
c© 2018 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Big Data (OJBD)
Volume 4, Issue 1, 2018

http://www.ronpub.com/ojbd
ISSN 2365-029X

Cloud-Scale Entity Resolution:
Current State and Open Challenges

Xiao Chen, Eike Schallehn, Gunter Saake

Institute of Technical and Business Information Systems, Otto-von-Guericke-University of Magdeburg,
Universittsplatz 2, Magdeburg, Germany, {xiao.chen, eike, saake}@ovgu.de

ABSTRACT

Entity resolution (ER) is a process to identify records in information systems, which refer to the same real-world
entity. Because in the two recent decades the data volume has grown so large, parallel techniques are called upon
to satisfy the ER requirements of high performance and scalability. The development of parallel ER has reached a
relatively prosperous stage, and has found its way into several applications. In this work, we first comprehensively
survey the state of the art of parallel ER approaches. From the comprehensive overview, we then extract the
classification criteria of parallel ER, classify and compare these approaches based on these criteria. Finally, we
identify open research questions and challenges and discuss potential solutions and further research potentials in
this field.

TYPE OF PAPER AND KEYWORDS

Research Review: entity resolution, record linkage, parallel computing, parallel entity resolution, deduplication,
similarity join, data partitioning, load balancing

1 INTRODUCTION

Within a single information system or across different
information systems there may exist different
descriptions for one real-world entity. The differences
may result from typographical errors, abbreviations,
data formatting, etc. However, these errors and
inconsistencies can limit the applicability of the data for
transactional and analytical purposes, and, accordingly,
limit the business value of the data. Therefore, it is
necessary to be able to resolve and clarify such different
representations. Entity Resolution (ER) is the process
of identifying records that refer to the same real-world
entity. It is also known under several other names.
In the general field of computer science it is also
referred to as data matching [15], record linkage [30],
de-duplication [81], reference reconciliation [24], or
object identification [42]. More specifically, in the

database domain, ER is tightly related to the techniques
of similarity joins [52].

Today, ER plays a vital role in diverse areas, not
only in traditional applications of census, health care, or
national security, but also for Internet-based applications
such as social media, online shopping, web searches,
business mailing lists, etc. In some domains, like
the Web of data, ER is a prerequisite to enable
semantic search, interlink descriptions and support deep
reasoning [15]. It is also an indispensable step in
data cleaning [39] [80], data integration [38], and data
warehousing [8]. The use of computer techniques
to perform ER dates back to the middle of the last
century. Since then, researchers have developed various
techniques and algorithms for ER due to its many
applications. From its early days, there have been two
general goals: efficiency and effectiveness, which mean

30

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojbd

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

how fast and how accurately an ER task can be solved.
In recent years, the rise of the Web and Cloud-based
applications has led to several extensions of techniques
and algorithms for ER. Data of those applications,
depending on specific criteria sometimes also referred to
as Big Data, is often semi-structured, comes from diverse
domains, and exists on a very large-scale. These three
properties make it qualitatively different from traditional
data, which brings new challenges to ER and in turn
require new techniques or algorithms as solutions.

To be specific, specialized similarity measures
are required for semi-structured data, cross-domain
techniques are needed to handle data from diverse
domains, and parallel techniques are needed to make
algorithms not only efficient and effective, but also
scalable, in order to be able to deal with the large
and often unpredictable scale of the data [85]. Parallel
techniques developed in response to the large-scale data
challenge are the objects of this survey. For the sake
of simplicity, we call ER without using any parallel
techniques serial ER, otherwise we call it parallel ER.
Despite the relatively prosperous stage of parallel ER,
the inevitable future expansion in data volume will
require further increases in data processing efficiency.
To date, however, no thorough survey of parallel ER
has been published. Most of the earlier surveys only
addressed the general field of ER.

Gu et al. [37] in 2003 described a record linkage
system design and summarized common techniques
used in each key system component, such as blocking,
comparison, decision model, etc. In addition, they
also provided new alternatives to implement these
components and compared them to previous algorithms.
Brizan and Tansel [8] in 2006 summarized matching
techniques and ways to apply them. In [90] Winkler
described in 2006 various ER applications and then
described methods for improving matching efficacy, i.e.
to make ER more easily applicable, and according
methods for string comparison. Elmagarmid et al. [28]
in 2007 gave a thorough analysis of approaches on
duplicate record detection, which specifically includes
techniques used to match records with single attribute
or multiple attributes, techniques for improving the
efficiency and scalability of approximate duplicate
detection algorithms, a few commercial tools used in
industry and a brief discussion of open problems.

Köpcke and Rahm [59] in 2010 compared and
evaluated 11 proposed frameworks for ER. The selected
comparison criteria can also be used to compare
other frameworks. After the theoretical comparison
of 11 frameworks, experimental evaluations were also
provided to assess the effectiveness and efficiency of
frameworks. Christen [16] in 2012 focused on indexing
techniques used in ER and gave a detailed discussion

of six indexing techniques with a total of twelve
variations of them, which included a theoretical analysis
of their complexity and an empirical evaluation of these
techniques. Getoor und Machanavajjhala [34] [35]
in 2012 and 2013 gave tutorials on ER, including
existing solutions, current challenges and open questions
in the field of ER. Gal [33] in 2014 also gave
a tutorial on Entity Resolution, and he concluded
models and algorithms used for uncertainty in ER
and exposed current challenges and future research
directions. Chen [12] published a short survey in
2015 in the area of crowdsourcing ER. Papadakis et
al. [74] in 2016 focused also on blocking (also called
indexing) techniques used in ER, which has the same
focus as [16]. They first classified 17 state-of-the-art
blocking methods into lazy blocking, block-refinement,
comparison-refinement, proactive blocking categories,
and then empirically evaluated them on six popular real
datasets and six established synthetic datasets.

As outlined above, a survey with a focus on aspects of
the parallelization of ER does not yet exist. In this paper
we present such a survey, covering the basic principles
and most important parallel ER approaches. The main
contributions of this work are as follows:

• Extracting the classification criteria of parallel ER
approaches.

• Classifying and comparing the important parallel
ER approaches based on these criteria.

• Identifying possible solutions that fulfill the
important criteria of parallel ER.

• Discussing further research potentials for parallel
ER.

The remainder of this paper is structured as follows:
In Section 2, we introduce the process of ER and parallel
ER, which are the foundations to understand the paper.
Then, we present the methodology of our literature
review in Section 3. In Section 4, we first group 34
selected approaches into three categories. Based on these
three categories, we then provide an overview of the
publications and introduce the three sets of criteria we
extracted. Lastly, we discuss those publications based on
the first two sets of criteria. The discussion based on the
last set of criteria, efficiency-based criteria, are presented
separately in Section 5 because of their great importance
for parallel ER. In this section, we also propose possible
solutions for the key criteria and these solutions are
inspired and extracted from existing research on parallel
ER. In Section 6, we discuss the remaining research
potential for parallel ER. Last, we sum up the paper and
provide an outlook of possible future work in Section 7.

31

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Effectiveness
Related

Results:

Input data

Data preprocessing

Blocking

Pair-wise comparison

Classification

Evaluation

Matches Non-
matches

Potential
matches

Clerical review

Effectiveness
Related

Efficiency
Related

Effectiveness
Related

Threshold-based classification
Probabilistic classification
Cost-based classification
Rule-based classification
Clustering-based approaches
Collective classification

Set-based Similarity functions:
e.g., Jaccard, Dice, Cosine
Character-based Similarity functions:
e.g., Edit distance

Blocking Key
Sorted neighborhood approach
Q-gram based blocking
Suffix-array based indexing
Canopy clustering
Mapping based indexing

Data cleaning
Data standardization
Data tokenization
Data segmentation

Figure 1: The general process of ER based on [15]

2 PARALLEL ER

In this section, we first introduce the goals that ER
solutions should pursue. Then we describe the typical
workflow for ER, which is a preliminary to explain the
two kinds of parallelism in parallel ER to be introduced
at last.

There are three general goals for solving ER tasks:
effectiveness, efficiency, and scalability. Effectiveness
means how reliable the ER results are, which is often
expressed with three metrics: precision, recall and F-
measure [64]. Efficiency and scalability are closely
related. Efficiency, typically referring to runtime
efficiency, indicates a time to complete an ER task that
is optimal or sufficient to fulfil application requirements.
Scalability indicates the capability of a system to process
changing data volumes with the same response time, for

instance by flexibly adjusting processing resources.

2.1 General ER Workflow

In order to achieve these goals, there is a typical
workflow of ER tasks which is shown in Figure 1.
The workflow consists of five major steps in total:
data preprocessing, blocking, pair-wise comparison,
classification, and evaluation [15]. In the following,
these five steps are introduced according to the order of
their application in the overall process.

Data preprocessing: The input data that needs to be
resolved is usually noisy, inconsistent, and with low
data quality. Furthermore, some of the following steps
may require the data to be in a specific format as a
precondition to work properly. Therefore, before the data
is processed for ER, data preprocessing is required as the

32

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

first step to clean and standardize the input data. In some
cases due to specific blocking or comparison techniques,
data tokenization and segmentation are also included in
this step [15].

Blocking: To achieve efficiency in parallel as well as
in serial ER processing, blocking is often adopted.
Blocking means splitting the whole input dataset into
blocks, and then comparing only entities in the same
block. This requires a blocking strategy, which
guarantees – or at least makes it very likely – that
potentially matching records will be assigned to the
same block. Though this may have a negative impact
on effectiveness, the reason for adopting blocking is
efficiency of ER, which in general is a very time-
consuming, compute-intensive task. For an input dataset
with n records, the number of comparisons for an
ER task is n(n − 1)/2, which means the computing
complexity for it with n records is O(n2).

Therefore, the computing time for solving an ER task
is dramatically extended, when the number of records
increases. However, by using blocking, the search
space for ER can be reduced and the corresponding
computing complexity becomes O(n) for a fixed block
size. Furthermore, for parallel processing blocking
provides a set of independent sub-tasks that can
be easily parallelised. Because of their importance
for efficiency, many blocking techniques have been
developed. They can be categorized into six types:
blocking key (also frequently referred to as standard
blocking), sorted neighborhood approach [38], q-gram
or n-gram (fixed size sub-strings, overlapping or not
overlapping, respectively) based blocking [72], suffix-
array based indexing [2], canopy clustering [67] and
mapping-based indexing [47].

Pair-wise comparison: The third step is the essential
one of the ER process, which makes ER a compute-
intensive and time-consuming task. For the pair-wise
comparison, a similarity function is used to estimate how
similar two entities of a pair are. Most often, input
entities are considered to be single strings or sequences
of strings in records or objects. Therefore, here we focus
on strings as input for the similarity functions. There are
two main types of string similarity functions. One type is
set-based functions, such as Jaccard [44] [23], dice [22]
and Cosine [21] similarity functions. The input for set-
based similarity functions must be a set of tokens, where
a token can be either a word or n-gram/q-gram [72] and
can be generated from data preprocessing steps. The
other one is character-based, such as edit distance [60]
and various derivatives, which are defined based on the
number of character operations required to transform one
string to another [20].

Classification: After receiving the similarity scores for
record pairs as intermediate results, the classification
step will make the decision, whether a pair of records
is considered as a match or non-match, i.e. do they
refer to the same real-world entity or not? There
are various classification methods: simple threshold-
based classification, probabilistic classification, cost-
based classification, rule-based classification, clustering-
based approaches and collective classification, etc [15].
When some pairs cannot be identified as match or non-
match automatically, it is also possible that they are
reviewed and a decision is made by a human expert [15].

Evaluation: The last step evaluation is optional. It is
used to estimate the effectiveness of the ER process.

Techniques used in data preprocessing, pair-wise
comparison, and classification should be chosen
carefully to achieve a high effectiveness. Based on
the techniques determined in the above steps, blocking
techniques are typically used to improve efficiency and
scalability, but may imply a trade-off situation with
effectiveness goals.

2.2 Workflow of Parallel ER

The typical workflow of parallel ER approaches also
follows these five steps. What makes parallel ER
different from serial ER is that in some or all steps of
the ER process parallel techniques are used to speed-up
ER and/or achieve scalability. There are two kinds of
possible parallelisations for ER: intra-step and inter-step
parallelism.

Intra-step parallelism refers to a special form of
data parallelism (as opposed to task parallelism) in
this context. In parallel data processing independent
operations are carried out simultaneously on elements
of one data set. In this way, the large-scale data can
be divided into many smaller subsets and the processing
problem can be solved in parallel. This form is especially
suitable for problems that can be broken down into
many separate, independent operations on vast quantities
of data. ER is such a problem, because operations
like block assignment, comparisons in each step of ER
are often independent for records or pairs and can be
performed in parallel.

Inter-step parallelism is a case of task parallelism,
where each step in the process can be considered
as a task and can be executed in parallel. Strictly
speaking, relationships between adjacent steps are not
independent, the output of the previous step may be the
input of its next step. Therefore, the task parallelism
in ER is limited. However, some approaches support

33

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

a pipelined processing pattern: because the input data
volume is large, after one step has completed some
partial results, the next step can begin to process these
intermediate results without waiting for complete results
from the previous step, so a certain level of task
parallelism can be achieved.

To date, almost all publications on parallel ER focus
on data parallelism. Only [79] presents an approach
to parallelise the processing within as well as across
different steps.

3 METHODOLOGY AND RESULT OF
LITERATURE SEARCH

In this section, we describe the process of finding and
selecting the 44 papers on parallel ER presented in this
review. The process includes the following steps and
according results:

Identification of a start set of articles: The first task
in the literature search is to identify a start set of articles
having a strong focus on the considered field of parallel
ER. If a start set is too large, the efforts to identify related
papers will be unacceptable, while, on the other hand,
if a start set contains too few articles, some important
articles may be missed. As ER has many synonyms, the
most commonly used aliases were also used as key words
to achieve a start set covering diverse entry points to
sub-fields of research. Furthermore, ER-related research
in computer science has been going on for almost six
decades, so the number of articles is huge. Therefore,
it was mandatory to use key words distinguishing serial
and parallel ER to limit the size of the start set. To make
the search string more restrictive we use the keyword
‘partition’in oder to find the papers with a focus on
parallel processing. Based on these considerations, we
defined the following search string:

(“entity resolution” OR “record linkage” OR “data
matching” OR “deduplication” OR “duplication
detection” OR “similarity join”) AND (“parallel” OR
“distributed”) AND “partition”.

This search string was used on five big literature
databases: ACM Digital Library, IEEE Xplore,
SpringerLink, ScienceDirect and Scopus. Returned
articles from workshops, conferences and journals of
computer science formed the start set, including 9
articles from ACM Digital Library, 439 articles from
IEEE Xplore, 249 articles from SpringerLink, 248
articles from SpringerLink and 205 articles from Scopus.

Applying inclusion and exclusion criteria on the start
set: The second step is to define inclusion and exclusion

criteria and then apply them on the papers in the start set.
Inclusion and exclusion criteria are as follows.

Inclusion Criteria:

IC01: Including articles, which are published between
2005 and April 2017. 2005 is chosen, because the
vast majority of the research regarding parallel ER
is published after this year and we intended to focus
on the current state of research. December 2017 is
the time we did the literature search.

IC02: Including articles, which are written in English.

IC03: Including research papers, in which the research
ideas and solutions are originally from authors
themselves.

IC04: Including articles, whose topics are generic
ER (similarity join included) and using parallel
computation techniques to solve ER problems.

Exclusion Criteria:

EC01: Removing overlapping articles between
different literature databases.

EC02: Removing articles, which are lecture notes or
summaries of conferences, etc.

EC03: Removing articles, which are literature reviews
and surveys.

EC04: Removing articles, whose focus is on general
data mining, data integration, data cleaning, data
storage, data classification, similarity search, etc.

EC05: Removing articles, that only address specifics
of ER in applications domains, such as geospatial,
forensic, networking, multimedia domains.

EC06: Removing articles, whose focus is not using
parallel DBs or big data processing frameworks
to support parallelising the ER process, but
either to improve efficiency by using non-parallel
algorithms, small-scale parallelism offered by
GPUs for local tasks, focusing on solving privacy
problems, or query-time/streaming ER.

EC07: Removing articles based on the number of
citations indicating low impact or importance.
Because the number of citations increases over time
after publishing, it is not reasonable to have a single
lower-bound value. Therefore, we removed articles
with a citation number less than two times the
publication age in years before the current year of
2017, i.e., 2 ∗ (2018− publicationY ear).

34

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

Table 1: Classification of parallel RE approaches based on the programming model

ID Publication Information Programming Model
P-Swoosh [49] by Kawai et al. in 2006 parallel DBMS
Parallel linkage [50] by Kim and Lee in 2007 parallel DBMS
D-Swoosh [5] by Benjelloun et al. in 2007 parallel DBMS
FERAPARDAF [79] by Santos et al. in 2007 parallel DBMS
Febrl [14] by Christen in 2008 parallel DBMS
Iterative DDG [40] by Herschel et al. in 2012 parallel DBMS
Partition-based [46] by Jiang et al. in 2013 parallel DBMS
Pairwise document [29] by Elsayed et al. in 2008 MapReduce
SSJ-2R [3] by Baraglia et al. in 2010 MapReduce
Dedoop [51–58] by Kirsten et al. from 2010 to 2013 MapReduce
VCL [87] by Vernica et al. in 2010 MapReduce
MapDupReducer [88] by Wang et al. in 2010 MapReduce
MD-Approach [18] by Dal Bianco et al. in 2011 MapReduce
V-SMART-Join [71] by Metawally et al. in 2012 MapReduce
MRSimJoin [83, 84] by Silva et al. in 2012 MapReduce
LINDA [7] by Boehm et al. in 2012 MapReduce
Graph-based [48] by Kardes et al. in 2013 MapReduce
MR-DSJ [82] by Seidl et al. in 2013 MapReduce
PHiDJ [32] by Fries et al. in 2014 MapReduce
Cluster Join [19] by Das Sarma et al. in 2014 MapReduce
Graph-parallel [66] by Malhotra et al. in 2014 MapReduce
Mass Join [20] by Deng et al. in 2014 MapReduce
DCS++ MR-ER [69] [36] by Mestre et al. in 2013 and 2015 MapReduce
Sort-Map-Reduce [62] [63] by Ma et al. in 2015 MapReduce
FACET [93] by Yang et al. in 2015 MapReduce
SJT-based [61] by Liu et al. in 2016 MapReduce
High velocity streams [6] by Benny et al. in 2016 MapReduce
Dis-Dedup [17] by Chu et al. in 2016 MapReduce
Meta-blocking [27] by Efthymiou et al. in 2017 MapReduce
Sampling-based [11] by Chen et al. in 2017 MapReduce
Density-based blocking [25] by Dou et al. in 2017 MapReduce or Spark RDD
RDD-based ER [10] by Chen et al. in 2015 Spark RDD
ER of healthcare data [76] by Pita et al. in 2015 Spark RDD
DCS++ Spark-ER [70] by Demetrio et al. in 2017 Spark RDD

Using the above defined criteria, we applied them on
the start set with the following sub-steps:

Sub-step 1: Apply criteria, which are independent
from article contents, i.e., IC01, IC02, and EC01,
applying the filter functions of each search engine
of the literature databases. After this sub-step, 1119
articles remained.

Sub-step 2: Apply the criteria (IC03-IC04 and EC02-
EC06) on article titles to include or remove
articles. After this substep, 118 articles remained
for consideration.

Sub-step 3: Apply the criteria (IC03-IC04 and EC02-

EC06) on article abstract to include or remove
articles. After applying the criteria, 31 articles are
left. And lastly by applying EC07, eight articles are
removed because of not reaching the citation lower-
bound. After this sub-step, 23 articles are left.

Sub-step 4: Apply the criteria (IC03-IC04 and EC01-
EC06) to include or remove articles from the
literature set by reading the entire paper. After
applying these criteria on the whole paper, three
articles are removed and 20 articles are left.

Supplementing the literature set by checking the
references of articles: After we had the list of identified

35

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

20 articles from the second step, we checked references
from or to those articles, and then decided whether to
add found articles to our literature set or not based on
all criteria described above. After this step, we found 24
more articles and had 44 articles in total.

4 OVERVIEW AND CLASSIFICATION

Table 1 lists the 44 papers selected. We merged research
presented in different papers in one row if they are
done by the same researchers or the same research
group, and presented methods are tightly related and can
be combined. For instance, eight papers in the final
literature set are regarding the research on Dedoop and
we combined all eight papers into one row and named it
Dedoop. This way we have 34 rows in Table 1.

In this section, we first classify all approaches
according to the programming model they used into
three categories: Parallel DBMS, i.e., parallelism is
achieved in terms of parallel database processing and
no specific programming model, MapReduce-based, and
Spark-based. These are the currently most often used
approaches, in real-world-applications as well as in
academic research. Therefore, we focus on them in
this overview. Nevertheless, new parallel programming
models and frameworks are a topic of ongoing research
and their applicability and usage for ER must be covered
in future research, as discussed in section 6.

Then we extract three sets of criteria for parallel ER
to provide an overview for existing approaches based on
these three categories. The reason for this is, that the
used programming model is a basic aspect of parallel
ER. All further discussions are based on these three
categories. The three sets of criteria we extracted are
as follows.

• The first set of criteria describes general aspects
which are mostly application-driven including
operation type, number of input sources and input
data structure.

• The second set of criteria is related to effectiveness,
which include data preprocessing, similarity
function, match mode and clustering.

• The last set of criteria pertains to efficiency, which
is the most important part for parallel ER and
includes specific aspects of the programming model
used, blocking approaches, data partitioning, load
balancing and redundancy handling.

On one hand, these criteria can be used to compare
and classify existing approaches regarding parallel ER.
On the other hand, when developers are designing their
own parallel ER, these criteria can help them to discuss

and to weigh specific requirements of their parallel
ER applications. In the rest of this section, we will
introduce the first two sets of criteria and present the
classification based on those directly after each set of
criteria. Efficiency-based criteria are discussed in the
next section separately, because efficiency-based criteria,
including considerations related to scalability, are the
most critical ones for parallel ER.

4.1 Classification of Approaches Based on
Frameworks Used

In this survey, we present 34 approaches of parallel
ER. For simplicity, we assign each publication a
short and meaningful identification to simply represent
them throughout this survey. Then we classify them
according to the programming model: parallel DBMS,
i.e., no programming model used, MapReduce-based
and Spark-based. Table 1 shows all publications and
their programming model. As we can see, seven of
them do not apply a programming model but use Parallel
DBMS to execute parallel ER tasks. 23 approaches
use only MapReduce, and the remaining 3 approaches
are only Spark-based. The approach presented in [25]
implemented parallel ER until finishing its blocking step
with both MapReduce and Spark.

More than two thirds of the approaches chose
MapReduce to implement parallelism, and only
about one fifth of the research implemented general
parallelism, i.e., using Parallel DBMS, and 4 out of
34 approaches are Spark-based, which represents the
current state of ER in academic research quite well
regarding proportion. Spark-based techniques have
rarely been applied before 2015, mainly because Spark
has become an open-sourced Top-Level Apache Project
since February 20141. The research not using any
specific programming model was mostly early work, but
it is certainly more relevant for real-world applications
than the proportion of academic research suggests. After
MapReduce became popular for parallel computing and
with the support of its open-sourced implementation
of Apache Hadoop, the vast majority of research
approaches after 2008 applied it. The reason is that
MapReduce provides users a model to simply express
relatively sophisticated distributed programs [75]. Users
only need to care about the implementation of the map
and reduce functions, with no need to consider the
partitioning of the input dataset, scheduling the program
across machines, handling failures and managing
inter-machine communication.

As mentioned above, almost all approaches only
parallelised the pair-wise-comparison step, while [79]
parallelised data processing in each step and also
1 https://en.wikipedia.org/wiki/Apache Spark

36

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

Table 2: Classification based on the general criteria, grouped by programming models

(a) General classification of parallel DBMS ER

ID Operation Type #Input Sources Input Data Type
P-Swoosh [49] entity resolution not described records
Parallel linkage [50] entity resolution 2 records
D-Swoosh [5] entity resolution not described records
FERAPARDAF [79] deduplication 1 records
Febrl [14] deduplication 1 records
Iterative DDG [40] deduplication 1 graph
Partition-based [46] similarity join 1 strings

(b) General classification of MapReduce-based ER

ID Operation Type #Input Sources Input Data Type
Pairwise document similarity self-join 1 documents
SSJ-2R [3] similarity self-join 1 documents
Dedoop [51–58] entity resolution 1 or n records
VCL [87] set-similarity join 1 or n records
MapDupReducer [88] deduplication 1 documents
MD-Approach [18] deduplication 1 records

V-SMART-Join [71] similarity join 1
sets,
multisets, and
vectors

MRSimJoin [83, 84] similarity join 2 records
LINDA [7] entity resolution n graph
Graph-based [48] entity resolution not described records
MR-DSJ [82] similarity self-join 1 vector data

PHiDJ [32] similarity self-join 1
high dimensional
vectors

Cluster Join [19] similarity join 1 or n records
Graph-parallel [66] entity resolution not described records
Mass Join [20] similarity join 1 or 2 strings
DCS++ MR-ER [69] [36] entity resolution 1 records
Sort-Map-Reduce [62] [63] deduplication 1 records
FACET [93] similarity join 1 or 2 vectors
SJT-based [61] similarity join 1 records
High velocity streams [6] entity resolution 2 records
Dis-Dedup [17] deduplication 1 records
Meta-blocking [27] entity resolution 2 records
Sampling-based [11] similarity join 2 records
Density-based blocking [25] entity resolution 1 or 2 records

(c) General classification of Spark-based ER

ID Operation Type #Input Sources Input Data Type
Density-based blocking [25] entity resolution 1 or 2 records
RDD-based ER [10] top-k similarity join 1 multi-dimensional
ER of healthcare data [76] entity resolution n health data
DCS++ Spark-ER [70] entity resolution 1 or 2 records

37

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

performed different steps in parallel through its run-time
system, Anthill. In addition, among publications that
implement data parallelism, most of them considered
only inter-processor parallelism. Approaches presented
in [46], [18], [7] and [66] considered both intra and
inter-processor parallelism. The benefit of considering
intra-processor parallelism was mentioned in [18], i.e.
the communication overhead is low without excessive
data copying.

Using parallel DBMS has some shortcomings for
small and medium-sized enterprises. Parallel DBMSs
are expensive [86], have no ability to operate in
a heterogeneous environment and have very limited
fault tolerance [1]. Furthermore, they require high
maintenance and administration efforts. In academia,
researchers may encounter problems, such as limited
budget and a heterogeneous environment. This may
be another reason, why open-source frameworks are
unproportionally popular there. Furthermore, their high
level of abstraction might help researchers to concentrate
on application specific – in this case ER – research
questions.

4.2 General Criteria and Classification

The three general criteria focus mainly on application
aspects, i.e. how and for what purpose the approaches
are being used. The criteria are:

Operation Type: As mentioned above, de-duplication
is a special case of entity resolution, indicating that
a reconciliation of found matches is an intended
part of the process. Similarity joins are tightly
related to entity resolution in the database domain
for finding matching pairs. Although they are
quite similar with ER, normally they have their
particular emphasises. In this survey, related
research approaches, such as similarity joins and
deduplication, are also included. Therefore, this
criterion is set to clarify the precise operation type
for each approach.

Number of Input Sources: Current approaches can
also be classified based on whether algorithms or
techniques used support ER only within one single
source or also among multiple sources. It is not
difficult to extend ER within one single source
to multiple sources. However, the extension may
become complicated, not intuitive, and we may lose
the advantage of knowing that the data is actually
from two sources. Therefore, it is necessary to
consider which algorithms or techniques can be
used for ER among multiple sources and which can
only be used within one single source.

Input Data Type: For existing publications, the type of
input data varies. In most cases, approaches do not
limit the types of the input data. We use “records” to
represent this case, because using flatly structured
data units as in relational databases are the standard
case considered. However, in some research,
more or less complex data types are considered,
e.g. documents or strings. In particular, in some
research, in order to improve the effectiveness of
ER, they consider not only records and entities
themselves, but also relationships between records
and entities. In this case, the input data type is an
entity graph.

Based on these three criteria, we have the first set of
overview tables in Table 2a, Table 2b, and Table 2c,
which provide an overview for these criteria, once again
grouped for parallel DBMS ER (Table 2a), MapReduce-
based ER (Table 2b) and Spark-based ER (Table 2c). As
can be seen in these three overview tables regarding the
operation type, the majority of publications considered
a general entity resolution problem. Some of them
consider only the situation that there is a single
input source, which indicates a de-duplication problem.
Different kinds of similarity joins are also addressed,
such as set or top-k similarity joins.

Regarding the number of input sources, about half
of the approaches considered the situation that the
input data may be from different sources. However,
most of them handled this problem only by combining
multiple sources into one source. Especially, in parallel
linkage [50], the emphasis is on studying different
algorithms for the sake of better performance of the ER
task, rather than combining multiple sources into one
source considering whether there are duplicates in each
input source or not.

At last, most of the publications did not limit the
input data type. Three of them only accept input data
with strings and one of them tried to resolve document
matches. RDD-based ER [10] and ER of health-care
data [76] focus on multi-dimensional and health data due
to their specific application area. Furthermore, Iterative
DDG [40] and LINDA [7] first form an entity graph,
whose edges represent known relationships between
records, and then use this entity graph as input data for
ER. Though only these mentioned approaches consider
specifics of the given application domain, this inclusion
of knowledge about the data characteristics during
blocking, similarity calculation, etc. can, in general, be
very beneficial for overall goals like effectiveness and
efficiency.

38

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

Table 3: Effectiveness consideration of parallel DBMS ER

ID Data Preprocessing Similarity Function Match Mode Clustering

P-Swoosh [49] no preprocessing not described
merge after
match no clustering

Parallel linkage [50] no preprocessing
s-cc/s-dcself/s-dd1/
s-dd2/s-dd3

merge after
match no clustering

D-Swoosh [5] no preprocessing not described
merge after
match no clustering

FERAPARDAF [79] standardization, cleaning not described no merge no clustering

Febrl [14]
hidden-markov-model for
cleaning/standardization

not described, matching
attribute weights no merge no clustering

Iterative DDG [40] entity graph as input self-defined similarities
iterative and
propagate no clustering

Partition-based [46]
partition and
substring comparison

extension-based
verification no merge no clustering

Table 4: Effectiveness consideration of Spark-based ER

ID Data Preprocessing Similarity Function Match Mode Clustering
Density-based
blocking [25] no preprocessing

none, focus only on
blocking algorithms no merge no clustering

RDD-based ER [10] no preprocessing top-k-DC no merge k closest pairs
ER of healthcare
data [76] no preprocessing

dice or bit vectors
comparison no merge no clustering

DCS++
Spark-ER [70] no preprocessing Jaro-Winkler no merge no clustering

4.3 Effectiveness-related Criteria and their
Classification

This subsection presents criteria related to effectiveness
and the classification of approaches based on them. The
following criteria are considered:

Data preprocessing: This criterion indicates whether
there are any data preprocessing steps in algorithms
or techniques of the approaches and which kinds of
procedures are used.

Similarity function: The reason for considering this
criterion for classifying parallel ER techniques is
that some approaches apply parallel techniques only
suitable when specific similarity functions are used.
Thus, publications should be pointed out where
specific similarity functions are part of the core
procedure or whether their algorithms or techniques
can be applied independently.

Match Mode: This criterion addresses another aspect
of the pair-wise comparison step. It does not
concern the specific function used for comparison,
but, after a pair of records is identified by a
similarity function as a match, what kinds of

further steps will be done to improve the results,
e.g. whether matching records are merged or if
matching results are propagated.

Clustering: Applications can also be classified
according to whether they cluster matching records
based on pair-wise comparison results and which
clustering methods they use.

Table 3, Table 4 and Table 5 present the classification
of publications based on these four effectiveness related
criteria.

Regarding data preprocessing, half of the approaches
support preprocessing steps in one way or the other,
among which cleaning and standardization are the most
commonly used techniques. The approaches [14],
[79] and [88] also supported data cleaning and
standardization. In [14] Christen et al. suggested a
three-step data cleaning and standardization based on
hidden Markov models. As a preparation to special
blocking methods used in some publications, the data
preprocessing step in [88], [20], [87] and [77] include
transforming input records to tokens, and [46] first
partitions the input records (records here are all strings)
and then transforms input strings into substrings. The

39

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Table 5: Effectiveness consideration of MapReduce-based ER

ID Data Preprocessing Similarity Function Match Mode Clustering
Pairwise
document [29]

Stemming & stopwords
removal & df-cut

symmetric variant of
OkapiBM25 [73] no merge no clustering

SSJ-2R [3]

stemming; normalization;
stopwords removal;
lexicon extraction;
sorting features

not described no merge no clustering

Dedoop [51–58] no preprocessing not described no merge no clustering

VCL [87] string to prefix tokens Coefficients: Jaccard,
Tanimoto, cosine no merge no clustering

MapDup-
Reducer [88]

cleaning, parsing,
tokensation not described no merge no clustering

MD-Approach [18] no preprocessing not described no merge no clustering

V-SMART-Join [71] stopwords removal Nominal Similarity
Measures no merge no clustering

MRSimJoin [83, 84] no preprocessing various functions
possible no merge no clustering

LINDA [7] edges added to
build graph not described iterative and

propagate no clustering

Graph-based [48] Soundex or Phoetex feature-based no merge
transitive
closure &
sClust

MR-DSJ [82] no preprocessing distance-based functions no merge no clustering
PHiDJ [32] no preprocessing distance-based functions no merge no clustering
Cluster Join [19] no preprocessing not described no merge no clustering

Graph-parallel [66] no preprocessing not described merge or
no merge

connected
components

Mass Join [20] token-based
signature generation

Jaccard, edit distance,
set- and character-based no merge no clustering

DCS++
MR-ER [69] [36] no preprocessing Jaro-Winkler no merge no clustering

Sort-Map-
Reduce [62] [63] no preprocessing not described no merge no clustering

FACET [93]
getting additional
information to prepare
for blocking

cosine or Dice
similarity(-based) no merge no clustering

SJT-based [61] no not described no merge no clustering

High velocity
streams [6]

2ord boundaries,
stemming,
stop word removal

average result of
13 functions no merge no clustering

Dis-Dedup [17] no preprocessing edit distance no merge no clustering

Meta-blocking [27] redundancy positive block
collections not described no merge no clustering

Sampling-
based [11]

centroid selection based
on sampled data any functions possible no merge no clustering

Density-based
blocking [25] no preprocessing none, focus only on

blocking algorithms no merge no clustering

40

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

approaches presented in [7] and [40] are graph-based and
consider relationships between input records. Therefore,
they build an entity graph during the data preprocessing
step. Besides, in [48], Soundex or Phoetex is used to
preprocess the input data.

Similarity functions used in each publication vary, as
all the different approaches choose suitable functions for
their own scenarios. Since in publications on parallel
ER the specific similarity functions used are often not
a focus, and around half of the approaches did not
discuss the specific similarity function(s) they used. Dou
et al. [25] focused their research only on blocking
algorithms and in their research no related information
on later steps is described. Kim and Lee [50] developed
a series of algorithms for ER between two sources by
considering different scenarios whether sources are clean
or dirty. Except for the above-mentioned research, other
approaches have their own similarity functions, where
Jaccard, edit distance and coefficient functions are used
more commonly than others.

Regarding the match mode, most of the approaches
terminate ER tasks after they have matching results for
all records. In [40] and [7], similarity functions were
iteratively used to improve results and all results should
propagate to the whole entity graph.

Regarding clustering and dealing with multiple
matches of single records, the majority of approaches
do not cluster records after local comparisons. In [66]
Malhotra took each connected component as a cluster.
Kardes in [48] proposed a clustering strategy called
sClust to better cluster records based on the results after
computing the transitive closure. The cluster approach
used in [10] is to take the top-k closest pairs of records
as a cluster.

5 EFFICIENCY-RELATED CRITERIA AND
THEIR CLASSIFICATION

In this section, we present the last group of criteria,
which are related to efficiency, i.e. mainly focused
on runtime performance aspects such as response
time, throughput, and scalability. As ER is
parallelised to improve especially towards these goals,
their consideration is of great importance within this
overview. The following four main criteria are
considered for the classification:

Blocking: Blocking is a vital step to improve the
efficiency of ER. Therefore, for large-scale data, it
should be considered and indeed is often discussed
in current parallel ER, with some research only
focusing on finding efficient blocking strategies.

Data partitioning: How to partition the input data or
data after defining blocking keys and allocate it

to available cores or processors is an important
research question in parallel ER. Even if many
cores or processors are available for ER, if the
partition is not balanced, small data sets lead to
idle cores or processors, and large data sets lead
to a long processing time of assigned cores or
processors, which can dominate the whole run time
and lower the performance. Therefore, suitable data
partitioning strategies are required.

Load balancing: This criterion is tightly related to the
last criterion: data partitioning. But even if the data
has been partitioned evenly to avoid data skew, the
work load may still suffer from processing skew.

Redundancy handling: Redundancy handling signifies
some detailed measures to reduce the total run time,
which includes reducing the number of record pairs
to be compared and reducing the communication
efforts between different processors.

Table 6, Table 7, Table 8 and Table 9 provide
an overview and classification of the 34 considered
approaches based on the above-explained efficiency
criteria. Since data partitioning and load balancing is
tightly related, they are in the tables as one column.
Because efficiency-related criteria, as a motivation of
parallel ER, are the most important set of criteria, we
discuss each criterion in detail and describe solutions
developed for each of the involved problems in the
following subsections.

5.1 Blocking

Blocking as an efficient technique to reduce the search
space is considered by most publications. Standard
blocking, i.e. using single attributes or combined/
concatenated attributes as blocking keys, is most often
considered because of its simplicity and efficiency.
Nevertheless, because of data quality issues this
approach may decrease effectiveness, and unevenly
distributed key values may lead to data skew. Therefore,
other blocking methods, such as the sorted neighborhood
method [38], q-grams [72], inverted indexes [4] and
locality sensitive hashing [43], are also used in the
approaches. Particularly, PP-joins are used twice in the
listed approaches, which is a new blocking technique
that exploits the ordering information and can drastically
reduce the candidate set sizes and, hence, improve the
efficiency [91].

Except for the mentioned traditional blocking
techniques applied as a single step, in order to solve the
data skew problem, two-step blocking is considered in
some approaches. Two-step blocking will be discussed

41

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Table 6: Efficiency consideration of parallel DBMS ER

ID Blocking Data partitioning & Load balancing Redundancy handling

P-Swoosh [49] no or standard
blocking

master node: sliding windows and send
non-match records to slave nodes &
horizontal and vertical load balancing

not described

Parallel
linkage [50] not described replication of source A to all processors

and evenly partitioned source B not described

D-Swoosh [5] no or standard
blocking scope functions

value equality,
hierarchies, linear
ordering & Reps
functions

FERAPA-
RDAF [79] standard blocking a labeled stream in Anthill not described

Febrl [14]
standard blocking,
sorted neighborhood,
q-gram

not described not described

Iterative
DDG [40] entity graph as input evenly partition input entity graph not described

Partition-
based [46] inverted index evenly partitioning

substring selection;
content filter;
effective indexing

as a method to solve the load balancing problem in the
following.

In this paper, we only present an overview and choices
made in existing publications for the blocking step in
parallel ER, and do not discuss the details and the
performance issues for different blocking techniques, as
mentioned above, Christen and Papadakis et al. provided
more detailed discussions and evaluations for existing
blocking techniques [74] [16].

5.2 Data Partitioning

Most of the approaches presented did not discuss data
partitioning in detail. They partition and allocate the
input data randomly or they first define blocking keys,
then just assign each block to each processing unit
without considering the load balancing problem.

However, data partitioning and load balancing are
important for parallel ER and may significantly influence
the performance. According to [51] the following
three general types of data partitioning strategies can be
distinguished:

• Size-based partitioning: evenly partitioning the
input data to several subsets, where the number
of partitions should be smaller than the number of
available nodes.

• Pair-based partitioning: first, all pairs that need
to be compared for the next step are generated, then
evenly dividing the record pairs into several subsets.

• Block-based partitioning: this method is designed
especially for ER with blocking techniques. It
distributes each block to one separate node. The
method is straightforward, but it suffers from a
potential load unbalancing problem, as blocks may
differ in their sizes. A node with a big block
will dominate the runtime and drag down the entire
parallel processing.

Except for the three general strategies to partition
the data to each node, Silva et al. provided a
partitioning method from a special perspective in [83,84]
by extending the QuickJoin ball partitioning [45] to
partition the input dataset iteratively until the sizes of
all partitions of data fit a single node, and similarity
comparison is only needed to be done within a single
node. This makes the QuickJoin ball partitioning
become its blocking technique at the same time.
Accordingly, their partitioning method also belongs to
the above-concluded block-based partitioning.

5.3 Load Balancing

As can be seen in the relevant tables, only few of the
presented approaches proposed a specific load balancing
strategy, but rather focused on other implementation
aspects. However, load balancing is very important and
is a factor that can significantly influence the efficiency
of parallel ER. If the workload is not evenly assigned
to available nodes, the nodes with a heavier load will

42

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

Table 7: Efficiency consideration of mapReduce-based ER (1)

ID Blocking Data partitioning &
Load balancing Redundancy handling

Pairwise
document [29] inverted index block-based not described

SSJ-2R [3] prefix filtering with
inverted index

block-based &
bucketing technique

broadcast
the remainder file

Dedoop [51–58]
standard blocking &
(multi-pass) sorted
neighborhood

BlockSplit & PairRange
(BDM)

Check overlapping
blocking keys

VCL [87] prefix tokens or
PP-join+ [91]

3 stages (BTO/OPTO; BK/PK;
BRJ/OPRJ) &
a Round-Robin order

not described

MapDup-
Reducer [88] PP-join+ [91] block-based not described

MD-
Approach [18]

two-step blocking with
sliding windows functions block-based not described

V-SMART-
Join [71] virtual inverted index

stopword removal or
dividing overloaded reducer
(sharding algorithm);
MapReduce combiner

not described

MRSimJoin
[83, 84]

ball partitioning in
QuickJoin [45] base and window-pair parition not described

LINDA [7]
first rank pairs to assign
similar pairs to a same
workpackage

workpackage-based &
server-controlled not described

Graph-based [48] two-step blocking with
binomial tree structure block-based not described

MR-DSJ [82] grid-based blocking block-based

smaller or
equal cell ID &
bit code &
MindistCell &
MindistPair

PHiDJ [32] grid-based blocking block-based &
variable grid width

all measures in
MR-DSJ &
dimension group ID

dominate the runtime and lower the response time.
Therefore, the problem of unbalanced workloads has to
be taken seriously.

Some approaches proposed one or more solutions to
solve problems of unbalanced load of parallel ER. Based
on the publications referenced in the tables, as well as
other load-balancing-focused publications, we point out
two typical solutions.

Prevention-based methods: This means generating
blocks less than a pre-set size. Oversized temporary
blocks have to be divided into several sub-blocks until
all blocks have less than the pre-set size. In addition, in
the presented approaches two minor techniques are used

to optimize this method. One suggests using a binomial
tree structure to conduct (sub-)blocks [68], the other one
is using a sliding window to lower the false negative
rate [18].

Remedying-based methods: When the input data
and applied blocking strategy lead to oversized blocks,
some approaches suggest remedying this load balancing
problem by two kinds of solutions. The first solution
is to divide existing over-sized blocks into several sub-
blocks to keep all blocks in a similar size and then
redivided blocks, also called partitions, are assigned
to each processing unit [56]. This solution appears
to be similar to prevention-based methods. However,

43

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

Table 8: Efficiency Consideration of MapReduce-based ER (2)

ID Blocking Data partitioning &
Load balancing Redundancy handling

Cluster Join [19] each partition as one
block

home and outer partitioning &
dynamic, 2d-hashing to split
oversized partitions

candidate filters;remove
mapping-phase-
redundancy

Graph-
parallel [66]

locality sensitive
hashing via Min-hash

first loading a graph to show
the blocking result, then
sending record to buckets with
vertexes & RCP

first transferring record ID
then real records

Mass Join [20] standard blocking
greedy/random strategy &
multitokens instead of single
tokens

2-phase verification;
merge key-value pairs;
light-weight filter unit;
string ids to replace strings

DCS++
MR-ER [69] [36] DCS++ [26] BlockSlicer transitive closure

Sort-Map-
Reduce [62] [63]

(multi-pass) sorted
neighborhood partition using preset functions not described

FACET [93] prefix and length
filtering not described Removing duplicate pairs

using key

SJT-based [61] SJT indexing extended EFM graph
partitioning

inter-node comparison
pruning

High velocity
streams [6]

weighted-graph-based
blocking pair-based pruning graph of blocking

Dis-Dedup [17] Min-hash triangle distribution avoid comparing
redundant pairs

Meta-
blocking [27]

three-stage
Meta-blocking

exploiting the power law
distribution of block carnality
then evenly partitioning

not described

Sampling-
based [11] each partition is a block

CPM and KPM partition
methods to achieve load
balancing

range-object, double-pivot,
pivot filtering, and plane
sweeping techniques

Density-based
blocking [25] density-based blocking randomly split the dataset not described

Table 9: Efficiency consideration of Spark-based ER

ID Blocking Data partitioning &
Load balancing Redundancy handling

Density-based
blocking [25]

density-based
unsupervised blocking randomly spit the dataset not described

RDD-based
ER [10]

locality sensitive
hashing & BKDRhash
function

block-based Spark filter

ER of healthcare
data [76] standard blocking block-based not described

DCS++
Spark-ER [70] DCS++ [26] fixed input partition size transitive closure

44

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

Table 10: Classification of load balancing techniques

First Step Second Step Proposed approaches

Block Distribution Matrix Block-based BlockSplit [56]
BlockSlicer [36]

Pair-based PairRange [56]

Sketch-based data profiling Block-based Cell-block devision [92]
Pair-based Cell-range devision [92]

since blocks have already been generated, two steps are
needed for this method. First, all block sizes should be
known. Then, the oversized blocks should be eliminated
and very small blocks may be combined. For the
first step, two basic data structures are proposed to
store the block size information: one is a matrix [56],
the other one is to adopt a FastAGMS sketch [92]
to estimate the block size, which is more scalable
than the matrix [92]. For the second step, oversized
block elimination can be a block-based or a pair-based
approach [56]. Block-based approach means to directly
divide the oversized blocks into smaller ones. Pair-
based approach means calculating all needed compared
pairs and evenly distribute them to nodes. Compared to
the block-based approach, the pair-based approach can
generate a more balanced workload but its additional
overhead will deteriorate the overall execution time
when the data set is relatively small [56]. Different
approaches have been developed and a short overview
is provided in Table 10. Therein, both BlockSplit and
BlockSlicer use a block distribution matrix to store block
sizes and then divide oversized blocks into small sub-
blocks. The difference is that BlockSlicer generates less
key-value pairs for the reduce phase and the performance
is improved [36]. The other solution is to generate all
pairs based on the result of blocking and assign each
pair a number to count and mark each record pair, then
sending them to the processing unit by round robin [41].

5.4 Redundancy Handling

In the four tables on efficiency (Table 6, Table 7, Table 8,
and Table 9), measures for redundancy handling are
listed in the last column. When developers design a
new workflow for ER, possible optimizations can be
inspired by those measures, and we will classify them
to four categories. Specific approaches mentioned in
the tables may be useful and can be directly applied
to other applications to improve the performance. We
categorized those measures into the following types:

Measures to remove redundant comparison pairs
caused by overlapping between blocks: These
measures deal with redundant or unneeded

comparisons due to the overlapping of blocks
that are generated, where common pairs should
be detected and compared only once. Existing
methods to handle this redundancy can be found in
the following publications: [5], [19], [20], [55],
[57], [93], [82] and [32]. The shared idea to solve
this problem is first identifying all candidate blocks
of a record pair, then choosing the block with the
smallest block ID to be responsible for comparing
the pair.

Transitive closure: Transitive closure means that a
record pair can be directly considered as match or
non-match without a comparison between them, if
they can be deduced with the following two rules.
The first one is the deduced match case: If we know
record pairs (a, b) and (b, c) are both match pairs,
then we deduce that the pair (a, c) is also a match
pair. The second one is the deduced non-match
case: If we know the record pair (a, b) is a match
pair and the other record pair (b, c) is a non-match
pair, then we deduce that the pair (a, c) is a non-
match pair. Mestre et al. have applied the transitive
closure during the step of pair-wise comparison to
reduce the number of record pairs that need to be
compared [70] [69] [36].

Further pruning techiques: There is a variety of other
pruning technologies used to reduce the number
of record pairs that address different aspects of
the input data. The details of these pruning
technologies and processing frameworks can be
found in [20], [19], [27], [6], [46], [11], [61],
[82] and [32].

Avoiding the transfer of unnecessary data: All of
the above three categories are used to reduce
the number of required comparisons. However,
redundancy may also refer to the communication
efforts between different processors or nodes for
transferring unnecessary data. Malhotra et al. [66]
and Deng et al. [20] presented their measures
to avoid unnecessary communication cost, which
transfer record IDs instead of records themselves
to reduce the overhead. Baraglia et al. [3] used

45

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

broadcast to reduce the communication overhead.

This list of types does indicate further optimisation
potential for existing approaches and may serve as a
guideline to consider during the development of new
approaches.

6 OPEN CHALLENGES

From the descriptions in the previous sections, it is
obvious that currently there are a number of ongoing
research activities in the field of parallel ER. Partly
building on established solutions, like using Parallel
DBMS, partly being inspired by the availability of new
parallel programming frameworks developed to support
Big Data and Cloud-scale data processing. Many
interesting specific solutions were developed, which
often complement each other, but sometimes address
contradicting requirements of divergent applications.

Even considering the presented scale of available
solutions, from our point of view, a number of basic
questions remain open for future solutions in parallel ER.
These open challenges are:

Choosing a suitable big data processing framework:
As outlined before, there was no systematic analysis
of required properties of a framework. MapReduce
was mostly used, because it was popular and
allowed some improvement. So far, there was only
very limited research on Spark-based ER. Spark
is said to be able to run programs up to 100 times
faster than Hadoop MapReduce in memory, or
10 times faster on disk2. This and other criteria
indicate possible room for improvement. Besides
Hadoop MapReduce and Apache Spark, there
have been other new frameworks developed in
recent years, e.g., Apache Flink [9] [31]. However,
which framework is the best option depends on the
specific application scenarios.

Comparison between different implementations:
Although MapReduce-based parallelism is
very popular, there are still debates on its
performance and other aspects. In some papers,
its performance is proven to be worse than general
parallel programming for some data processing
tasks [86] [75]. Therefore, one open issue is
to compare the MapReduce-based parallel and
general parallel data processing comprehensively
for solving ER.

Blocking techniques for large-scale data: Some
familiar blocking techniques such as canopy

2 http://spark.apache.org/

clustering [67], iterative blocking [89], are not
deeply studied in parallel ER and new blocking
techniques may be developed for large-scale data.

Graph-based parallel ER: Currently there is only little
research on this area. However, when relationships
between records are available, by considering these
relationships with graph-based approaches, parallel
ER can benefit from it and improve the effectiveness
while improving the performance by parallelism.
The research on graph-based parallel ER can turn to
some graph processing systems, such as GPS [78],
Pregel [65], and Giraph [13].

Task parallelism: No research except [79] discusses
task parallelism in ER . However, since each step
in ER needs time to process large-scale data, task
parallelism is suitable for ER to reduce its entire
processing time and throughput. Therefore, more
research should be expected on task parallelism of
ER.

7 CONCLUSIONS AND FUTURE WORK

In this paper we conducted a comprehensive survey on
parallel ER approaches and identify their classification
based on three sets of criteria: general-aspect,
effectiveness-based and efficiency-based criteria.
General-aspect criteria include the specific operation
types, number of input sources and the input data
type, which do not relate to any specific algorithms
and indicate some fundamental considerations.
Effectiveness-based criteria involve those criteria,
whose purpose is to make ER more effective, including
data preprocessing, similarity function, match mode and
clustering.

Efficiency-based criteria are the most important ones
for parallel ER, which pursues higher efficiency. This set
of criteria include technologies used in blocking, data
partitioning, load balancing and redundancy handling.
For those, we illustrated the most critical research
questions: Which possible ways exist to efficiently
partition data? As distributions of blocking key may be
uneven, which leads to data skew problems in parallel
ER, how to balance the workload after the blocking step?
Which specific measures can be taken into consideration
to improve efficiency further?

Important open issues in the area of parallel ER
are discussed. Accordingly, our future work will be
focused on architectures and frameworks, starting by
investigating Spark-based parallel ER methods and its
evaluation in comparison to others.

46

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

ACKNOWLEDGMENTS

We would like to thank China Scholarship Council
(CSC) to fund our work, and we are also very grateful
to Gabriel Campero Durand for his valuable feedback.

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,
A. Silberschatz, and A. Rasin, “Hadoopdb:
an architectural hybrid of mapreduce and
dbms technologies for analytical workloads,”
Proceedings of the VLDB Endowment, vol. 2,
no. 1, pp. 922–933, 2009.

[2] A. Aizawa and K. Oyama, “A fast linkage detection
scheme for multi-source information integration,”
in Web Information Retrieval and Integration,
2005. WIRI’05. Proceedings. International
Workshop on Challenges in. IEEE, 2005, pp.
30–39.

[3] R. Baraglia, G. De Francisci Morales, and
C. Lucchese, “Document similarity self-join with
mapreduce,” in Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 2010,
pp. 731–736.

[4] C. Bell, I. H. Witten, and A. Moffat, “Managing
gigabytes,” Compressing and Indexing Documents
and Images, vol. 2, 1999.

[5] O. Benjelloun, H. Garcia-Molina, H. Gong,
H. Kawai, T. E. Larson, D. Menestrina, and
S. Thavisomboon, “D-swoosh: A family
of algorithms for generic, distributed entity
resolution,” in Distributed Computing Systems,
2007. ICDCS’07. 27th International Conference
on. IEEE, 2007, pp. 37–37.

[6] S. P. Benny, S. Vasavi, and P. Anupriya, “Hadoop
framework for entity resolution within high
velocity streams,” Procedia Computer Science,
vol. 85, pp. 550–557, 2016.

[7] C. Böhm, G. de Melo, F. Naumann, and
G. Weikum, “Linda: distributed web-of-data-
scale entity matching,” in Proceedings of the 21st
ACM international conference on Information and
knowledge management. ACM, 2012, pp. 2104–
2108.

[8] D. G. Brizan and A. U. Tansel, “A. survey of entity
resolution and record linkage methodologies,”
Communications of the IIMA, vol. 6, no. 3, p. 5,
2006.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas, “Apache flink: Stream

and batch processing in a single engine,” Bulletin of
the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[10] D. Chen, C. Shen, J. Feng, and J. Le, “An
efficient parallel top-k similarity join for massive
multidimensional data using spark,” International
Journal of Database Theory and Application,
vol. 8, no. 3, pp. 57–68, 2015.

[11] G. Chen, K. Yang, L. Chen, Y. Gao, B. Zheng,
and C. Chen, “Metric similarity joins using
mapreduce,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 3, pp. 656–669,
2017.

[12] X. Chen, “Crowdsourcing entity resolution: a short
overview and open issues.” in GvD, 2015, pp. 72–
77.

[13] A. Ching, “Giraph: Production-grade graph
processing infrastructure for trillion edge graphs,”
ATPESC, vol. 14, 2014.

[14] P. Christen, “Febrl – an open source data cleaning,
deduplication and record linkage system with a
graphical user interface,” in Proceedings of the
14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM,
2008, pp. 1065–1068.

[15] P. Christen, Data matching: concepts and
techniques for record linkage, entity resolution, and
duplicate detection. Springer Science & Business
Media, 2012.

[16] P. Christen, “A survey of indexing techniques for
scalable record linkage and deduplication,”
Knowledge and Data Engineering, IEEE
Transactions on, vol. 24, no. 9, pp. 1537–1555,
2012.

[17] X. Chu, I. F. Ilyas, and P. Koutris, “Distributed
data deduplication,” Proceedings of the VLDB
Endowment, vol. 9, no. 11, pp. 864–875, 2016.

[18] G. Dal Bianco, R. Galante, and C. A. Heuser,
“A fast approach for parallel deduplication on
multicore processors,” in Proceedings of the 2011
ACM Symposium on Applied Computing. ACM,
2011, pp. 1027–1032.

[19] A. Das Sarma, Y. He, and S. Chaudhuri,
“Clusterjoin: a similarity joins framework
using map-reduce,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1059–1070, 2014.

[20] D. Deng, G. Li, S. Hao, J. Wang, and
J. Feng, “Massjoin: A mapreduce-based method
for scalable string similarity joins,” in 30th
International Conference on Data Engineering
(ICDE). IEEE, 2014, pp. 340–351.

47

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

[21] M.-M. Deza and E. Deza, Dictionary of distances.
Elsevier, 2006.

[22] L. R. Dice, “Measures of the amount of ecologic
association between species,” Ecology, vol. 26,
no. 3, pp. 297–302, 1945.

[23] M. Dillon, Introduction to modern information
retrieval. Pergamon, 1983.

[24] X. Dong, A. Halevy, and J. Madhavan, “Reference
reconciliation in complex information spaces,”
in Proceedings of the 2005 ACM SIGMOD
international conference on Management of data,
2005, pp. 85–96.

[25] C. Dou, Y. Cui, D. Sun, R. Wong, M. Atif,
G. Li, and R. Ranjan, “Unsupervised blocking
and probabilistic parallelisation for record
matching of distributed big data,” The Journal of
Supercomputing, pp. 1–23, 2017.

[26] U. Draisbach, F. Naumann, S. Szott, and
O. Wonneberg, “Adaptive windows for duplicate
detection,” in 28th International Conference on
Data Engineering (ICDE). IEEE, 2012, pp. 1073–
1083.

[27] V. Efthymiou, G. Papadakis, G. Papastefanatos,
K. Stefanidis, and T. Palpanas, “Parallel meta-
blocking for scaling entity resolution over big
heterogeneous data,” Information Systems, vol. 65,
pp. 137–157, 2017.

[28] A. K. Elmagarmid, P. G. Ipeirotis, and V. S.
Verykios, “Duplicate record detection: A
survey,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 19, no. 1, pp. 1–16,
2007.

[29] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise
document similarity in large collections with
mapreduce,” in Proceedings of the 46th Annual
Meeting of the Association for Computational
Linguistics on Human Language Technologies:
Short Papers. Association for Computational
Linguistics, 2008, pp. 265–268.

[30] I. P. Fellegi and A. B. Sunter, “A theory for
record linkage,” Journal of the American Statistical
Association, vol. 64, no. 328, pp. 1183–1210, 1969.

[31] E. Friedman and K. Tzoumas, Introduction to
Apache Flink: Stream Processing for Real Time
and Beyond. O’Reilly Media, Inc., 2016.

[32] S. Fries, B. Boden, G. Stepien, and T. Seidl, “Phidj:
Parallel similarity self-join for high-dimensional
vector data with mapreduce,” in 30th International
Conference on Data Engineering (ICDE). IEEE,
2014, pp. 796–807.

[33] A. Gal, “Uncertain entity resolution: re-evaluating
entity resolution in the big data era: tutorial,”
Proceedings of the VLDB Endowment, vol. 7,
no. 13, pp. 1711–1712, 2014.

[34] L. Getoor and A. Machanavajjhala, “Entity
resolution: theory, practice & open challenges,”
Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 2018–2019, 2012.

[35] L. Getoor and A. Machanavajjhala, “Entity
resolution for big data,” in Proceedings of the
19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM,
2013, pp. 1527–1527.

[36] D. Gomes Mestre and C. E. S. Pires, “Improving
load balancing for mapreduce-based entity
matching,” in IEEE Symposium on Computers
and Communications (ISCC). IEEE, 2013, pp.
618–624.

[37] L. Gu, R. Baxter, D. Vickers, and C. Rainsford,
“Record linkage: Current practice and future
directions,” CSIRO Mathematical and Information
Sciences Technical Report, vol. 3, p. 83, 2003.

[38] M. A. Hernández and S. J. Stolfo, “The
merge/purge problem for large databases,” in ACM
Sigmod Record, vol. 24, no. 2. ACM, 1995, pp.
127–138.

[39] M. A. Hernández and S. J. Stolfo, “Real-world
data is dirty: Data cleansing and the merge/purge
problem,” Data mining and knowledge discovery,
vol. 2, no. 1, pp. 9–37, 1998.

[40] M. Herschel, F. Naumann, S. Szott, and
M. Taubert, “Scalable iterative graph duplicate
detection,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 24, no. 11, pp.
2094–2108, 2012.

[41] S.-C. Hsueh, M.-Y. Lin, and Y.-C. Chiu, “A
load-balanced mapreduce algorithm for blocking-
based entity-resolution with multiple keys,”
in Proceedings of the Twelfth Australasian
Symposium on Parallel and Distributed
Computing, vol. 152. Australian Computer
Society, Inc., 2014, pp. 3–9.

[42] T. Huang and S. Russell, “Object identification:
A bayesian analysis with application to traffic
surveillance,” Artificial Intelligence, vol. 103, no.
1-2, pp. 77–93, 1998.

[43] P. Indyk and R. Motwani, “Approximate nearest
neighbors: towards removing the curse of
dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing.
ACM, 1998, pp. 604–613.

48

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

[44] P. Jaccard, “Étude comparative de la distribution
florale dans une portion des alpes et des jura,” Bull
Soc Vaudoise Sci Nat, vol. 37, pp. 547–579, 1901.

[45] E. H. Jacox and H. Samet, “Metric space similarity
joins,” ACM Transactions on Database Systems
(TODS), vol. 33, no. 2, p. 7, 2008.

[46] Y. Jiang, D. Deng, J. Wang, G. Li, and J. Feng,
“Efficient parallel partition-based algorithms for
similarity search and join with edit distance
constraints,” in Proceedings of the Joint
EDBT/ICDT 2013 Workshops. ACM, 2013,
pp. 341–348.

[47] L. Jin, C. Li, and S. Mehrotra, “Efficient record
linkage in large data sets,” in Eighth International
Conference on Database Systems for Advanced
Applications. IEEE, 2003, pp. 137–146.

[48] H. Kardes, D. Konidena, S. Agrawal, M. Huff, and
A. Sun, “Graph-based approaches for organization
entity resolution in mapreduce,” Graph-Based
Methods for Natural Language Processing, p. 70,
2013.

[49] H. Kawai, H. Garcia-Molina, O. Benjelloun,
D. Menestrina, E. Whang, and H. Gong, P-swoosh:
Parallel algorithm for generic entity resolution.
Stanford, 2006.

[50] H.-s. Kim and D. Lee, “Parallel linkage,” in
Proceedings of the sixteenth ACM conference
on Conference on information and knowledge
management. ACM, 2007, pp. 283–292.

[51] T. Kirsten, L. Kolb, M. Hartung, A. Groß,
H. Köpcke, and E. Rahm, “Data partitioning for
parallel entity matching,” Proceedings of the VLDB
Endowment, 2010.

[52] L. Kolb, H. Köpcke, A. Thor, and E. Rahm,
“Learning-based entity resolution with
mapreduce,” in Proceedings of the third
international workshop on Cloud data
management. ACM, 2011, pp. 1–6.

[53] L. Kolb and E. Rahm, “Parallel entity resolution
with dedoop,” Datenbank-Spektrum, vol. 13, no. 1,
pp. 23–32, 2013.

[54] L. Kolb, A. Thor, and E. Rahm, “Block-
based load balancing for entity resolution with
mapreduce,” in Proceedings of the 20th ACM
international conference on Information and
knowledge management. ACM, 2011, pp. 2397–
2400.

[55] L. Kolb, A. Thor, and E. Rahm, “Dedoop: efficient
deduplication with hadoop,” Proceedings of the
VLDB Endowment, vol. 5, no. 12, pp. 1878–1881,
2012.

[56] L. Kolb, A. Thor, and E. Rahm, “Load balancing
for mapreduce-based entity resolution,” in 28th
International Conference on Data Engineering
(ICDE). IEEE, 2012, pp. 618–629.

[57] L. Kolb, A. Thor, and E. Rahm, “Multi-pass
sorted neighborhood blocking with mapreduce,”
Computer Science-Research and Development,
vol. 27, no. 1, pp. 45–63, 2012.

[58] L. Kolb, A. Thor, and E. Rahm, “Don’t match
twice: redundancy-free similarity computation
with mapreduce,” in Proceedings of the Second
Workshop on Data Analytics in the Cloud. ACM,
2013, pp. 1–5.

[59] H. Köpcke and E. Rahm, “Frameworks for entity
matching: A comparison,” Data & Knowledge
Engineering, vol. 69, no. 2, pp. 197–210, 2010.

[60] V. I. Levenshtein, “Binary codes capable of
correcting deletions, insertions, and reversals,” in
Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[61] W. Liu, Y. Shen, and P. Wang, “An efficient
mapreduce algorithm for similarity join in metric
spaces,” The Journal of Supercomputing, vol. 72,
no. 3, pp. 1179–1200, 2016.

[62] K. Ma, F. Dong, and B. Yang, “Large-scale
schema-free data deduplication approach with
adaptive sliding window using mapreduce,” The
Computer Journal, vol. 58, no. 11, pp. 3187–3201,
2015.

[63] K. Ma and B. Yang, “Parallel nosql entity
resolution approach with mapreduce,” in
International Conference on Intelligent
Networking and Collaborative Systems. IEEE,
2015, pp. 384–389.

[64] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel
et al., “Performance measures for information
extraction,” in Proceedings of DARPA broadcast
news workshop, 1999, pp. 249–252.

[65] G. Malewicz, M. H. Austern, A. J. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski,
“Pregel: a system for large-scale graph
processing,” in Proceedings of the 2010
ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[66] P. Malhotra, P. Agarwal, and G. Shroff, “Graph-
parallel entity resolution using lsh & imm.” in
EDBT/ICDT Workshops, 2014, pp. 41–49.

[67] A. McCallum, K. Nigam, and L. H. Ungar,
“Efficient clustering of high-dimensional data
sets with application to reference matching,”

49

Open Journal of Big Data (OJBD), Volume 4, Issue 1, 2018

in Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery
and data mining. ACM, 2000, pp. 169–178.

[68] N. McNeill, H. Kardes, and A. Borthwick,
“Dynamic record blocking: efficient linking of
massive databases in mapreduce,” in Proceedings
of the 10th International Workshop on Quality in
Databases (QDB), 2012.

[69] D. G. Mestre, C. E. Pires, and D. C. Nascimento,
“Adaptive sorted neighborhood blocking for entity
matching with mapreduce,” in Proceedings of
the 30th Annual ACM Symposium on Applied
Computing. ACM, 2015, pp. 981–987.

[70] D. G. Mestre, C. E. S. Pires, D. C. Nascimento,
A. R. M. de Queiroz, V. B. Santos, and
T. B. Araujoa, “An efficient spark-based adaptive
windowing for entity matching,” The Journal of
Systems and Software, vol. 128, pp. 1–10, 2017.

[71] A. Metwally and C. Faloutsos, “V-smart-join:
A scalable mapreduce framework for all-pair
similarity joins of multisets and vectors,”
Proceedings of the VLDB Endowment, vol. 5,
no. 8, pp. 704–715, 2012.

[72] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio,
“Indexing text with approximate q-grams,” in
Annual Symposium on Combinatorial Pattern
Matching. Springer, 2000, pp. 350–363.

[73] J. S. Olsson and D. W. Oard, “Improving
text classification for oral history archives with
temporal domain knowledge,” in Proceedings
of the 30th annual international ACM SIGIR
conference on Research and development in
information retrieval. ACM, 2007, pp. 623–630.

[74] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas,
“Comparative analysis of approximate blocking
techniques for entity resolution,” Proceedings of
the VLDB Endowment, vol. 9, no. 9, pp. 684–695,
2016.

[75] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi,
D. J. DeWitt, S. Madden, and M. Stonebraker,
“A comparison of approaches to large-scale
data analysis,” in Proceedings of the 2009
ACM SIGMOD International Conference on
Management of data. ACM, 2009, pp. 165–178.

[76] R. Pita, C. Pinto, P. Melo, M. Silva, M. Barreto,
and D. Rasella, “A spark-based workflow for
probabilistic record linkage of healthcare data,”
EDBT Workshops, 2017.

[77] C. Rong, W. Lu, X. Du, and X. Zhang, “Efficient
duplicate detection on cloud using a new signature

scheme,” in Web-Age Information Management.
Springer, 2011, pp. 251–263.

[78] S. Salihoglu and J. Widom, “Gps: A graph
processing system,” in Proceedings of the 25th
International Conference on Scientific and
Statistical Database Management. ACM, 2013,
p. 22.

[79] W. Santos, T. Teixeira, C. Machado, W. Meira,
A. S. Da Silva, D. Ferreira, and D. Guedes,
“A scalable parallel deduplication algorithm,”
in 19th International Symposium on Computer
Architecture and High Performance Computing.
IEEE, 2007, pp. 79–86.

[80] S. Sarawagi, “Special issue on data cleaning,” IEEE
Data Engineering Bulletin, vol. 23, no. 4, pp. 2–3,
2000.

[81] S. Sarawagi and A. Bhamidipaty, “Interactive
deduplication using active learning,” in
Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery
and data mining. ACM, 2002, pp. 269–278.

[82] T. Seidl, S. Fries, and B. Boden, “Mr-dsj: Distance-
based self-join for large-scale vector data analysis
with mapreduce.” in BTW, vol. 214, 2013, pp. 37–
56.

[83] Y. N. Silva and J. M. Reed, “Exploiting mapreduce-
based similarity joins,” in Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data. ACM, 2012, pp. 693–696.

[84] Y. N. Silva, J. M. Reed, and L. M. Tsosie,
“Mapreduce-based similarity join for metric
spaces,” in Proceedings of the 1st International
Workshop on Cloud Intelligence. ACM, 2012,
p. 3.

[85] K. Stefanidis, V. Efthymiou, M. Herschel, and
V. Christophides, “Entity resolution in the web of
data.” in WWW (Companion Volume), 2014, pp.
203–204.

[86] M. Stonebraker, D. Abadi, D. J. DeWitt,
S. Madden, E. Paulson, A. Pavlo, and A. Rasin,
“Mapreduce and parallel dbmss: friends or foes?”
Communications of the ACM, vol. 53, no. 1, pp.
64–71, 2010.

[87] R. Vernica, M. J. Carey, and C. Li, “Efficient
parallel set-similarity joins using mapreduce,”
in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data.
ACM, 2010, pp. 495–506.

[88] C. Wang, J. Wang, X. Lin, W. Wang, H. Wang,
H. Li, W. Tian, J. Xu, and R. Li, “Mapdupreducer:

50

X. Chen, E. Schallehn, G. Saake: Cloud-Scale Entity Resolution: Current State and Open Challenges

detecting near duplicates over massive datasets,”
in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data.
ACM, 2010, pp. 1119–1122.

[89] S. E. Whang, D. Menestrina, G. Koutrika,
M. Theobald, and H. Garcia-Molina, “Entity
resolution with iterative blocking,” in Proceedings
of the ACM SIGMOD International Conference on
Management of data. ACM, 2009, pp. 219–232.

[90] W. E. Winkler, “Overview of record linkage and
current research directions,” in Bureau of the
Census. Citeseer, 2006.

[91] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang,
“Efficient similarity joins for near-duplicate
detection,” ACM Transactions on Database
Systems (TODS), vol. 36, no. 3, p. 15, 2011.

[92] W. Yan, Y. Xue, and B. Malin, “Scalable load
balancing for mapreduce-based record linkage,”
in 32nd International Conference on Performance
Computing and Communications. IEEE, 2013, pp.
1–10.

[93] B. Yang, H. J. Kim, J. Shim, D. Lee, and S.-g.
Lee, “Fast and scalable vector similarity joins with
mapreduce,” Journal of Intelligent Information
Systems, vol. 46, no. 3, pp. 473–497, 2016.

AUTHOR BIOGRAPHIES

Xiao Chen received her Msc
degree in computer science from
the University of Magdeburg,
Germany in 2014. Currently she
is a PhD student of Workgroup
”Databases and Software
Engineering” at the University
of Magdeburg. Her research
interests mainly focus on the
entity resolution area, exploring
open-sourced large-scale data

processing frameworks or computation engines (eg.
Apache Spark, Hadoop MapReduce, Apache Hive) to
best support solving parallel entity resolution problems.

Eike Schallehn is a scientific
assistant at the database research
group of the University of
Magdeburg, Germany. Since
1999 he has been doing research
in the field of information
integration focusing on query
processing in heterogeneous and
parallel environments. Other
research and application fields
of interest include self-tuning

for databases and Cloud-based data management.

Gunter Saake is a full professor
of Computer Science. He is
the head of the Databases and
Software Engineering Group at
the University of Magdeburg,
Germany. His research interests
include database integration,
tailor-made data management,
database management on new
hardware, and feature-oriented
software product lines.

51

	Introduction
	Parallel ER
	General ER Workflow
	Workflow of Parallel ER

	Methodology and Result of Literature Search
	Overview and Classification
	Classification of Approaches Based on Frameworks Used
	General Criteria and Classification
	Effectiveness-related Criteria and their Classification

	Efficiency-related Criteria and Their Classification
	Blocking
	Data Partitioning
	Load Balancing
	Redundancy Handling

	Open Challenges
	Conclusions and Future Work

