Peter Skomoroch discusses the challenges and strategies involved in AI product management, emphasizing the importance of understanding data quality and organizational dynamics in successfully building machine learning products. He highlights that effective AI product managers should balance technical knowledge with strategic insight, focusing on projects aligned with business objectives and emphasizing iterative development. The document underscores the necessity of an experimental culture and the role of data in enhancing product capabilities over time.
Introduction of Peter Skomoroch and the focus on AI Product Management.
Peter Skomoroch's experience in AI; defining AI products and challenges in machine learning projects. Key responsibilities of AI product managers and the importance of data expertise in project evaluation.Addressing uncertainty in product roadmaps for ML, encouraging intelligent risks, and fostering experimental culture.
Steps in ML product development, focus on iteration, data quality challenges, and testing ML products.
Flywheel effects in AI products enhance algorithms through user-generated data, creating competitive advantages.
Final thoughts on the challenges of building ML products and the importance of data infrastructure and leadership.
Product Management forAI
Peter Skomoroch - @peteskomoroch
Rev 2 Data Science Leaders Summit, NYC - May 24, 2019
3.
Background: Machine Learning& Data Products
Peter Skomoroch
@peteskomoroch
• Co-Founder and CEO of SkipFlag, Enterprise AI
startup acquired in 2018 by Workday
• 18+ years building machine learning products
• Principal Data Scientist, ran Data Products team at
LinkedIn. ML & Search at MIT, AOL, ProfitLogic
• Co-Host of O’Reilly AI Bots Podcast, Startup Advisor
Machine Learning Projectsare Hard
• The transition to machine learning will be about 100x harder than the
transition to mobile apps
• Some of the biggest challenges are organizational, not technical
• Data driven companies like Google and Facebook have a strategic
advantage building ML products based on their data & compute assets,
large user population, tracking & instrumentation, and AI talent
6.
The Role ofan AI Product Manager
Image source: Martin Eriksson https://www.mindtheproduct.com/2011/10/what-exactly-is-a-product-manager/
• An AI Product Manager (PM) has
core product skills (strategy,
roadmaps, prioritization, etc.)
along with an intuitive grasp of
ML
• They help identify and prioritize
the highest value applications for
machine learning and do what it
takes to make them successful
7.
Good AI ProductManagers Have Data Expertise
• Know the difference between easy, hard, and impossible machine
learning problems
• Even if something is feasible from a machine learning perspective,
the level of effort may not justify building the feature
• Know your company’s data inside and out including quality issues,
limitations, biases, and gaps that need to be addressed
• Develop an intuitive understanding of your company’s data and how
it can be used to solve customer problems
8.
How to evaluateand prioritize your AI projects
• Start with your mission and strategic objectives, and select projects
that align well with those goals
• LinkedIn mission: “Connect the world's professionals to make them
more productive and successful”
• Example strategy: “To be the professional profile of record”
• Get everyone in a room, group project ideas by theme and make “T-
shirt sized” estimates (L/M/S) of impact and difficulty for each idea.
• Rank and prioritize projects by ROI where possible
ML Adds Uncertaintyto Product Roadmaps
• PMs are often uncomfortable with expensive ideas that have an
uncertain probability of success
• Many organizations will struggle to justify the expense of projects
that require significant research investment upfront
• Some ML products may need to be split into time boxed projects that
get to market in a shorter time frame
• What can you productize now vs. much later on?
• Keep track of dependencies on other teams and have a “Plan B”
11.
If you onlydo things where you know
the answer in advance, your company
goes away.
Jeff Bezos
Founder, Chairman & CEO of Amazon.com
• Machine Learning shifts
engineering from a deterministic
process to a probabilistic one
• Take intelligent risks
• Most successful ML products are
experiments at massive scale
• Companies driven by analytics
and experimental insights are
more likely to succeed
Experimental Culture
12.
ML Product DevelopmentProcess
1. Verify you are solving the right problem
2. Theory + model design (in parallel with UI design)
3. Data collection, labelling, and cleaning
4. Feature engineering, model training, offline validation
5. Model deployment, monitoring & large scale training
• Iterate: repeat process, refine live model & improve
• 80% of effort and gains come from iterations after shipping v 1.0
• Use derived data from the system to build new products
Every single companyI've worked at
and talked to has the same problem
without a single exception so far —
poor data quality, especially tracking
data
Ruslan Belkin
VP of Engineering, Salesforce.com
• Guide user input when you can
• Use auto suggest fields
• Validate user inputs, emails
• Collect user tags, votes, ratings
• Track impressions, queries, clicks
• Sessionize logs
• Disambiguate and annotate
entities (company names,
locations, etc.)
Data Quality & Standardization
15.
Testing Machine LearningProducts
• Algorithm work that drags on without integration in the product where it can
be seen and tested by real users is risky
• Ship a complete MVP in production ASAP, benchmark, and iterate
• Beware unintended consequences from seemingly small product changes
• Remember the prototype is not the product - see what happens when you
use a more realistic data set or scale up your inputs
• Real world data changes over time, ensure your model tests and
benchmarks keep up with changes in underlying data
• Machine learning systems tend to fail in unexpected ways
Flywheel Effects &AI Products
• Users generate data as a side effect of
using most software products
• That data in turn, can improve the
product’s algorithms and enable new
types of recommendations, leading to
more data
• These “Flywheels” get better the more
customers use them leading to unique
competitive moats
• This works well in platforms, networks or
marketplaces where value compounds
* https://medium.freecodecamp.org/the-business-implications-of-machine-learning-11480b99184d
18.
Final Thoughts
• Machinelearning products are hard to
build, but within reach of teams who
invest in data infrastructure
• Some of the biggest challenges are
organizational, not technical
• Good product leaders are a key factor in
shipping successful ML products
• Find a machine learning application with
a direct connection to a metric your
organization values and ship it
Send me questions! @peteskomoroch