos 3 x

(sin 4 x  sin 2 x)  sin 3 x
4x  2x 4x  2x
2 cos cos  cos 3 x
 2 2
4x  2x 4x  2x
2sin cos  sin 3 x
2 2
2 cos 3 x cos x  cos 3 x

2sin 3 x cos x  sin 3 x
cos 3 x(2 cos x  1)
 cot 3x = RHS
sin 3 x(2 cos x  1)
Proved
sin(   )  2sin   sin(   )
c) tan 
cos(   )  2 cos   cos(   )
Solution:
sin(   )  2sin   sin(   )
LHS 
cos(   )  2 cos   cos(   )
[sin(   )  sin(   )]  2sin 

[cos(   )  cos(   )]  2 cos 
2sin  cos   2sin 

2 cos  cos   2 cos 
2sin  (cos   1)

2 cos  (cos   1)
tan 

= RHS
Proved
Prove that:
i) sin5A – sin3A + 2sinAcos2A = 2sin2Acos3A
Solution:
LHS = sin5A – sin3A + 2sinAcos2A

= 2cos().sin () + 2sinAcos2A

= 2cos4A.sinA + 2sinAcos2A
= 2sinA(cos4A + cos2A)
= 2sinA(2cos ().cos())

= 4sinAcos3AcosA
= 2(2sinAcosA)cos3A
= 2sin2Acos3A
= RHS
Proved
4f. Prove that: = tan2

=
Solution:
LHS =

= =

= = tan2

=
= R
H
Proved

= S
4g. Prove that: = tan(
Solution:

=
=
=
=
=
= [∵ cos(-A) = cosA]
=
= tan( = RHS
Proved
5a. Prove that:
+ - =

Solution:
LHS = + -

= {sin +

= (2sin

= (2sin

= (sin2.(sin2.

= sinsinA = =
R Proved
5c. Prove that: =
Solution:
LHS =
= [2sin2]

= [(1-cos2+120o) + 1 cos2(120o)]

= [3 – cos2+ 240o) + cos 240o)}]

= [3 – cos2.cos240o]

= [3 – cos2)] [∵ cos(240o) = cos(180o+60o) = -cos60o =

= [3 – cos2] = = RHS
Proved
5d. Prove that: = cos3Ө
Solution:
LHS
=
= cos

= cos)+ (60o – )} + cos{) (60o – )}]

= cos] = cos

= cos] [∵ cos(120
= cos
o
) = cos(180 o
- 60 o
) = -cos60 o
=

= cos = cos

= =
R
Proved
5c. Prove that: =
Solution:
LHS =
= [2sin2]

= [(1-cos2+120o) + 1 cos2(120o)]

= [3 – cos2+ 240o) + cos 240o)}]

= [3 – cos2.cos240o]

= [3 – cos2)] [∵ cos(240o) = cos(180o+60o) = -cos60o =

= [3 – cos2] = = RHS
Proved
5d. Prove that: = cos3Ө
Solution:
LHS
=
= cos

= cos)+ (60o – )} + cos{) (60o – )}]

= cos] = cos

= cos] [∵ cos(120
= cos
o
) = cos(180 o
- 60 o
) = -cos60 o
=

= cos = cos

= =
R
Proved
7a. Prove that: (cosα +cosβ) +(sinα +sinβ) = 4cos ( )
2 2 2

LHS (cosα +cosβ)2 +(sinα +sinβ)2


Solution:

=
= (2cos 2
+ (2sin 2

= 4cos2( + 4sin2(

=4 {cos2( + sin2(

=4

=
R
H
Proved

S
cos 2 A cos 3 A  cos 2 A cos 7 A sin 7 A  sin 3 A
Prove that: 
sin 4 A sin 3 A  sin 2 A sin 5 A sin A
Solution:
cos 2 A cos 3 A  cos 2 A cos 7 A
LHS 
sin 4 A sin 3 A  sin 2 A sin 5 A
2 cos 2 A cos 3 A  2 cos 2 A cos 7 A

2sin 4 A sin 3 A  2sin 2 A sin 5 A
cos(2 A  3 A)  cos(2 A  3 A)   cos(2 A  7 A)  cos(2 A  7 A)

cos(4 A  3 A)  cos(4 A  3 A)   cos(2 A  5 A)  cos(2 A  5 A)

cos 5 A  cos A  cos 9 A  cos 5 A sin 5 A.2sin 2 A cos 2 A


 
cos A  cos 7 A  cos 3 A  cos 7 A sin 2 A sin A

A 9A 9A  A sin(5 A  2 A)  sin(5 A  2 A)


2sin sin 
cos A  cos 9 A 2 2  sin 5 A sin 4 A sin A
 
cos A  cos 3 A 2sin A  3 A sin 3 A  A sin 2 A sin A sin 7 A  sin 3 A
2 2  = RHS
sin A
Proved
Prove that: Cos 52o + cos 68o + cos 172o
=0
Solution:
LHS = cos 52o + cos 68o + cos 172o

52o  68o 52o  68o


2 cos cos  cos172o
2 2

2 cos 60o cos8o  cos172o

1
2. cos8o  cos(180o  8o )
2
cos8o  cos8o

0

= RHS
Proved

You might also like