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BARGAINING FOUNDATIONS OF SHAPLEY VALUE!

By FARUK GUL

A transferable utility economy in which each agent holds a resource which can be used
in combination with the resources of other agents to generate value (according to the
characteristic function V) is studied using a dynamic model of bargaining. The main
theorem establishes that the payoffs associated with efficient equilibria converge to the
agents’ Shapley values as the time between periods of the dynamic game goes to zero.
In addition it is demonstrated that an efficient equilibrium exists and is unique when an
additivity condition is satisfied. To demonstrate the sensitivity of the solution to the
institutional detail we modify the model to allow for partnerships and show that the
Shapley value is no longer achieved.

KEYWORDS: Noncooperative bargaining, stationary subgame perfect Nash equilibrium,
games in characteristic function form, coalition formation, random matching.

1. INTRODUCTION

THE COOPERATIVE APPROACH to the bargaining problem has been criticized for
not having strategic foundations. Nash (1953) himself viewed his bargaining
solution as a tentative step which needed to be supported within a noncooper-
ative framework. The program of establishing noncooperative foundations for
cooperative solution concepts has also been pursued by Binmore (1980), (1982),
(1983), Binmore, Rubinstein, and Wolinsky (1985), Harsanyi and Selten (1980),
and Herrero (1985). The noncooperative approach, on the other hand, has also
received severe criticism. The choice of the particular (extensive form) game, the
choice of the equilibrium concept, and the multiplicity of equilibria have often
been the source of controversy.

Our purpose is to study the relationship between the cooperative and noncoop-
erative approaches by establishing a framework in which the results of the two
theories can be compared.

In Section 2, we study an economy in which the underlying opportunities for
gains from trade are determined by a characteristic function. Within this econ-
omy, we examine a natural extension of the discrete time extensive form games
used in various existing models on noncooperative bargaining. We use the
equilibrium concept stationary subgame perfect Nash equilibrium (SSPNE)? and
show that the set of equilibria is finite. Of these equilibria, we focus on a
particularly attractive one, the unique efficient equilibrium. This equilibrium,
when it exists, is the only one in which trade (or agreement) occurs at each

! This paper constitutes the first chapter of my Ph.D. dissertation. The problem of analyzing
bargaining games in characteristic function form was suggested to me by my advisor, Hugo
Sonnenschein. I am also grateful to him for many other comments and criticisms including the
observation that the Shapley value equilibrium discussed in Section 2 is Pareto-efficient. I would also
like to thank Ken Binmore, Roger Myerson, Barry Nalebuff, Ariel Rubinstein, and Larry Samuelson
for helpful discussions.

Our stationarity requirement is a direct application to our framework of the stationarity defined
in Rubinstein and Wolinsky (1985). It is equivalent to the familiar condition that strategies depend
only on payoff relevant histories. See also Binmore (1985) for a discussion of the relationship between
stationarity and continuity.
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meeting of the agents. We show that, if time intervals are arbitrarily small, the
(expected) utility of each agent in this equilibrium is his Shapley value. We also
provide a necessary and sufficient condition on the characteristic function for the
existence of such an equilibrium.

In Section 3, we modify the extensive form game of Section 2 so that agents
make offers of partnership rather than sales. We show that, if the number of
agents is three, there is a unique equilibrium for the partnership game. Further-
more, we prove that the limit of the equilibrium expected utilities of each agent is
equal to the Shapley value computed from a transformation of the characteristic
function, rather than the ordinary Shapley value. Hence we conclude that our
results are sensitive to the details of the extensive form structure.

Section 4 summarizes our conclusions. In particular, we discuss the role of the
institutional structure and the nature of the characteristic function in determining
the applicability of the Shapley value as a reasonable prediction of behavior in a
noncooperative setting.

2. THE BARGAINING GAME

Consider a transferable utility game in characteristic function form G = (V, N)
where N = {1,2,3,...,n},V:2¥ > IR  (V(¢) = 0). For our purposes, ¥ has the
following interpretation: Each agent i owns a valuable resource, and various
combinations of these resources (called resource bundles) produce utility accord-
ing to the function V. Hence, the resources of agents M C N, when pooled
together, produce a flow of utility which has a discounted present value of V(M).
Agents can buy and sell these resources in exchange for payment of utils. When
agent 7 sells his resource to j, he leaves the market. After such a transaction, we
will sometimes denote j as {i, j} to emphasize the fact that he now owns the
initial resources of both i and j.

Exchange takes place within the framework of the following extensive-form
game: At each period t=0,1,2,..., a random meeting occurs, say between
players i and j, with probability (2/n,(n,— 1)), where n, is the number of agents
still in the game at time ¢. Hence, each possible meeting is equally likely. Next,
one of the two parties, i and j, is chosen randomly (with probability 3) to make
an offer r,€ IR,. An offer r, is an offer of utility (or a numeraire good which
gives the same level of utility to each agent). Say i is chosen and offers r, to j;
then one of the following occurs: (i) j accepts the offer, which means that he sells
his resource to i, and leaves the market; (ii) j rejects the offer, and the meeting
dissolves.

In either case, the next period begins with a new meeting. It should be noted
that the probability of a meeting between two players in period ¢, given that they
are still in the game, is independent of whether either or both of them par-
ticipated in any previous meetings.

The game continues as long as there are two or more agents still in the market.
This particular extensive form aims at mimicking the bargaining process in
markets with very little friction and communication costs. Hence, all agents are
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constantly making offers, accepting or rejecting offers, and looking for new
bargaining partners. To capture this, we assume all future meetings are equally
likely and focus on the case where the time between offers is small. We take the
point of view that the resources produce streams of utility, hence, each agent
derives (1 — 8)V(M) from holding the initial resources of the agents in M for
one period, where 8 denotes the common per period discount factor. Therefore,
the utility of agent i associated with a given outcome of this game is

Ui= i [(1-8)v(M]) —ri]6",

where M/ C N is the set of all agents whose initial resources are owned by i at
the end of period ¢, and r/ is the payment made by agent i in period 7. A
payment to an agent is considered a negative payment by i. (Henceforth, we will
simply say resource M whenever we mean the sum of the initial resources of the
agents in M.)

Since this is a game of perfect information, a rth period strategy for agent
i,o/ € X!, is a mapping from each ¢—1 period history 4, , € H,_, and each
possible meeting involving i, to a pair of real numbers (a, b) with the following
interpretation: ¢/(h,_y,j) = (a, b) means that, if after history h,_, (which in-
cludes up to time ¢ — 1, a full record of all the events in the game) i meets j, he
will offer j, a if i is chosen to make the offer and accept any offer greater than or
equal to b if j is chosen to make the offer.

We define a strategy for i, ¢’ € 3', by ¢'=(0/)®,, where o/ € X! for all .
Therefore, T =3' X 32X ... X 2" is the set of strategy profile o.

The noncooperative extensive form game B= {(U’,2')"_,} is called a
Bargaining Game.

Our notion of equilibrium is stationary subgame perfect Nash equilibrium
(SSPNE). A strategy profile o is a SSPNE if and only if: (i) The strategy of each
agent i is optimal after every history, given the strategies of all other agents.
(This is the standard notion of subgame perfection due to Selten (1975).) (ii) o is
stationary—that is, if after two histories 4, and #,, (a) player i owns the same
resources; (b) the distribution of the remaining resources is the same; specifically,
for all M C N, if there exists an agent who owns exactly M at time ¢, then there
exists some agent (possibly a different one) who owns exactly M at time r,
implies 6/(h,_;,M)=0/(h,_,, M). Hence, i’s strategy depends only on what he
owns and how the remaining resources are partitioned.

Notice that our stationarity assumption does not require that if, after a history
h,, i buys j’s resource, then he follows the same strategy for the remainder of the
game as j would if j had purchased i’s resource. However, the strategies of all
agents other than / and j must be independent of whether i or j ended up with
the combined resources of i and j.

3 Allowing agents to accept or reject arbitrary sets of offers, rather than just closed intervals would
not alter any of our results. We restrict attention to interval strategies only for notational conveni-
ence.
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One story behind the notion of Nash equilibrium is that people know the
strategies of opposing players because they have previously observed third parties
playing the same game. It is inconceivable that such a model of learning will
enable the communication of arbitrarily complicated strategies in infinite horizon
games.

Hence, if Nash equilibria are to be viewed, in some sense, as the limits of a
dynamic adjustment process, then some restriction on the strategies of the agents
seems to be desirable. Stationarity enables us to concentrate on a particularly
simple class of strategies.

We will use E to denote the set of all SSPNE. Henceforth we will mean a
SSPNE whenever we say equilibrium. Sometimes we will index our game and
equilibria by 6, that is, use B(8) and E(§). )

The state g€ Q, g=(M;, M,,..., M) refers to a situation in which, after
various rounds of trading, there are k players left in the game and each player
(who is still in the game) i owns resources M, ;) C N. Q is the set of all possible
states (partitions of N). Given our weak stationarity requirement, a state ¢ C Q
does not summarize all of the relevant history. Since we have not required that i
and j have the same strategy if they are faced with the same situation, the
identity of the owners of the various combinations of resources could conceivably
influence the outcome. Obviously Theorems 1 and 2 will hold even with the
stronger stationarity requirement.

N € Q denotes the finest partition of N. For all L, M € g, let R(¢q, L, M) € Q
denote the partition obtained from g by replacing the elements L and M by
LUM. Thatis, R(q, L, M)=(g\{L,M})U{LUM}.

Let F={f,|f,: ¢ N for some g € Q}. Hence, the pair g, f, summarizes all
of the relevant history; g determines how the resources are distributed and f,
determines the identity of the owners.

In what follows, we will assume that marginal product of agents’ resources are
always positive. Hence, V is strictly super-additive.

Strict super-additivity: 4

(SS): LNM=¢, L+¢+M implies V(L)+V(M)<V(LUM)
forall L, MCN.

U(M, q, f,, o) denotes the expected utility of the continuation of the game for
player f (M), according to strategy profile o given state g. Note that
U(M, g, f,, 0) does not reflect payments made or utilities enjoyed before the
occurrence of g. When the relevant f, is obvious (for example, at the start of the
game) or if the payoffs of the agents can be shown to be independent of their
identities (as is the case in the efficient equilibrium), we omit f, and write
U(M, q,0) instead of U(M,gq, f,,0). We also write U(i,q,0) rather than
U({i}, q,0).

# Larry Samuelson has pointed out that all of our conclusions would remain valid if we substituted

A C N and A # N implies V(A) < V(N) and super-additivity for strict super-additivity. For this case
we would need to make a minor change in the proof of Theorem 2.
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Let

S(,q) = ¥, #A DR ~p(4):

Acgq p(N)!

where p(A4) is the number of elements of the partition ¢ which are included in A4
and V(X)=V(U,c yo) for all X€gq. Of course S(M,q) is only defined for
Megq.

Observe that S(i, N) is the Shapley value of i € N in the game G.’ In general,
S(M, q) is the Shapley value of M given state ¢. That is, S(M, q) is the Shapley
value of the player who owns the resource bundle M in a game in which initial
endowments are distributed according to g. Since S enables us to compute
Shapley values with respect to arbitrary partitions of N rather than just the finest
partition, we call the function S the generalized Shapley value.

Our main result deals with the efficient strategy profiles ¢ € = in the bargain-
ing game B. Since o determines a stochastic outcome path, the appropriate
definition of efficiency involves the use of expected utilities.

[V(4) - V(AN {M})],

DEFINITION 1: ¢ € X is efficient if and only if

Y U(i,N,6)> Y U(i,N,¢’) foralle’eZ.
ieN ieN

Given (SS) it is clear that an equilibrium is efficient if and only if it prescribes
every possible meeting to end in agreement.

THEOREM 1: Let o(8,) € E(8,) for some {8,)%-o such that lim, 8, =1.
If 6(8,) is efficient for all k, then lim, _, U(i, N, 6(8,)) = S(i, N).

PrOOF: See Appendix.

Hence, Theorem 1 states that, as the time interval between meetings becomes
arbitrarily small, the expected payoff of each player at an efficient equilibrium
converges to his Shapley value. Furthermore, it is clear from the proof of
Theorem 1 that there can be at most one efficient equilibrium in E(8). That
equilibrium will involve a trade at each meeting. Observe that our proof also
shows that in an efficient equilibrium, for & close to 1, the expected utility
of continuation for an agent who owns M at state ¢ is approximately given by
S(M, q). But if a trade is to take place at each meeting, it must be the case that
an agent who owns M at state ¢ must offer to an agent who owns L approxi-
mately S(L, q) and benefit from his acceptance; that is,

S(LUM,R(q,L,M))—S(L,q)>8(M,q).

® Hence, S(i, N)=Xpycn (IM] =DI(N| - [ M)/ IN|IY(V(M)—v(M\{i})) where |N| and
|M| denote the cardinalities of the set N and M respectively.
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Therefore, it is clear that the following condition, which we call value additiv-
ity of V, (VA), is necessary for an efficient equilibrium to exist for 8 close to 1:

(v4) q¢qe€Q, L,Megq, L+ M implies
S(L,q) +S(M,q)<S(LUM, R(q,L,M)).

It is interesting to note that, if N = {1,2,3} and V is normalized, then (VA4) is
equivalent to the following simple condition:

(v4a') v({1,2})+V({1,3}) + V({2,3}) = 1.

Theorem 2 establishes that (VA4) is also a sufficient condition for the existence
of an efficient equilibrium.

THEOREM 2: If V satisfies (VA), then for 8 sufficiently close to 1, there exists a
unique efficient equilibrium.

PrROOF: See Appendix.

From Theorem 2, it can be noted that all equilibria of the game can be
computed as follows:

First, we postulate which meetings will result in trade at each state. Then we
solve, using backward induction as described in the proof of Theorem 1, for the
equilibrium (expected) payoffs for each agent, given the postulated set of trades.
Finally, we check whether or not this solution corresponds to an equilibrium.
More specifically, the solution corresponds to an equilibrium if and only if, at
each state ¢ and each meeting { L, M } C g, the continuation payoff of owning
L U M is no less (no greater) than the sum of the computed payoffs of the agents
who own L and M at state ¢ whenever a trade is (is not) postulated between L
and M at state ¢. (Note that this condition corresponds to (VA) for the case of
efficient equilibria and & close to 1.)

We now provide an example of a game which has an inefficient equilibrium:

Let N={1,2,3} and V(4)=0 for ACN,A# N, and V(N)=1. Further-
more, let a(i, j) denote the offer of agent i to agent j at state N and r(j, i, a)
denote the response of agent j to an offer of a by agent i at state N.

Consider the strategy profile ¢ described below:

a(1,2)=a(2,1) = m
and
r(2,1,a)=r(1,2,a) =Yesif a>a(1,2),
= No otherwise,
a(1,3)=a(2,3)=0



BARGAINING FOUNDATIONS 87

and
52
r(3,1,a)=r(3,2,a) =Yesif a> m,
= No otherwise,
a(3,1)=a(3,2)=0
and
52
r(2,3,a)=r(1,3,a) =Yesif a> WG-2)
= No otherwise.
Note that:
U'(0) = 38U™(0) + [8/2 = 8U%(0)] + 18U™(0) = 35755
U%(o)=U(0),
U(o) =28U%0) + 181 = ﬁ

It is easy to verify that o is a SSPNE.

The equilibrium has the following structure: If player 3 meets 1 or 2 before 1
and 2 have traded between themselves, the meeting results in disagreement. If 1
and 2 meet they trade. Note that the equilibrium payoffs converge to %, }, 3
respectively, as 8§ approaches 1. Also note that since (VA4) fails, this game has no
efficient equilibrium. It is easy to show that with 3 players no inefficient
equilibrium exists when (VA4) is satisfied. It is not known whether this is true in
general, but it seems unlikely that (VA4) rules out all possible inefficient equilibria
when the number of players is large.

We have taken the point of view that the underlying (cooperative) possibilities
implied by G reflect the possibilities for gains from trade. Hence, our extensive
form game has led us to a theory of bargaining. Alternatively, we can interpret
the outcomes of meetings as the formation of coalitions rather than trades (i.e.,
during the meeting agents buy and sell services, binding contracts, and /or voting
rights rather than private goods); in this case our model provides a simple,
noncooperative model of coalition formation. One of the main topics of discus-
sion in cooperative game theory has been the formation of stable coalition
structures. Our approach yields the following conclusion:

A coalition structure (set of postulates about which coalitions will form) is
“stable” if the payoffs computed using that structure constitute an equilibrium of
the associated bargaining game. In cases where (VA) is satisfied we find that a
structure that prescribes the merger of any two coalitions whenever the opportun-
ity of such a merger arises, is indeed stable.
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3. THE PARTNERSHIP GAME

One possible criticism of the coalition formation interpretation of the bargain-
ing game discussed in Section 2 is the following:

If the result of an accepted offer at a meeting is the formation of a coalition
(rather than the realization of a trade, as in the bargaining interpretation) no one
leaves the market after an accepted offer. Hence, is it not reasonable to expect
coalitions with a large number of agents to have greater bargaining power than
coalitions with a small number of agents? If one believes that large coalitions can
commit to longer delays in case of disagreement or that it is somehow more
difficult to reach an agreement with large coalitions, then the answer to previous
questions must be yes. The following game, which we call the partnership game,
is a modification of the bargaining game and gives larger coalitions more power
in the bargaining process. It is not meant to support another solution concept but
rather to demonstrate the nonrobustness of the game to the choice of the
extensive form game.

Let G=(V, N) be a game in characteristic function form as in Section I.
Furthermore, let N = {1,2,3}. We define a Partnership Game, P(8) for § € (0,1)
as follows:

In period 0, a random meeting between two agents takes place. Every possible
meeting has probability 1/3. Let us assume, without loss of generality, that a
meeting occurred between 1 and 2. Then each player is chosen with probability
1/2 to make an offer. Let’s also assume that agent 1 is chosen. Agent 1 will make
an offer a €[0,1]. If 2 rejects this offer, then the meeting dissolves and a new
(random) meeting takes place, and the process is repeated. If 2 accepts the offer
a, it means that 1 and 2 agree to pool their resources and split whatever utility
they obtain from continuation of the game so that 1 and 2 get respectively 1 — «
and a proportion of the total utility.® In the next round the partners {1,2} meet
3. Each player is chosen with probability 1/3 to make an offer.

Say 3 is chosen and makes an offer 8 € [0,1]. If agents 1 and 2 both accept this
offer,” then agents 1, 2, and 3 obtain utilities

5(1-a)BV(N) +(1-8)(1-a)V({1,2}),
daBV(N) +(1-8)aV({1,2}),

and
8(1-B)V(N),

respectively. If either 1 or 2 rejects the offer, a new offerer is chosen with
probability 1/3, and he makes a new offer. Notice that after a rejected offer, the
partnership between 1 and 2 does not dissolve.

6 Permitting more general types of offers which specify shares and transfers does not change the
result. This is clear from the Proof of Theorem 3.
We assume that players 1 and 2 announce their acceptance or rejection according to a
prespecified order and not simultaneously. Hence subgame perfection will rule out equilibria which
have 1 rejecting only because 2 is rejecting and 2 rejecting only because 1 is rejecting,
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Let E(8) denote the set of SSPNE of the partnership game.

THEOREM 3: (i) E(8) is a singleton for all §€(0,1). (i) If U(8)=
(UY(8), U*(8), U(8)) are the utilities associated with o € E(8), then

lim U(8) =3V(N) +3 IZN(V(N\{J'}) -2v(J))

+35V (i) = V(NN {i}).

PRrROOF: See Appendix.

Computing the equilibrium for the partnership game if the number of agents is
greater than 3 is very complicated. However, it is clear that a condition essen-
tially weaker than (VA) will suffice to guarantee the existence of an efficient
equilibrium for the general case. _

The complement of a characteristic function is a function V:2"¥ — IR, defined
by

V(M)=V(N)-V(N\M) foral MCN.

Charnes, Rausseau, and Sieford (1978) define a homomollifier h:2N — IR as
follows:

IN| - |M

h(M)=%I7(M)+ T |V(M)

|V
where | M| denotes the cardinality for all M C N of the set M. It is easy to verify
that lim, _,,U’(0) is equal to the composition of Shapley value and the homomol-
lifier. That is, the limits of the equilibrium utilities of the partnership game for
the case of N = {1,2,3} correspond to the Shapley values of the homomollifier.
In cooperative game theory, the homomollifier reflects an attempt to incorporate
the size of coalitions into characteristic function representation. Theorem 3
provides a similar noncooperative interpretation for the homomollifier.

4. CONCLUSION

Our investigation of the extensive form bargaining models described in Sec-
tions 2 and 3 have enabled us to isolate the two main sources of impatience in a
multiperson bargaining problem. The first source is well known from the studies
on the two person bargaining problem: Delay is costly because agents discount
the future. The second source of impatience is the desire to realize the gains from
trade before others do. Hence, if a player rejects an offer (or makes an unaccept-
able one), he will give the other players a chance to meet and reach an agreement,
so that by the time he gets another chance to bargain, there will be smaller gains
from trade left to realize.
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As for establishing noncooperative criteria for the appropriateness of the
Shapley value, our analysis suggests that the condition (V4) is key in determining
whether a given characteristic function game constitutes a suitable framework for
the application of the Shapley value. Furthermore, the model of Section 3 shows
us the importance of institutional detail. Comparing the results of the bargaining
game with the results of the partnership game enables us to conclude that the
validity of a noncooperative interpretation of the Shapley value relies on a
decentralized and sparse institutional framework.

From a cooperative standpoint, our analysis yields the following alternative
interpretation of the Shapley value. (i) If there exists a function S which
associates with each coalitional structure (state) and coalition, a value, and (ii) if
coalitions occur randomly, such that given any coalitional structure, the probabil-
ity that two coalitions L and M will meet and join to form the new coalitions
L U M is the same for all pairs of coalitions (L, M), and (iii) if (L, M) share the
surplus created by their meeting equally, and (iv) if S associates with each M at
each state ¢, an expected payoff over all possible future meetings, then S is the
generalized Shapley value.

In particular, at the initial state, S associates with each agent his Shapley
value.

The reliance of the above described program on the outcomes of “subgames”
and the equal division of surplus implied by (iii) may suggest that this particular
characterization of the Shapley value is similar to the preservation of differences
principle characterization discussed in Hart and Mas-Colell (1985) and Myerson
(1980). This, however, is misleading since their notion of a “subgame” for G
entails the restriction of ¥V to subsets of N, whereas our use of the term
“subgame” refers to coarser partitions of N.

Finally, it may be interesting to consider the implications of the model under
consideration for the problem of value allocation in the nontransferable utility
framework, and to see if it can shed some light on the controversy over solution
concepts in that area. Unfortunately, one is immediately confronted with the
following problem:

The nonlinearity of the utility possibility frontier which is the defining char-
acteristic of the NTU model implies that expectations of uncertain final allo-
cations are in general inefficient.® This makes random matching models of the
type we have been considering unsuitable for the analysis of NTU situations.

Roth (1980) offers an example of a 3-person NTU game in which there is a
unique outcome that is strictly preferred to any other feasible outcome by two of
the agents. Furthermore the two agents can, by themselves, guarantee this
outcome. He argues that this outcome is indeed the only reasonable solution for
this game. Unfortunately neither of the two most popular cooperative value
concepts include the Roth outcome in their set of solutions. While it is not clear
how the current model can, in any reasonable way, be generalized to the NTU

8 Aumann (1985) makes this observation.
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setting, establishing a satisfactory noncooperative model that yields equilibria
other than the Roth outcome for this game appears to be a formidable task.

Graduate School of Business, Stanford University, Stanford, CA 94305-5015,
U.S.A.

Manuscript received October, 1986, revision received January, 1988.

APPENDIX

In proving the theorem, we will use the following lemmas:

LEMMA 1: Assume that, after various rounds of trade, the economy has reached a situation in which
only two agents remain. Hence, we are at a stage where the continuation game is a 2 person bargaining
game with randomly selected offerers. At this stage q={M, N\M} for some MC N, += M=+ N.
Then the expected utilities of the continuation game for these agents are given by

V(N) - V(N\M) + V(M)
- . ,
V(N) - V(M) + V(N\M)
- ,

U(M,q,0)

U(N\M,q,0) =

PROOF: By stationarity there hes to be a single offer made by each player. Call these offers a and
b for players M and N\M respectively. Using V(M) + V(N\M), it is easy to show that both
players have been making acceptable offers. The expected utility of each agent, in equilibrium, is
given by:

U(Mv q’o) = %(V(N) - a) + %bv
U(N\M,q,0)=3%a+L(V(N)-b).
Furthermore if agent M refuses the offer b, his utility will be 8U(M, a, o) + (1 — §)V(M). Hence
the agent knows that M will accept any offer greater than dU(M, a, o) + (1 — §)V (M) and will not
accept any offer less than this amount. So b=98U(M, ¢, r) + (1 — 8)V(M). A symmetric argument

establishes a = 8U(N\M, g,0) + (1 —8§)V(N\M). Substituting for a and b in the above two
equations and solving the U(M, ¢, 0) and U(N\ M, g, o) yields
V(N)+V(M)—-V(N\M
U g0y = LELHVOD VAN -,
V(N)+ V(N\M) - V(M)
5 .

We have completely described the unique candidate for an equilibrium. Proving that this is indeed an
equilibrium is straightforward.’

U(N\Mv q,o) =

LEMMA 2: Let 0*(8) be an equilibrium in which trade takes place at each meeting. If N =
{1,2,...,n}, n>3, then lims_,,U(M, q,6*(8)) = S(M, q) for q=R(N, i, j) for some i, j€ N and
i+ j implies limg _,,U(i, N, 0*(8)) = S(i, N).

Lemma 2 says that if, after one transaction occurs, ¢*(8), for 8 close to 1, yields an expected
payoff equal to his Shapley value for every remaining player (relative to a new distribution of

°In fact, this Lemma does not require the stationarity assumption. See Binmore (1982) or
Binmore, Rubinstein, and Wolinsky (1985).
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resources), then for & close enough to 1, ¢*(8) will yield each agent expected payoff equal to his
Shapley value in the original game before any transaction takes place. But this is equivalent to saying
that, if the equilibrium ¢*(8) yields expected payoffs according to the Shapley values in all n—1
player games, then o*(8) will yield payoffs according to the Shapley values in all n player games.

PRrOOF: If the assumptions of Lemma 2 are satisfied, then we can easily show that

UG, 0% (0)) =37 X [8U(5, .07 (9)) + (1= 8)V(1)]
(5) e
+%——:;—- Z [SU({I,j},R(ﬁsl’j)’o*(s))
(2) j5i
+(1-8)V({i,j})
—8U(j, N,o*(8)) - (1 -8)V(/)]
1

+v Y [8U(i, R,(N, j, k),0*(8)) + 1= 8)V(i)].
() s

To see this, note that in 6*(8), i may (a) meet j in the initial round and not be chosen as the
offerer, or (b) meet j in the initial round and be chosen as the offerer, or (c) two players other than i
may meet in the first round.

The first term in the above equation involves case (a). 1/ ( ;) is the probability that i will meet j

and 1 is the probability that he will be making the offer given he has met j. Since i is to accept j’s
offer by the argument used in Lemma 1, j must offer 8U(i, N, 6 *(8)) + (1 — 8§)V(i) to i. Similarly,
the second term accounts for case (b), and the third term accounts for case (c).

After multiplying both sides by n(n — 1) and collecting terms, the corresponding equations for the
other agents yield the following system of linear equations: AzU; = G, that is

a 8 & ... 8\|U G
§ a8 e |
8§ & a : : :
§ & al\ ur ar

where a = (n — 1)(n — §) and
G= 4ZN[8U({i,j},R(1V,i,j),o*(S)) —(1-8)V()+ A -8)r(i)]
+2 Y, [8U(i,R(N, j, k),6*(8)) + (1 - 8)V(i)].

{j.k}cN
J*i*k

Furthermore, since trade takes place at each meeting and § =1, L, . yU’ = V(N).
Hence, the following system of linear equations is equivalent to A;Us = G5 (for 8 = 1):

e 0 0 .. 0/ C'-V(N)
0 e 0 ... I p2 _ C*-V(N)
0 0 e . : ’
0 e/ \U" C"=V(N)

where e = n(n — 2). Therefore, limg _, ,U(i, N,e*(8))=U' =_(C’ — V(N))/(n(n—2)). To complete
the proof, we will show that (C' — V(N))/(n(n — 2)) = S(i, N). First, note that in the first term of
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C!, V(N) appears in each S({i, j}, R(N, i, j)) with a 1/(n— 1) coefficient. Since there are n— 1
S(i, R(N, i, j))’s, the first term of C’ yields one V(N). Similarly, the second term has 2(”;1)

S(i, R(N, j, k))’s and hence contributes 2| ";1 (1/(n—1))=(n—2) V(N)’s. This implies that the
coefficient of the term V(N) in the expression (C' — V(N))/(n(n — 2)) is 1/n.

Similar computations for other M C N also yield the Shapley value coefficients establishing the
desired result.

-

PROOF OF THEOREM 1: It follows from (SS) that the only efficient strategy profiles are those which
specify trade at every possible meeting. But, then for n =2, Lemma 1 establishes the desired result.
For n > 3, the result is established inductively by using Lemma 2.

PrROOF OF THEOREM 2: First, we establish that there is an equilibrium o * (8), such that trade takes
place at each meeting if (VA) is satisfied.

By following the backward induction program described in Lemma 2 for all g€ Q, we can
compute the solution of the linear system

AsUs = Gs

where the game at state g is treated as a game in which the number of players is the cardinality of
4,1q|, and A5 is a |g| X |g| matrix and C; is computed by solving all similar matrices for states
R(q,L, M) for all L, M € q and L+ M. The solution U; will be referred to as U(M, q,6*(8))pr e -
Hence, by Lemma 2, we know that for all ¢ > 0, there exists § such that for all g€ Q, L, M € ¢,

IS(L,q) ~ U(L,q,0*(8))| <e,
|S(M,q)—U(M,q,6*(8))| <e,
|S(LUM,R(q,L,M))— U(LUM,R(q, L, M),c*(8))| <e.
Hence, (VA) implies that, for small enough ¢ and the appropriate &,
8U(L,q,0*(8)) + (1 -8)V(L) +8U(M, q,0*(8)) + (1 - 8) V(M)
<U(LUM,R(q, L, M),c*(5)).

Then the strategy profile o *(8) that states that, at every state g, every agent M accepts only those
offers that are no less than §U(M, q,0*(8)) + (1 — 8)V(M), and at every g, every agent L that meets
M offers exactly 8U(M, g, 6*(8)) + (1 — §)V(M) constitutes an equilibrium. To verify this, note that
the optimality of making the offer §U(M, g, 6*(8)) + (1 — §)V(M) follows from the fact that no
lower offer is accepted and by the inequality above, L does not benefit from making an unacceptable
offer. Furthermore, clearly this profile involves trade at each meeting and therefore is efficient. By
Theorem 1, it is the only efficient equilibrium.

PROOF OF THEOREM 3: Assume that we are in a situation o in which 1 and 2 are partners with
shares & and 1 — & respectively. Let U'(a), U%(a), and U>(a) denote the expected utilities of the
agents at this state. Let v, y2, and y° be the offers made by agents 1, 2, and 3 respectively.

Reasoning as in Lemma 1, we can establish that

6)) Y =y=[8U3(a) + 1 -8)V(3)]/V(N),

@) ¥ =[8(U'(a) + U(a)) + 1 - )V ({1,2))] /¥ (W),
®) U (a) = $v2a¥(N) + 3a(1 - ¥ V(N),

@ U= a-a V(N +EA-a)(1- PV,

®) U(a) = 3y'V(N) + (1 -v*)V(N).
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Substituting the values of y' and y> from (1) and (2) into (3), (4), and (5) and solving the resulting
simultaneous system yields

U (@) = S (V(V) - V) - V((1.2D) + SV((1.2)),

l-a
U*(a) =31 -a)(V(N) - V(3) - V({1,2})) + —V({1.2}),

U (a) = 5(V(N) - V(3) - V({1,2})) + 3V (3).

Observe that the equilibrium expected payoff of agent 3 does not depend on a. Let A(1,2) denote
the total expected utility of players 1 and 2 if they meet in the initial period. Then, by the previous
argument,

@ A(1,2) =8(U'(a) + U*(a)) + 1 - 8)V({1,2})
=8[3(V(N) - V(3) - ¥({1,2})) + 3V ({L.2)] + 1 - &)V ({1,2}).

Similarly, B(3), the total expected payoff of agent 3 if 1 and 2 from the first partnership, is given
by

2 B(3) =8U%(a) + (1 -8)V(3) +8[3(V(N) - V(3) - ¥({1,2})) + }V(3)]
+(1-8)V(3).

Since the total payoff of the partnership that is established first is independent of the shares, agent
2 will offer exactly that @ which keeps 1 indifferent between accepting and rejecting. That is, 2 will
offer 1 the a that yields the utility §U* + (1 — 8)V(1) where U" is the expected utility of the game for
agent 1 in equilibrium o. Hence, the equilibrium expected utility of 1 satisfies

3) U'=1[4(1,2) - 80> - 1-8)V(2)] +1[4(1,3) - 8U° - (1-8) ¥ (3)]
+i[sUt + 1-8)r(1)] +1B().

The first term arises from the contingency which entails 1 meeting 2 and being chosen as the
offerer. Similarly, the second term results from the possibility that 1 may meet 3 and be chosen as the
offerer. The third term accounts for the possibility that, although 1 may participate in the first
meeting (either with 2 or 3), he may not be chosen as the offerer. The final term results from the
contingency that 2 and 3 may form the first partnership. Substituting the values of 4(1,2) and B(1)
from equations (1) and (2) into equation (3) and solving the three eqzuation system that arises from the
counterparts of (1), (2), and (3) for players 2 and 3 yields U'(8), U2(8), U3(8). Taking the limit as &
approaches 1 establishes the desired result. (Observe that our argument establishes that every
equilibrium must yield expected payoffs U'(8), U?(8), and U3(8). Choosing the unique set of
appropriate shares to yield these payoffs is a trivial task.)

Note that the problem of deciding which partnerships will actually form does not arise since it is
clear that every meeting will result in an agreement. Hence, the equilibrium is unique.
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