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1 Introduction

The result of forest planning is usually a man-
agement plan for the forest area under review.
The plan presents a recommendation as to the
action plan for the forest area and predicts the
consequences of implementing the plan. Among
other steps necessary in a planning process (see
e.g. Kangas 1992), each alternative plan to be

compared should be evaluated with respect to
each objective. In addition, the weights of objec-
tives having importance to the decision-maker
should be assessed. Furthermore, the evaluations
with respect to single objectives must be made
commensurable in order to enable numerical prio-
ritization of decision alternatives with respect to
overall utility.

Nowadays, objectives other than those based
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solely on wood production and commercial ben-
efits are of increasing importance in forestry de-
cision-making, not only with the public, but also
with private forest landowners (e.g. Hyberg and
Holthausen 1989, Kreutzwiser and Wright 1990,
Kangas and Niemeläinen 1996). Evaluation of
alternative forest plans with respect to biodiver-
sity considerations, for example, are ideally based
on empirical models about the ecological effects
of implementing the plans. Unfortunately, pro-
ducing models via empirical research is labori-
ous and too slow from the viewpoint of the acute
needs of the forestry practice. In addition, some
of the objectives of present-day forestry are of a
subjective nature; e.g. the scenic beauty of the
forest landscape. One way to satisfy the most
urgent needs is to use evaluation models pro-
duced on the basis of expert knowledge and/or
subjective preferences.

Expert knowledge and subjective preferences
have been used in applications of the Analytic
Hierarchy Process (AHP) (e.g. Mendoza and
Sprouse 1989, Kangas 1992). In the study by
Kangas et al. (1993b) a group of experts evaluat-
ed a set of forest areas with respect to the habitat
requirements of a chosen wildfowl species in a
pairwise manner. Comparisons were analysed
and the relative priorities of the forest areas were
calculated using Saaty’s (1977) eigenvalue tech-
nique as applied in AHP (Saaty 1980). The same
principles were applied in the estimation of sce-
nic preferences of non-industrial, private forest
landowners for the purposes of decision support
concerning their own forests (Kangas et al.
1993a).

Crawford and Williams (1985) showed how
pairwise comparisons data can be analysed by
means of regression analysis. The greatest ad-
vantage of the regression approach when com-
pared to Saaty’s eigenvalue method (Saaty 1977,
1980) is that there is a well-known statistical
theory behind it. Sound statistical methods en-
able the analysis of uncertainties in judgments in
a more versatile manner and in greater depth
than is possible when using the eigenvalue tech-
nique. Alho et al. (1996) extended the work of
Crawford and Williams to the case of multiple
judges. They applied variance component mod-
elling in producing quantitative estimates of the
uncertainties. Alho and Kangas (1997) showed

how the results of the analysis can be utilized in
multi-level decision hierarchy when evaluating
alternative forestry strategies in the single-judge
case. They also provided a Bayesian approach to
the regression technique, which makes it possi-
ble to summarize judgments in a manner more
understandable to decision-makers.

All the elicitation techniques presented above
make use of pairwise comparisons data. A major
disadvantage of the way the comparisons are
gathered lies in that exact comparisons as abso-
lute bounds for the ratios should be given by the
decision-maker or the experts. However, in most
evaluation tasks, it is difficult to accurately indi-
cate the weights, preferences and priorities. Ac-
cording to the results of previous studies con-
ducted with the purpose of trying to take into
account subjective preferences via pairwise com-
parisons made by the decision-makers, a prob-
lem of central importance is the difficulty of
presenting exact single-comparison values (e.g.
Kangas et al. 1993a). The same problem holds
true for expert judgments (Kangas et al. 1993b).
This could be addressed through the use of inter-
val judgments instead of accurate pairwise com-
parisons and corresponding single numerical val-
ues (Salo and Hämäläinen 1992, 1995, Moreno-
Jimenez and Vargas 1993).

Knowing the probability distributions of the
comparison values as a measure of preference or
priority structure would facilitate the analysis of
uncertainties in the judgments. However, deal-
ing with only minimum and maximum values
for the comparisons – as has previously been the
case – produces only limited information about
the comparison uncertainties. In addition, a cru-
cial problem is to determine which points of a
probability distribution these minimum and
maximum values refer to.

This study presents a technique for deriving
the probability distributions of pairwise compar-
isons, and shows how these distributions can be
utilized in the Bayesian analysis of uncertainties
in judgments. The technique is based on the
approach by Alho and Kangas (1997), and it can
be utilized in multiple-criteria evaluation of de-
cision alternatives in single-judge cases. The
probability distributions of pairwise comparisons
are based on judge’s own statements. If there
would be several judges, as was the case in the
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study by Alho et al. (1996), it would appear to be
possible to extend the procedure to a multiple
judge case as well.

In the technique, the judge is first queried as to
the best guess of the priority ratio of the at-
tributes being compared. Following this, the judge
is asked an adjusting question on the basis of
which the distribution can be derived. An appli-
cation of the technique is presented in the form
of multiple-criteria prioritization of alternative
forest plans for a forest area.

2 Methods

The regression model for pairwise comparisons
data in single-judge case is (Crawford and Wil-
liams 1985, Alho and Kangas 1997)

log( )rit i t it= − +α α ε (1)

where rit is the relative value of attribute i com-
pared to attribute t as perceived by the judge, αi

is the logarithm of the true value of attribute i,
and the error terms εit are uncorrelated with the
expected value zero and variance σ 2. Parameters
αi and σ 2 can be estimated by using ordinary
least squares (OLS). To ensure identifiability, it
is required that αI = 0, where I is the number of
attributes to be compared. In multi-level deci-
sion hierarchy, Equation (1) will be applied re-
peatedly. Further, Alho and Kangas (1997) used
non-informative prior proportional to σ –1 for the
pair (α, σ), where α = (α1, ... , αI–1)T and outlined
a procedure in which α can be simulated from
the joint posterior distribution of (α, σ) based on
OLS. Thus, the posterior distribution for the pri-
orities of the decision alternatives can be studied
by means of simulation.

The variance of the posterior distribution of
priorities (non-informative prior) is positive, if
the pairwise comparisons are inconsistent, i.e.
σ 2 > 0. (For inconsistent pairwise comparisons
rit ≠ rijrjt, and for consistent pairwise compari-
sons rit = r ijrjt, e.g. Saaty 1980). If, for some
reason, pairwise comparisons are consistent, then
σ 2 = 0. This would imply that estimates of αi are
certain, because the variance of the posterior
would be zero. However, the judge may still be

uncertain of the priorities. For example, when
comparing only two attributes, say attributes A
and B, the judge might say that attribute A is
“four times better” than attribute B, but consid-
ers that “three times better” and “five times bet-
ter” are also possible with a certain subjective
probability. In this example, the uncertainty of
the judge is not reflected at all in the posterior,
because comparing only two attributes automati-
cally leads to consistency. Next, a simple meth-
od is proposed that will lead to positive posterior
variance also when pairwise comparisons are
consistent.

The variable rit will be recorded as numbers ...,
1/9, 1/8,..., 1/3, 1/2, 1, 2, 3,..., 8, 9,... An open
and discrete pairwise comparison scale is used
together with corresponding verbal comparisons
as recommended by Saaty (1980), although the
use of a continuous scale would also be possible.
It is also possible to replace Saaty’s numerical
scale for rit by a sequence with geometric pro-
gression (Lootsma 1993), for example. The en-
try 1/9 means that the priority of attribute A is
equal to 1/9 times the priority of attribute B.
Correspondingly, the entry 9 means that the pri-
ority of attribute A is equal to 9 times the priority
of attribute B, and similarly the entry 1 that the
priorities of the attributes A and B are equal. For
example, the quantity 9 can be presented verbal-
ly as “absolute importance or preference”.

Suppose that the opinion of the judge could be
described in each pairwise comparisons by a
normal distribution in Saaty’s scale, although
the modifications to other distributions are also
possible. Now the opinion can be characterized
by asking the judge:

Question 1: “What is your best guess of the priority
ratio of the attributes A and B?”

Question 2: “What is the probability for the priority
ratio to lie between the best guess ± 1 unit of the
pairwise comparison scale?”

An alternative to asking for the probability, when
the upper and the lower limits are fixed, would
be to ask for the limits, when the probability is
fixed. In either case, the variance can be comput-
ed by using normal distribution, when the upper
limit, the lower limit, and the probability that the
relative goodness is between these limits, are
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known. Because the difference from one value
to another is not equal on the Saaty’s scale ...,
1/9,..., 9,..., the parameters of the normal distri-
bution must be estimated using some other scale.
The scale ..., –8, –7,..., –2, –1, 0, 1, 2,..., 7, 8,... is
used, where, for example, –8 represents the orig-
inal value of 1/9 and 8 represents the original
value of 9.

When the distribution of each variable rit is
known on the scale ..., –8,..., 8,..., one can gener-
ate a data set from these distributions, round it to
integers, and code it back to the Saaty’s scale.
Suppose, for example, that the judge’s answer to
Question 1 is “1/2” and to Question 2 “0.95”.
Then the normal distribution N(–1, 0.7652) is
used (on the scale ..., –8,..., 8,...), where the
variance, say V2, is obtained from the equation
0.5 – (–2.5) = 2 · 1.96 ·V. It should be noted
here that because of the rounding carried out, the
lower limit of –2.5 and upper limit of 0.5 must
be used, and not the lower limit of –2 and upper
limit of 0. As a result, on the Saaty’s scale, one
have the expected value of 1/2, and the probabil-
ity of getting values 1/3, 1/2, or 1, is 0.95, as was
intended. Further, the probability of getting the
value 1/4 or smaller is 0.025, and the probability
of getting the value 2 or greater is 0.025.

Now the response variable log(rit) in Equation
(1) can be generated. It reflects the views of the
judge, including the probability asked for. After
generating a single response variable, the param-
eters associated with the response are estimated
by using OLS. If the generated response variable
leads to inconsistency, this is taken into account
by generating one sample (not several) of α from
the joint posterior of (α, σ) associated with the
response according to Alho and Kangas (1997).
After doing this for all regressions needed in
multi-level decision hierarchy, a single sample
from the posterior distribution for the priorities
of the decision alternatives can be computed. It
reflects both the inconsistency and the variance
of the pairwise comparisons given by the judge.
The nature of the posterior can be studied by
repeating the whole simulation procedure as many
times as necessary.

The posterior of α was based on OLS. If the
intervals given by the judge had been taken only
as a measure of relative uncertainty between dif-
ferent pairwise comparisons, then weighted least

squares (WLS) should have been used instead of
OLS. This is because the error terms of the data
have different variances, and therefore some of
the pairwise comparisons are more reliable than
the others. WLS would lead to a smaller vari-
ance in the estimator than OLS would, and the
result would be smaller uncertainty of the priori-
ties. However, it is now considered that the in-
tervals as such reflect the uncertainty in the com-
parisons made by the judge, together with the
inconsistency of the best guesses. In this case,
OLS is a reasonable choice, because it uses equal
weights for all pairwise comparisons.

3 Case Study

The case study area located in Kuusamo, north-
eastern Finland, covering 321 hectares of forest-
ry land. The area is owned by the State and
administrated by the Finnish Forest and Park
Service (FPS). At time of this study being con-
ducted, most of the forest stands within the area
were more than 100 years old, mostly mature
stands of Norway spruce (Picea abies), with ad-
mixtures of Scots pine (Pinus sylvestris) and
birch (Betula pendula and B. pubescens). For the
purposes of simulation of the development of
forest trees and planning calculations, the area
was divided into 71 compartments, each com-
partment having relatively homogenous tree and
soil characteristics.

The forest management staff of the FPS deter-
mined the planning objectives: timber produc-
tion, effects on the scenic beauty of the forest
landscape, and game management considerations.
Six alternative forest management plans were
generated using a linear-optimization-oriented
forest simulation software. In order to assess the
management plan alternatives, the primary ob-
jectives were decomposed into second-level at-
tributes. Priority with respect to timber produc-
tion was determined as a function of the net
income in the first ten-year-period, net income
in the second ten-year-period, and the stumpage
value of the forest area at the end of the second
period. Scenic beauty was divided into far-view
scenery and within-stand scenery. Priority with
respect to game management was determined on
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the basis of the habitat requirements of moose
(Alces alces), capercaillie (Tetrao urogallus), and
black grouse (Tetrao tetrix, Lyrurus tetrix). Pair-
wise comparisons were applied in the evaluation
of alternative management plans with respect to
each second-level attribute, as well as in deter-
mining the relative importance of the objectives
and attributes. For more details on the case study
material and the original planning situation, read-
ers are referred to Kangas et al. (1992).

Original comparisons, i.e. the best guesses,
were made by members of the staff of the FPS.
The same data were also applied by Alho and
Kangas (1997). Due to organizational changes in
the FPS, the same management staff could not
be used as judges in this case study. Consequent-
ly, the interval comparisons and the results of
the comparison process cannot be considered as
being those of real decision support. The aim of
the case study is to test the method and illustrate
it, rather than produce immediate support for a
real life choice problem.

The data on best guesses (Question 1) was
used, and in addition to that, a judge was asked
for the probability of the interval (Question 2)
(see Appendix). In Appendix, there are also prob-
abilities equal to 1, which means that the judge
considered the event described in Question 2 to
be certain. In this case, the variance cannot be
computed. Instead of 1, the probability of 0.99999
(ad hoc) was used. Another solution would have
been to ask the judge the probability of the best
guess. If, for example, the judge had answered to
Question 1 with “1/2”, to Question 2 with “1”,

and to the question of the probability of the
event 1/2 with “0.95”, it could be concluded that
the probabilities of the events 1/3, 1/2, and 1, are
0.025, 0.95, and 0.025.

The data presented in Appendix was analyzed
by computing the summaries of the priorities
based on 3000 simulations from the posterior
(Tables 1 and 2). The simulation procedure was
programmed by using Minitab. In Table 1 the
row “Mean ±“ tells how uncertain the computed
posterior mean is due to the number of simula-
tions. For example, a 95 % confidence interval
for the posterior mean of Plan 1 is (0.180, 0.184).
When comparing posterior means and posterior
medians, it is found out that all posterior distri-
butions are skewed to the right. The probability
of a plan uniformly beating all the other plans
gives an alternative way to examine the good-
ness of a forest plan. The 95 % confidence limits
of the probabilities vary from ± 0.00 to ± 0.02.
The 95 % Bayesian credible intervals are such
that the posterior probability is 2.5 % that the
relative utility of the decision alternative in ques-
tion is smaller than the lower limit, and similarly
for the upper limit. Table 2 gives the pairwise
posterior probabilities that a row plan beats the
column plan. The probabilities that a column
plan beats the row plan are probabilities of the
complement events of Table 2. The 95 % confi-
dence limits of pairwise probabilities vary from
± 0.01 to ± 0.02.

In order to demonstrate the effect of Question
2, some additional simulations were performed
by using the probabilities of 0.95, 0.725, and
0.50 as answers to Question 2 for all pairwise
comparisons (Tables 3–7, rows c), d), and e)).
The number of simulations used were 2400, 3500,
and 4900. Because of this, the uncertainty of the

Table 2. Pairwise posterior probabilities that a row
plan beats the column plan.

Plan k 2 3 4 5 6

1 0.71 0.82 0.38 0.48 0.53
2 0.50 0.23 0.22 0.33
3 0.10 0.18 0.35
4 0.60 0.61
5 0.58

Table 1. Posterior means, 95 % confidence limits for
the posterior mean, posterior medians, probabili-
ties of a plan k uniformly beating all the other
plans, and appoximate 95 % Bayesian credible
interval limits for the priorities of the forest plans.

Plan k 1 2 3 4 5 6

Mean 0.182 0.136 0.135 0.198 0.181 0.168
Mean ± 0.002 0.002 0.001 0.002 0.002 0.003
Median 0.175 0.130 0.131 0.193 0.175 0.164
Prob. 0.22 0.06 0.01 0.29 0.17 0.25
Lower 0.078 0.049 0.083 0.100 0.100 0.030
Upper 0.336 0.257 0.217 0.326 0.287 0.331
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posterior means in Table 3, rows c)–e), is ap-
proximately the same as in Table 1, that is, the
row “Mean ±“ in Table 1 can also be used here.
Furthermore, the length of the confidence inter-
vals of the pairwise probabilities, and the proba-
bilities of a plan uniformly beating all the other
plans, are approximately the same as in the case
of Tables 1 and 2. Tables 3–7 include also re-
sults of Alho and Kangas (1997), rows a) and b).
In Table 3, row a), are the regression estimates
for the priorities of the forest plans obtained
from the data of best guesses. The probabilities
in Tables 5 and 6 in row a), are obtained by
comparing the size of these regression estimates.
For example, the probability of Plan 1 beating
Plan 2 is one, because the regression estimate of
Plan 1 is bigger than that of Plan 2. Similarly, the
probability of Plan 1 beating all the other plans
is zero, because Plan 4 has a bigger regression
estimate than Plan 1. The row b) in Tables 3–7 is

based on 1500 simulations from the posterior on
the data on best guesses.

The row a) may be considered to represent a
situation with no uncertainty at all. The uncer-
tainty caused by the inconsistency of the best
guesses is being noticed in row b). In rows c)–e),
also the different probabilities of the interval are
allowed to have an effect on the results. In other
words, the level of uncertainty of the pairwise
comparison data increases from a) to e).

From the posterior means it is found out that the
level of uncertainty has an effect on the goodness
of the forest plans (Table 3). Plans 1, 2, and 6
seem to be worse off, Plans 3 and 5 better off, and
Plan 4 the same, when the level of uncertainty
increases. The reason for this phenomenon lies in
that the symmetry assumption made in Saaty’s
pairwise comparisons scale by assuming normal
distribution does not lead to symmetry in priori-
ties. This can be seen by comparing the means to

Table 5. Pairwise posterior probabilities that a row
plan beats the column plan (see explanations for
a) – e) in Table 3).

Plan k 2 3 4 5 6

a) 1 1 0 1 1
b) 0.79 0.91 0.37 0.52 0.50
c) 1 0.72 0.85 0.36 0.49 0.52
d) 0.68 0.76 0.37 0.45 0.53
e) 0.64 0.66 0.38 0.44 0.53
a) 1 0 0 0
b) 0.63 0.16 0.17 0.19
c) 2 0.51 0.20 0.20 0.29
d) 0.46 0.24 0.22 0.36
e) 0.44 0.28 0.25 0.41
a) 0 0 0
b) 0.05 0.07 0.13
c) 3 0.07 0.15 0.29
d) 0.14 0.21 0.39
e) 0.21 0.27 0.45
a) 1 1
b) 0.63 0.59
c) 4 0.61 0.60
d) 0.57 0.61
e) 0.54 0.60
a) 0
b) 0.51
c) 5 0.57
d) 0.59
e) 0.59

Table 4. Posterior medians (see explanations for b) – e)
in Table 3).

Plan k 1 2 3 4 5 6

b) – – – – 0.176 0.177
c) 0.175 0.130 0.130 0.194 0.176 0.170
d) 0.171 0.127 0.132 0.192 0.178 0.161
e) 0.164 0.123 0.135 0.188 0.177 0.154

Table 3. Regression estimates and posterior means.
Row a) shows the regression estimates for the
priorities of the forest plans (Alho and Kangas
1997), and row b) the posterior means, when the
only source of uncertainty is the inconsistency
(Alho and Kangas 1997). In addition to the incon-
sistency, the probability of all the intervals is sup-
posed to be 0.95 in row c), 0.725 in row d), and
0.50 in row e).

Plan k 1 2 3 4 5 6

a) 0.182 0.140 0.127 0.195 0.174 0.181
b) 0.181 0.140 0.131 0.194 0.179 0.176
c) 0.181 0.136 0.133 0.197 0.182 0.171
d) 0.180 0.134 0.137 0.198 0.184 0.167
e) 0.177 0.135 0.142 0.196 0.185 0.166
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the medians in Table 4. One alternative to assum-
ing normal distribution on the Saaty’s pairwise
comparisons scale would be to assume log-nor-
mality, i.e. normality on the scale of logarithms of
the pairwise comparisons. This would lead to a
closer symmetry of the priorities, but still some
asymmetry would be observed. This is why also
the row b) seems to fit in the trend of the posteri-
or means caused by the uncertainty. The posteri-
or medians behave much like the posterior means,
but with the exceptions that Plan 4 seems to be
slightly worse off, and Plan 5 the same, when the
level of uncertainty increases. It should be noted,
that the posterior medians of different forest plans
does not sum up to one like the means do.

The effect of uncertainty can be seen clearly in
pairwise posterior probabilities (Table 5). In gen-
eral, if the pairwise probability in row a) equals
one, the increase in uncertainty will make the pair-
wise probability smaller, and correspondingly, if
the probability in row a) is equal to zero, it will get
bigger. The probabilities of Table 6 have the same
quality, with the exceptions of Plans 1, 5, and 6.
These plans seems to be independent of the level
of uncertainty. Finally, approximate 95 % Baye-
sian credible interval limits (Table 7) increase in
width with increasing level of uncertainty.

Now the results of the data in Appendix can be
interpreted. In general, if Question 2 is taken
into account, the results will be different com-
pared to the results of analysis that uses only the
information from Question 1. In the Appendix,
the probabilities of the interval given by the judge
vary from 0.6 to 1 (1 was interpreted as 0.99999).
Thus, the results are somewhere around the re-
sults obtained by using the probabilities of 0.95,
0.725, and 0.50 for all the intervals.

4 Discussion

The present study involved developing a tech-
nique for analysing uncertainties in judgment
data gathered via interval pairwise comparisons
and for taking the uncertainties into account in
multiple-criteria assessment of decision alterna-
tives. Judgments based either on expert knowl-
edge or on subjective preferences (of the deci-
sion-maker) can be dealt with when using the
technique. Both expertise and preferences can be
utilized in the one and the same multiple-criteria
evaluation process. The ability to deal with un-
certainties involved in the assessments of deci-
sion alternatives is an important quality in any
approach of decision support.

Although the computation technique, using
which the interval comparisons are analyzed,
may seem complicated, the use of the technique
is relatively easy. However, for at least some
forestry decision-makers not familiar with the
fundamentals of statistics, answering the ques-
tionnaire needed in order to derive the distribu-
tion describing the preference structure can be
difficult. In practical decision support, a difficult
task is that of choosing the most accurate plan-
ning approach and preference modelling tech-
nique for each planning process which, at the
same time, is convenient and easy enough to
apply. Another tough problem is to implement
the results of the analyses to decision-makers.
Empirical research is needed in order to study
forestry decision-makers’ ability to answer dif-
ferent kinds of questionnaires and to understand

Table 7. Approximate 95 % Bayesian credible interval
limits for the priorities of the forest plans (see
explanations for b) – e) in Table 3).

Plan k 1 2 3 4 5 6

b) Lower 0.115 0.066 0.099 0.120 0.122 0.050
Upper 0.271 0.205 0.176 0.296 0.263 0.273

c) Lower 0.083 0.053 0.083 0.107 0.111 0.034
Upper 0.313 0.255 0.199 0.309 0.286 0.319

d) Lower 0.069 0.048 0.078 0.094 0.098 0.030
Upper 0.355 0.268 0.225 0.339 0.306 0.349

e) Lower 0.057 0.044 0.072 0.081 0.084 0.030
Upper 0.382 0.295 0.258 0.353 0.328 0.381

Table 6. Probabilities of a plan k uniformly beating all
the other plans (see explanations for a) – e) in
Table 3).

Plan k 1 2 3 4 5 6

a) 0 0 0 1 0 0
b) 0.19 0.02 0.00 0.35 0.18 0.25
c) 0.21 0.05 0.00 0.31 0.17 0.26
d) 0.21 0.07 0.02 0.29 0.17 0.25
e) 0.20 0.08 0.04 0.26 0.18 0.24
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different kinds of numerical results.
The normal distribution was used in the Saaty’s

pairwise comparison scale to describe the uncer-
tainty of the judge. This leads to asymmetry in
the priority scale and causes trend in the posteri-
or means and medians, which depends on the
probability of the Question 2. One alternative
would have been to assume log-normality, al-
though even this would cause some asymmetry
in the priorities. The justification in making dis-
tribution assumptions depends on how well the
assumption describes the opinions of the judge.
However, it is perhaps more natural to assume
normality in the very same scale that is used in
comparisons. The method makes it also possible
to analyse data, where the judge has determined
the distribution entirely, i.e. without any distri-
bution assumptions. In the present study, the
Saaty’s scale was used, and normality was as-
sumed in the same scale. Due to normality as-
sumption, the demonstration of the effect of un-
certainty was done simply by changing the prob-
ability of Question 2.

The simulation of the posterior distribution
enables computing several kinds of summaries
that can be used to evaluate the goodness of the
decision alternatives. Some summaries were com-
puted in this paper, but there are also other possi-
bilities. For example, posterior probabilities for
events “alternative A is better than all the other
alternatives in a given subset” can be readily
estimated. Also, the attitude toward risk could
be taken into account when choosing the final
forest plan (Pukkala and Kangas 1996). So, flex-
ibility is one of the strengths of the Bayesian
approach.

If the analysis of pairwise comparisons data is
based only on the best guesses, it is assumed that
the judge can give the pairwise comparisons ex-
actly, although some inconsistency may exist.
However, this may not be the case in practice:
the judge may be able to give the best guess of
the relative goodness of the alternatives, but, at
the same time, he/she may consider that some
other values are also possible. If these other val-
ues are not taken into account in the analysis, the
uncertainty of the priorities will be underesti-
mated.
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Total of 18 references

Appendix. Pairwise comparisons, and corresponding probabilities of the interval. For example, the entry 6 means
that the criterion timber production is six times more important than criterion scenic beauty (Question 1),
and entry (0.85) is the corresponding probability of the event “5, 6, or 7” (Question 2).

Criterions timber production (ti), scenic beauty (sc),
and game management (ga).

sc ga

ti 6 (0.85) 2 (0.80)
sc 1/5 (0.80)

Criterions net income during first ten years (n1), net
income during second ten years (n2), and stumpage
value after twenty years (st) with respect to timber
production.

n2 st

n1 1 (0.95) 1 (0.90)
n2 1 (0.90)

Criterions within-stand scenery (wi), and far-fiew scen-
ery (fa) with respect to scenic beauty.

fa

wi 4 (0.80)

Criterions moose (mo), capercaillie (ca), and black
grouse (bl) with respect to game management.

ca bl

mo 1/3 (0.70) 1 (0.90)
ca 7 (0.70)

Decision alternatives 1, 2,..., 6 with respect to net
income during first ten years.

2 3 4 5 6

1 1/7 (0.85) 1/5 (0.80) 1/3 (0.90) 1/8 (0.90) 1/9 (0.90)
2 5 (0.80) 5 (0.85) 1/3 (0.90) 1/7 (0.90)
3 2 (0.90) 1/6 (0.85) 1/8 (0.90)
4 1/6 (0.85) 1/8 (0.90)
5 1/6 (0.85)

Decision alternatives 1, 2,..., 6 with respect to net
income during second ten years.

2 3 4 5 6

1 1/9 (1) 1/5 (0.90) 1/5 (0.85) 1/7 (0.90) 1/8 (0.90)
2 7 (0.85) 7 (0.85) 6 (0.85) 2 (0.80)
3 2 (0.85) 1/5 (0.85) 1/8 (0.85)
4 1/5 (0.90) 1/8 (0.90)
5 1/5 (0.85)
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Decision alternatives 1, 2,..., 6 with respect to stumpage
value after twenty years.

2 3 4 5 6

1 5 (0.95) 2 (0.90) 2 (0.90) 6 (0.95) 9 (1)
2 1/5 (0.90) 1/5 (0.90) 1/4 (0.90) 4 (0.90)
3 1 (1) 4 (0.90) 7 (0.95)
4 4 (0.90) 8 (0.95)
5 6 (0.90)

Decision alternatives 1, 2,..., 6 with respect to within-
stand scenery.

2 3 4 5 6

1 7 (0.80) 5 (0.75) 3 (0.75) 7 (0.75) 9 (0.90)
2 1/8 (0.90) 1/8 (0.85) 1/3 (0.80) 2 (0.80)
3 1/3 (0.80) 4 (0.85) 7 (0.90)
4 6 (0.80) 8 (0.80)
5 4 (0.80)

Decision alternatives 1, 2,..., 6 with respect to far-
view scenery.

2 3 4 5 6

1 7 (0.80) 1/2 (0.75) 3 (0.75) 6 (0.75) 7 (0.80)
2 1/6 (0.80) 1/4 (0.75) 1/3 (0.75) 1/2 (0.75)
3 3 (0.80) 4 (0.75) 6 (0.75)
4 4 (0.80) 7 (0.90)
5 3 (0.85)

Decision alternatives 1, 2,..., 6 with respect to moose.

2 3 4 5 6

1 1/7 (0.75) 1/5 (0.75) 1/5 (0.75) 1/7 (0.75) 1/2 (0.90)
2 1/5 (0.75) 1/3 (0.80) 1/3 (0.75) 5 (0.75)
3 1 (0.90) 1/4 (0.75) 2 (0.80)
4 1/3 (0.75) 5 (0.85)
5 5 (0.80)

Decision alternatives 1, 2,..., 6 with respect to
capercaillie.

2 3 4 5 6

1 7 (0.85) 2 (0.85) 1/2 (0.70) 4 (0.75) 9 (0.90)
2 1/6 (0.70) 1/7 (0.75) 1/5 (0.75) 4 (0.70)
3 1/5 (0.75) 1/3 (0.80) 8 (0.85)
4 3 (0.80) 8 (0.80)
5 7 (0.80)

Decision alternatives 1, 2,..., 6 with respect to black
grouse.

2 3 4 5 6

1 1/4 (0.60) 1/3 (0.70) 1/5 (0.60) 1/7 (0.65) 1/2 (0.70)
2 1 (0.80) 1/3 (0.70) 1/6 (0.70) 2 (0.80)
3 1/2 (0.80) 1/4 (0.70) 3 (0.70)
4 1/5 (0.70) 4 (0.75)
5 5 (0.70)


