1.
Find the values of sin 2A, cos 2A and tan 2A, when A lies in the
second quadrant and
1
tan A =
7
11 6
2. If cos 2A = , show that cos A =
25 52
3. Prove the following identities:
(a) (sin + cos )2 – (sin – cos )2 = 2sin 2
(b) cos4 – sin4 = cos 2
(c) 2sin2 + cos2 2 + 2sin2 .cos 2 = 1
sin 3A cos 3A
(d) – =2
sin A cos A
sin3 + cos3 1 sin 2
(e) =1–
sin + cos 2
cos 1 sin 2
f) tan
sin 1 sin 2
(g) (2cos + 1)(2cos – 1)(2cos 2 – 1) = 2cos 4 + 1
(c) 2sin2 + cos2 2 + 2sin2 .cos 2 = 1
Proof:
LHS = 2sin2 + cos2 2 + 2sin2 .cos 2
= 2sin2 + 2sin2 .cos 2 + cos2 2 Rearrange
= 2sin2 (1 + cos 2) + cos2 2 Take common
= 2sin2 . 2cos2 + cos2 2 Use 1 + cos 2 = 2cos2
= (2sin . cos )2 + cos2 2 Use 2sin .cos = sin 2
= (sin 2)2 + cos2 2
Use sin2 A+ cos2 A = 1
= sin2 2 + cos2 2 = 1
RHS, proved.
sin 3A cos 3A
(d) – =2
sin A cos A
Proof:
LHS = sin 3A cos 3A
–
sin A cos A
sin 3A.cos A – cos3A. sin A Take LCM
=
sin A.cos A
sin (3A – A) Use: sin A. cos B – cos A. sin B =
=
sin A.cos A sin (A – B)
sin 2A 2sin A. cos A
= = =2
sin A.cos A sin A.cos A
RHS, proved.
sin3 + cos3 1 sin 2
(e) =1–
sin + cos 2
Proof:
sin3 + cos3
LHS = Use: a3 + b3 = (a + b)(a2 – ab + b2)
sin + cos
(sin + cos )(sin2 – sin .cos + cos2 )
=
(sin + cos )
= sin2 – sin .cos + cos2
– 1 .2 sin .cos
= sin + cos
2 2
2
=1– 1 sin 2
2 RHS, proved.
cos 1 sin 2
f) tan
sin 1 sin 2
cos 1 sin 2
Proof: LHS =
sin 1 sin 2
cos sin 2 cos 2 2 sin .cos
sin sin 2 cos 2 2 sin .cos
cos (sin cos ) 2
sin (sin cos ) 2
cos (sin cos ) cos sin cos sin
sin (sin cos ) sin sin cos cos
= tan RHS, proved.
(g) (2cos + 1)(2cos – 1)(2cos 2 – 1) = 2cos 4 + 1
Proof: LHS = (2cos + 1)(2cos – 1)(2cos 2 – 1)
= (4cos2 – 1)(2cos 2 – 1) Use: (a + b)(a – b) = a2 – b2
= {2 x (2cos2 ) – 1}(2cos 2 – 1) Use: 2cos2 = 1 + cos 2
= {2 x (1 + cos 2 ) – (2cos 2 – 1)
= (2 1}
+ 2cos 2 – 1) (2cos 2 – 1)
= (2cos 2 + 1)(2cos 2 – 1) Use: (a + b)(a – b) = a2 – b2
= 4cos2 2 – 1
= 2 + 2cos 4 – 1
= 2 x (2cos2 2) – 1 Use: 2cos2 A = 1 + cos 2A
= 2cos 4 + 1
= 2 x (1 + cos 2. 2 ) – 1 A = 2
= 2 x (1 + cos 4 ) – 1 RHS, proved.
4. Prove the following identities:
1 + sin 2 + cos 2
a) = cot
1 + sin 2 cos 2
b) (1 + sin 2 + cos 2)2 = 4cos2 (1 + sin 2)
1 1
c) = cot A
tan 2A tan A cot 2A cot A
3 1
d) =4
sin 20 o cos 20 o
e) 2 2 2 2 cos 8 A 2 cos A
f) cos3A.cos 3A + sin3 A.sin 3A = cos3 2A
1 + sin 2 + cos 2
a) = cot
1 + sin 2 cos 2
Proof:
1 + sin 2 + cos 2
LHS =
1 + sin 2 cos 2
2cos2 + 2sin .cos
=
2sin2 + 2sincos
2cos(cos + sin )
=
2sin(sin + cos )
= cot
= RHS, proved.
b) (1 + sin 2 + cos 2)2 = 4cos2 (1 + sin 2)
Proof:
LHS = (1 + sin 2 + cos 2)2
= {(1 + cos 2) + sin 2}2
= {2cos2 + 2sin .cos }2
= {2cos (cos + sin )}2
= 4cos2 (cos2 + sin2 + 2sin .cos )
= 4cos2 (1 + sin 2)
= RHS, proved.
1 1
c) = cot A
tan 2A tan A cot 2A cot A
Proof: 1 1
LHS =
tan 2A tan A cot 2A cot A
1 1
=
sin 2A sin A cos 2A cos A
cos 2A cos A sin 2A sin A
1 1
=
sin 2Acos A – cos 2AsinA sin Acos 2A – sin 2Acos A
cos 2Acos A sin 2Asin A
cos 2Acos A sin 2Asin A cos 2Acos A sin 2Asin A
= =
sin (2A – A) sin(A – 2A) sin A sin A
cos 2AcosA+ sin 2Asin A cos(2A – A) cos A
= = = = cot A
sin A sin A sin A
= RHS,
3 1
d) =4
sin 20 o cos 20 o
Proof:
Method - I
3 1
2. (
3
2
cos 20 o
1 .sin 20o
2
)
LHS = =
sin 20o cos 20o 1
sin 2.20o
3.cos 20o 1.sin 20o 2
=
sin 20o.cos 20o 2 (sin 60o.cos 20o cos 60o.sin 20o)
=
1
2. 1 (3.cos 20o 1.sin 20o) sin 40o
2 2
=
1 .2. sin 20o.cos 20o 4 sin (60o 20o)
=
2 sin 40o
= 4 = RHS, proved.
Proof:
Method - II
3 1
LHS =
sin 20 o cos 20o sin (60o 20o)
=
tan 60o 1 1 1 .2. sin 20o.cos 20o
= 2 2
sin 20 o cos 20o
4 sin 40o
sin 60o 1 =
= sin 40o
cos 60o sin 20o cos 20o
= 4 = RHS, proved.
sin 60o.cos 20o cos 60o.sin 20o
=
cos 60o. sin 20o. cos 20o
e) 2 2 2 2 cos 8 A 2 cos A
Proof:
LHS = 2 2 2 2 cos 8A Take 2 common
2 2 2(1 cos 8 A)
2 2 2{1 cos 2(4 A)} Use 1 + cos 2A= 2cos2 A
2 2 2.2 cos 4 A 2 2 2 cos 4 A Remove sq. root
2
2 2(1 cos 4 A) 2 2.2 cos 2 2 A Repeat method
2 2 cos 2 A 2(1 cos 2 A)
2.2 cos 2 A 2 cos A
= RHS, proved.
f) cos3A.cos 3A + sin3 A.sin 3A = cos3 2A
Proof: LHS = cos3A.cos 3A + sin3 A.sin 3A
1 .4. (cos3A.cos 3A + sin3 A.sin 3A)
=
4
1 cos 3A = 4 cos 3
A 3cos A
= (4cos3A.cos 3A + 4sin3 A.sin 3A)
4 4cos3 A = cos 3A + 3cos A
1
= [(cos 3A+ 3cos A).cos 3A + (3sin A – sin 3A).sin 3A]
4
1
= [cos2 3A+ 3cos A.cos 3A + 3sin A.sin 3A – sin2 3A]
4 sin 3A = 3sin A 4 sin3 A
1
= 4sin
[cos2 3A – sin2 3A+ 3(cos A.cos 3A + sin 3
=A3sin
A.sin A sin 3A
3A)]
4
1 1 1
= [cos 2.(3A) + 3cos(A – 3A)] = [cos 3.(2A) + 3cos 2A] = .4cos3 2A
4 4 3 4
= cos 2A = RHS, proved.
QUIZ
1. The formula of sin 2A is
A. 2sin A. cos A
B. 2cos 2A 1
C. 2tan A
1 - tan2 A
D. Both A and C
A
Answer
2. The formula of 2sin2 A is
A. cos 2A – 1
B. 1 – cos 2A
C. 2tan A
1 – tan2 A
D. 1 + cos 2A
Answer
B
3. The formula of tan 2A is
A. 2tan A
1 + tan2 A
B. 1 – cos 2A
C. 1 + cos 2A
D. 2tan A
1 – tan2 A
Answer
D
4. The formula of 3sin A is
A. 3sin A – 4sin3 A
B. 4 sin3 A + sin 3A
C. 4 sin3 A – sin 3A
D. 3sin A + 4sin3 A
Answer
B
5. The formula of 4cos3 A is
A. cos 3A + 3cos A
B. cos 3A – 3cos A
C. 4 cos3 A – cos 3A
D. 4 cos3 A + cos 3A
A
Answer
6. The correct RHS for 2 2 cos 4A is
A. 2sin 2A
B. cos 2A
C. 2cos 2A
D. sin 2A
Answer
C
7. The correct RHS for (2cos +1)(2cos 1) is
A. 1 + 2cos 2
B. 2cos 2 1
C. 2cos 2 + 1
D. Both (A) and (C)
Answer
B
3
8. If cos = , the value of sin 3 is
5
44
A.
125
4
B.
5
44
C.
125
4
D.
5
AnswerA
5. Prove the following identities:
1
a ) cos sin (3 cos 4 )
6 6
4
1
b) cos sin cos 2 1 sin 2
6 6 2
4
1
c) cos sin 1 sin 2 sin 4 2
8 8 2
8
1
d ) sin (3 4 cos 2 cos 4 )
4
8
1
e) cos (3 4 cos 2 cos 4 )
4
8
f ) sin 5 16 sin 5 20 sin 3 5sin
6. Prove the following:
a) 8cos3 10º 8sin3 20º 6cos10o + 6sin20o = 23
b) 4(cos3 20º + sin3 20º) = 3(cos20o + sin10o)
o 3 o 3 1 o 3 1
3. c) If cos 330 , show that (i) sin165 (ii) cos165
2 2 2 2 2
6. b) 4(cos3 20º + sin3 10º) = 3(cos20o +
sin10o)
Proof: 4cos 3
A = cos 3A + 3cos A
LHS = 4(cos3 20º + sin3 10º) 4sin3=A3sin A sin 3A
= 4cos3 20º + 4sin3 10º
= cos 3(20º) + 3 cos 20º + 3sin 10º sin 3(10º)
= cos 60º + 3 cos 20º + 3sin 10 – sin 30o
1 o o 1
3(cos 20 sin10 )
2 2
= 3(cos20o + sin10o)
= RHS, proved.
3 3 1 3 1
3. c) If cos 330o , show that (i) sin165o (ii) cos165o
2 2 2 2 2
Solution: (ii)
We have, o
o 330
cos165 cos 42 3
2
Since 165 o
lies in 8 2nd
the
1 cos 330o 1 cos
quadrant
cos where 3 only
2 sine
3 1
2 ratio 2
is positive 2
8
3
1
3 2
2
3 1
2
2
2 8
3 1
2
2 3 2 3 1
4 2
2 2
2
2 2
Proved
REVIEW OF
Trigo. Transformation Formulae
Transformation of product into sum or difference Transformation of sum or difference into product
a) 2sin A.cos B = sin(A+B) + sin(A – B) C + D C–D
a) sin C + sin D = 2sin .cos
2 2
b) 2cos A.sin B = sin(A+B) – sin(A – B)
C + D C–D
b) sin C – sin D = 2cos .sin
c) 2cos A.cos B = cos(A + B) + cos(A – B) 2 2
C–D
d) – 2sin A.sin B = cos(A + B) – cos(A – B) c) cos C + cos D = 2cos C + D .cos
2 2
OR D–C
d) cos C – cos D = 2sin C + D .sin
2sin A.sin B = cos(A – B) – cos(A + B) 2 2
Memorize them
Next…
2. Prove that:
d) sin(45o + A) + sin(45o – A) = 2 cos A
Solution: Use: sin C + sin D
LHS = sin(45o + A) + sin(45o – A) C + D .cos C – D
=2sin
o o
(45 A) (45 A) o o
(45 A) (45 A) 2 2
2sin .cos
2 2 OR
90o 2A
2sin .cos
2 2 Use: 2sin A.cos B =
2sin 45o.cos A sin(A+B) + sin(A – B)
1 LHS = sin(45o + A) + sin(45o – A)
2 .cos A
2 2sin 45o.cos A
2 cos A = RHS 1
2 .cos A
Proved
2
2 cos A = RHS Proved
e) 2co(45o – A).cos(45o + A) = cos 2A
Solution: Use: 2cos A.cos B
LHS = 2co(45o – A).cos(45o + A)
= cos(A + B) + cos(A – B)
= cos{(45o – A) + (45o + A)} + cos{(45o – A) – (45o + A)}
= cos90o + cos 2A
= 0 + cos 2A
= cos 2A
= RHS
Proved
2 4
g ) sin A sin A sin A 0
3 3
Solution:
2 4
LHS sin A sin A sin A Use: sin C + sin D
3 3
C+D C–D
=2sin .cos
sin A sin A 120o sin A 240o Since = 180o 2 2
( A 120o ) ( A 240o ) ( A 120o ) ( A 240o )
sin A 2sin .cos
2 2
2 A 360o 120o
sin A 2sin .cos
2 2
sin A 2sin(180o A).cos 60o Since cos(-A) = cos A
1
sin A 2( sin A). sin A sin A 0 = RHS
2
Proved
3. Prove the following identities:
cos A cos B AB A B
f) cot cot
cos B cos A 2 2
Solution: C + D .cos C – D
Use: cos C + cos D = 2cos
cos A cos B 2 2
LHS
cos B cos A C + D .sin D – C
and cos C – cos D = 2sin
2 2
A + B .cos A – B
2cos
2 2
=
A + B .sin A – B
2sin
2 2
A + B .cot A – B
= cot
2 2
= RHS
Proved
sin 2 A sin 2 B tan( A B)
e)
sin 2 A sin 2 B tan( A B)
Solution:
Use: sin C + sin D
sin 2 A sin 2 B
LHS C + D .cos C–D
sin 2 A sin 2 B =2sin
2 2
2 A 2B 2 A 2B
2sin .cos Use: sin C – sin D
2 2
= C+D C–D
2 A 2B 2 A 2B =2cos .sin
2 cos .sin 2 2
2 2
2( A B) 2( A B)
sin .cos
2 2
=
2( A B) 2( A B)
cos .sin
2 2
sin( A B) cos( A B) tan( A B )
= tan( A B) cot( A B) = RHS
cos( A B) sin( A B) tan( A B) Proved
cos10o sin10o o
h) tan 35
cos10o sin10o
Solution:
cos10o sin10o
LHS
cos10o sin10o C + D .sin D – C
Use: cos C – cos D = 2sin
2 2
cos10o sin (90o 80o ) C + D .cos C – D
= and cos C + cos D = 2cos
cos10o sin (90o 80o ) 2 2
cos10o cos80o
cos10o cos80o
Do it yourself …
i ) cos 7 cos 5 cos 3 cos 4 cos cos 2 cos 4
Solution:
LHS cos 7 cos 5 cos 3 cos Use: cos C + cos D
(cos 7 cos ) (cos 5 cos 3 ) C + D .cos C – D
= 2cos
2 2
7 7 5 3 5 3
2 cos cos 2 cos cos
2 2 2 2
2 cos 4 cos 3 2 cos 4 cos
2 cos 4 (cos 3 cos )
3 3
2 cos 4 .2 cos cos
2 2
4 cos 4 cos 2 cos
4 cos cos 2 cos 4
= RHS
Proved
j ) sin 4 cos 2 cos 3 sin sin 5 cos
Solution:
LHS sin 4 cos 2 cos 3 sin Use: 2sin Acos B =
sin(A + B) + sin(A – B)
1
.(2sin 4 cos 2 2 cos 3 sin ) &
2
1 [sin(4 2 ) sin(4 2 ) sin(3 ) sin(3 )] 2cos Asin B =
2 sin(A + B) – sin(A – B)
1
(sin 6 sin 2 sin 4 sin 2 )
2 Use: sin C + sin D
1 .2sin 6 4 cos 6 4 C + D .cos C–D
=2sin
2 2 2 2 2
sin 5 cos
= RHS
Proved
4. Prove that:
cos 4 x cos 3 x cos 2 x
a) cot 3 x
sin 4 x sin 3 x sin 2 x
Solution:
cos 4 x cos 3 x cos 2 x
LHS
sin 4 x sin 3 x sin 2 x
(cos 4 x cos 2 x) cos 3 x
(sin 4 x sin 2 x) sin 3 x
4x 2x 4x 2x
2 cos cos cos 3 x
2 2
4x 2x 4x 2x
2sin cos sin 3 x
2 2
2 cos 3 x cos x cos 3 x
2sin 3 x cos x sin 3 x
cos 3 x(2 cos x 1)
cot 3x = RHS
sin 3 x(2 cos x 1)
Proved
sin( ) 2sin sin( )
c) tan
cos( ) 2 cos cos( )
Solution:
sin( ) 2sin sin( )
LHS
cos( ) 2 cos cos( )
[sin( ) sin( )] 2sin
[cos( ) cos( )] 2 cos
2sin cos 2sin
2 cos cos 2 cos
2sin (cos 1)
2 cos (cos 1)
tan
= RHS
Proved
Prove that:
i) sin5A – sin3A + 2sinAcos2A = 2sin2Acos3A
Solution:
LHS = sin5A – sin3A + 2sinAcos2A
= 2cos().sin () + 2sinAcos2A
= 2cos4A.sinA + 2sinAcos2A
= 2sinA(cos4A + cos2A)
= 2sinA(2cos ().cos())
= 4sinAcos3AcosA
= 2(2sinAcosA)cos3A
= 2sin2Acos3A
= RHS
Proved
4f. Prove that: = tan2
=
Solution:
LHS =
= =
= = tan2
=
= R
H
Proved
= S
4g. Prove that: = tan(
Solution:
=
=
=
=
=
= [∵ cos(-A) = cosA]
=
= tan( = RHS
Proved
5a. Prove that:
+ - =
Solution:
LHS = + -
= {sin +
= (2sin
= (2sin
= (sin2.(sin2.
= sinsinA = =
R Proved
5c. Prove that: =
Solution:
LHS =
= [2sin2]
= [(1-cos2+120o) + 1 cos2(120o)]
= [3 – cos2+ 240o) + cos 240o)}]
= [3 – cos2.cos240o]
= [3 – cos2)] [∵ cos(240o) = cos(180o+60o) = -cos60o =
= [3 – cos2] = = RHS
Proved
5d. Prove that: = cos3Ө
Solution:
LHS
=
= cos
= cos)+ (60o – )} + cos{) (60o – )}]
= cos] = cos
= cos] [∵ cos(120
= cos
o
) = cos(180 o
- 60 o
) = -cos60 o
=
= cos = cos
= =
R
Proved
5c. Prove that: =
Solution:
LHS =
= [2sin2]
= [(1-cos2+120o) + 1 cos2(120o)]
= [3 – cos2+ 240o) + cos 240o)}]
= [3 – cos2.cos240o]
= [3 – cos2)] [∵ cos(240o) = cos(180o+60o) = -cos60o =
= [3 – cos2] = = RHS
Proved
5d. Prove that: = cos3Ө
Solution:
LHS
=
= cos
= cos)+ (60o – )} + cos{) (60o – )}]
= cos] = cos
= cos] [∵ cos(120
= cos
o
) = cos(180 o
- 60 o
) = -cos60 o
=
= cos = cos
= =
R
Proved
7a. Prove that: (cosα +cosβ) +(sinα +sinβ) = 4cos ( )
2 2 2
LHS (cosα +cosβ)2 +(sinα +sinβ)2
Solution:
=
= (2cos 2
+ (2sin 2
= 4cos2( + 4sin2(
=4 {cos2( + sin2(
=4
=
R
H
Proved
S
cos 2 A cos 3 A cos 2 A cos 7 A sin 7 A sin 3 A
Prove that:
sin 4 A sin 3 A sin 2 A sin 5 A sin A
Solution:
cos 2 A cos 3 A cos 2 A cos 7 A
LHS
sin 4 A sin 3 A sin 2 A sin 5 A
2 cos 2 A cos 3 A 2 cos 2 A cos 7 A
2sin 4 A sin 3 A 2sin 2 A sin 5 A
cos(2 A 3 A) cos(2 A 3 A) cos(2 A 7 A) cos(2 A 7 A)
cos(4 A 3 A) cos(4 A 3 A) cos(2 A 5 A) cos(2 A 5 A)
cos 5 A cos A cos 9 A cos 5 A sin 5 A.2sin 2 A cos 2 A
cos A cos 7 A cos 3 A cos 7 A sin 2 A sin A
A 9A 9A A sin(5 A 2 A) sin(5 A 2 A)
2sin sin
cos A cos 9 A 2 2 sin 5 A sin 4 A sin A
cos A cos 3 A 2sin A 3 A sin 3 A A sin 2 A sin A sin 7 A sin 3 A
2 2 = RHS
sin A
Proved
Prove that: Cos 52o + cos 68o + cos 172o
=0
Solution:
LHS = cos 52o + cos 68o + cos 172o
52o 68o 52o 68o
2 cos cos cos172o
2 2
2 cos 60o cos8o cos172o
1
2. cos8o cos(180o 8o )
2
cos8o cos8o
0
= RHS
Proved