PROJECTILE MOTION
Senior High School Physics
2010
Part 1.

Free powerpoints at http://www.worldofteaching.com

Part 2.
Introduction
 Projectile

Motion:
Motion through the air without a propulsion
 Examples:
Part 1.
Motion of Objects Projected
Horizontally
y

v0

x
y

x
y

x
y

x
y

x
y
•Motion is accelerated
•Acceleration is constant,
and downward
• a = g = -9.81m/s2

g = -9.81m/s2

•The horizontal (x)
component of velocity is
constant
•The horizontal and
vertical motions are
independent of each other,
x
but they have a common
time
ANALYSIS OF MOTION
ASSUMPTIONS:
•

x-direction (horizontal):

uniform motion

•

y-direction (vertical):

accelerated motion

•

no air resistance

QUESTIONS:
•

What is the trajectory?

•

What is the total time of the motion?

•

What is the horizontal range?

•

What is the final velocity?
Frame of reference:

Equations of motion:

y

X
Uniform m.

Y
Accel. m.

ACCL.

ax = 0

ay = g = -9.81
m/s2

VELC.

vx = v0

vy = g t

x DSPL.

x = v0 t

y = h + ½ g t2

v0
g

h

0
Trajectory
y

x = v0 t
y = h + ½ g t2
Eliminate time, t
t = x/v0
y = h + ½ g (x/v0)2

Parabola, open down
h

v01

v02 > v01

y = h + ½ (g/v02) x2
y = ½ (g/v02) x2 + h

x
Total Time, Δt
y = h + ½ g t2
final y = 0

y

0 = h + ½ g (Δt)2

Δt = tf - ti

ti =0

Solve for Δt:

h

Δt = √ 2h/(-g)
Δt = √ 2h/(9.81ms-2)
Total time of motion depends
only on the initial height, h

tf =Δt
x
Horizontal Range, Δx
x = v0 t

y

final y = 0, time is
the total time Δt

Δx = v0 Δt

h

Δt = √ 2h/(-g)
Δx = v0 √ 2h/(-g)
Horizontal range depends on the
initial height, h, and the initial
velocity, v0

Δx
x
VELOCITY
vx = v0

v = √vx

2

+ vy

2

= √v02+g2t2

tg Θ = v / v = g t / v

vy = g t

Θ

v
FINAL VELOCITY
vx = v0

Δt = √ 2h/(-g)
v = √vx

2

+ vy

2

vy = g t

v = √v02+g2(2h /(-g))
v = √ v02+ 2h(-g)

Θ

tg Θ = g Δt / v0

v

= -(-g)√2h/(-g) / v0

= -√2h(-g) / v0
Θ is negative
(below the
horizontal line)
HORIZONTAL THROW - Summary
h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2

Trajectory

Half -parabola, open
down

Total time

Δt = √ 2h/(-g)

Horizontal Range

Δx = v0 √ 2h/(-g)

Final Velocity

v = √ v02+ 2h(-g)
tg Θ = -√2h(-g) / v0
Part 2.
Motion of objects projected at an
angle
y

vi

Initial position: x = 0, y = 0
Initial velocity: vi = vi [Θ]

viy
Velocity components:
x- direction : vix = vi cos Θ
θ

y- direction : viy = vi sin Θ
x

vix
y
a =g=
- 9.81m/s2
•

Motion is accelerated

•

Acceleration is constant, and
downward

•

a = g = -9.81m/s2

•

The horizontal (x) component of
velocity is constant

•

The horizontal and vertical
motions are independent of each
other, but they have a common
time

x
ANALYSIS OF MOTION:
ASSUMPTIONS
•

x-direction (horizontal):

uniform motion

•

y-direction (vertical):

accelerated motion

•

no air resistance

QUESTIONS
•

What is the trajectory?

•

What is the total time of the motion?

•

What is the horizontal range?

•

What is the maximum height?

•

What is the final velocity?
Equations of motion:
X
Uniform motion

Y
Accelerated motion

ACCELERATION

ax = 0

ay = g = -9.81 m/s2

VELOCITY

vx = vix= vi cos Θ

vy = viy+ g t

vx = vi cos Θ

vy = vi sin Θ + g t

x = vix t = vi t cos Θ

y = h + viy t + ½ g t2

x = vi t cos Θ

y = vi t sin Θ + ½ g t2

DISPLACEMENT
Equations of motion:
X
Uniform motion

Y
Accelerated motion

ACCELERATION

ax = 0

ay = g = -9.81 m/s2

VELOCITY

vx = vi cos Θ

vy = vi sin Θ + g t

DISPLACEMENT

x = vi t cos Θ

y = vi t sin Θ + ½ g t2
x = vi t cos Θ

Trajectory

y = vi t sin Θ + ½ g t2

y

Parabola, open down

Eliminate time, t

t = x/(vi cos Θ)

vi x sin Θ
gx 2
y=
+ 2
vi cos Θ 2vi cos 2 Θ
y = x tan Θ +

g
x2
2vi2 cos 2 Θ

y = bx + ax2
x
Total Time, Δt
y = vi t sin Θ + ½ g t2
final height y = 0, after time interval Δt
0 = vi Δt sin Θ + ½ g (Δt)2
Solve for Δt:
x

0 = vi sin Θ + ½ g Δt

Δt =

2 vi sin Θ
(-g)

t=0

Δt
Horizontal Range, Δx
x = vi t cos Θ

y

final y = 0, time is
the total time Δt

Δx = vi Δt cos Θ
Δt =

Δx =

2 vi sin Θ
(-g)

sin (2 Θ) = 2 sin Θ cos Θ

2vi 2 sin Θ cos Θ
(-g)

x

0

Δx =

Δx
vi 2 sin (2 Θ)
(-g)
Horizontal Range, Δx
Δx =
Θ (deg) sin (2 Θ)
0

0.00

15

0.50

30

1.00

60

0.87

75

0.50

90

0

(-g)
•CONCLUSIONS:

0.87

45

vi 2 sin (2 Θ)

•Horizontal range is greatest for the
throw angle of 450

• Horizontal ranges are the same for
angles Θ and (900 – Θ)
Trajectory and horizontal range
g
y = x tan Θ + 2
x2
2vi cos 2 Θ
35

vi = 25 m/s

30

15 deg
30 deg

25

45 deg

20

60 deg

15

75 deg

10
5
0
0

20

40

60

80
Velocity

•Final speed = initial speed (conservation of energy)
•Impact angle = - launch angle (symmetry of parabola)
Maximum Height
vy = vi sin Θ + g t
y = vi t sin Θ + ½ g t2
At maximum height vy = 0

0 = vi sin Θ + g tup
tup =

vi sin Θ

hmax = vi t upsin Θ + ½ g tup2
hmax = vi2 sin2 Θ/(-g) + ½ g(vi2 sin2 Θ)/g2
vi2 sin2 Θ

(-g)

tup = Δt/2

hmax =

2(-g)
Projectile Motion – Final Equations
(0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2
Trajectory

Parabola, open down

Total time

Δt =

Horizontal range

Max height

Δx =

2 vi sin Θ
(-g)
vi 2 sin (2 Θ)
(-g)

hmax =

vi2 sin2 Θ
2(-g)
PROJECTILE MOTION - SUMMARY
 Projectile

motion is motion with a constant
horizontal velocity combined with a constant
vertical acceleration
 The projectile moves along a parabola

Projectile motion

  • 1.
    PROJECTILE MOTION Senior HighSchool Physics 2010 Part 1. Free powerpoints at http://www.worldofteaching.com Part 2.
  • 2.
    Introduction  Projectile Motion: Motion throughthe air without a propulsion  Examples:
  • 3.
    Part 1. Motion ofObjects Projected Horizontally
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
    y •Motion is accelerated •Accelerationis constant, and downward • a = g = -9.81m/s2 g = -9.81m/s2 •The horizontal (x) component of velocity is constant •The horizontal and vertical motions are independent of each other, x but they have a common time
  • 10.
    ANALYSIS OF MOTION ASSUMPTIONS: • x-direction(horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS: • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the final velocity?
  • 11.
    Frame of reference: Equationsof motion: y X Uniform m. Y Accel. m. ACCL. ax = 0 ay = g = -9.81 m/s2 VELC. vx = v0 vy = g t x DSPL. x = v0 t y = h + ½ g t2 v0 g h 0
  • 12.
    Trajectory y x = v0t y = h + ½ g t2 Eliminate time, t t = x/v0 y = h + ½ g (x/v0)2 Parabola, open down h v01 v02 > v01 y = h + ½ (g/v02) x2 y = ½ (g/v02) x2 + h x
  • 13.
    Total Time, Δt y= h + ½ g t2 final y = 0 y 0 = h + ½ g (Δt)2 Δt = tf - ti ti =0 Solve for Δt: h Δt = √ 2h/(-g) Δt = √ 2h/(9.81ms-2) Total time of motion depends only on the initial height, h tf =Δt x
  • 14.
    Horizontal Range, Δx x= v0 t y final y = 0, time is the total time Δt Δx = v0 Δt h Δt = √ 2h/(-g) Δx = v0 √ 2h/(-g) Horizontal range depends on the initial height, h, and the initial velocity, v0 Δx x
  • 15.
    VELOCITY vx = v0 v= √vx 2 + vy 2 = √v02+g2t2 tg Θ = v / v = g t / v vy = g t Θ v
  • 16.
    FINAL VELOCITY vx =v0 Δt = √ 2h/(-g) v = √vx 2 + vy 2 vy = g t v = √v02+g2(2h /(-g)) v = √ v02+ 2h(-g) Θ tg Θ = g Δt / v0 v = -(-g)√2h/(-g) / v0 = -√2h(-g) / v0 Θ is negative (below the horizontal line)
  • 17.
    HORIZONTAL THROW -Summary h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2 Trajectory Half -parabola, open down Total time Δt = √ 2h/(-g) Horizontal Range Δx = v0 √ 2h/(-g) Final Velocity v = √ v02+ 2h(-g) tg Θ = -√2h(-g) / v0
  • 18.
    Part 2. Motion ofobjects projected at an angle
  • 19.
    y vi Initial position: x= 0, y = 0 Initial velocity: vi = vi [Θ] viy Velocity components: x- direction : vix = vi cos Θ θ y- direction : viy = vi sin Θ x vix
  • 20.
    y a =g= - 9.81m/s2 • Motionis accelerated • Acceleration is constant, and downward • a = g = -9.81m/s2 • The horizontal (x) component of velocity is constant • The horizontal and vertical motions are independent of each other, but they have a common time x
  • 21.
    ANALYSIS OF MOTION: ASSUMPTIONS • x-direction(horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the maximum height? • What is the final velocity?
  • 22.
    Equations of motion: X Uniformmotion Y Accelerated motion ACCELERATION ax = 0 ay = g = -9.81 m/s2 VELOCITY vx = vix= vi cos Θ vy = viy+ g t vx = vi cos Θ vy = vi sin Θ + g t x = vix t = vi t cos Θ y = h + viy t + ½ g t2 x = vi t cos Θ y = vi t sin Θ + ½ g t2 DISPLACEMENT
  • 23.
    Equations of motion: X Uniformmotion Y Accelerated motion ACCELERATION ax = 0 ay = g = -9.81 m/s2 VELOCITY vx = vi cos Θ vy = vi sin Θ + g t DISPLACEMENT x = vi t cos Θ y = vi t sin Θ + ½ g t2
  • 24.
    x = vit cos Θ Trajectory y = vi t sin Θ + ½ g t2 y Parabola, open down Eliminate time, t t = x/(vi cos Θ) vi x sin Θ gx 2 y= + 2 vi cos Θ 2vi cos 2 Θ y = x tan Θ + g x2 2vi2 cos 2 Θ y = bx + ax2 x
  • 25.
    Total Time, Δt y= vi t sin Θ + ½ g t2 final height y = 0, after time interval Δt 0 = vi Δt sin Θ + ½ g (Δt)2 Solve for Δt: x 0 = vi sin Θ + ½ g Δt Δt = 2 vi sin Θ (-g) t=0 Δt
  • 26.
    Horizontal Range, Δx x= vi t cos Θ y final y = 0, time is the total time Δt Δx = vi Δt cos Θ Δt = Δx = 2 vi sin Θ (-g) sin (2 Θ) = 2 sin Θ cos Θ 2vi 2 sin Θ cos Θ (-g) x 0 Δx = Δx vi 2 sin (2 Θ) (-g)
  • 27.
    Horizontal Range, Δx Δx= Θ (deg) sin (2 Θ) 0 0.00 15 0.50 30 1.00 60 0.87 75 0.50 90 0 (-g) •CONCLUSIONS: 0.87 45 vi 2 sin (2 Θ) •Horizontal range is greatest for the throw angle of 450 • Horizontal ranges are the same for angles Θ and (900 – Θ)
  • 28.
    Trajectory and horizontalrange g y = x tan Θ + 2 x2 2vi cos 2 Θ 35 vi = 25 m/s 30 15 deg 30 deg 25 45 deg 20 60 deg 15 75 deg 10 5 0 0 20 40 60 80
  • 29.
    Velocity •Final speed =initial speed (conservation of energy) •Impact angle = - launch angle (symmetry of parabola)
  • 30.
    Maximum Height vy =vi sin Θ + g t y = vi t sin Θ + ½ g t2 At maximum height vy = 0 0 = vi sin Θ + g tup tup = vi sin Θ hmax = vi t upsin Θ + ½ g tup2 hmax = vi2 sin2 Θ/(-g) + ½ g(vi2 sin2 Θ)/g2 vi2 sin2 Θ (-g) tup = Δt/2 hmax = 2(-g)
  • 31.
    Projectile Motion –Final Equations (0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2 Trajectory Parabola, open down Total time Δt = Horizontal range Max height Δx = 2 vi sin Θ (-g) vi 2 sin (2 Θ) (-g) hmax = vi2 sin2 Θ 2(-g)
  • 32.
    PROJECTILE MOTION -SUMMARY  Projectile motion is motion with a constant horizontal velocity combined with a constant vertical acceleration  The projectile moves along a parabola