An Extensible Orchestration and Protection Framework for Confidential Cloud Computing

Authors: 

Adil Ahmad and Alex Schultz, Arizona State University; Byoungyoung Lee, Seoul National University; Pedro Fonseca, Purdue University

Abstract: 

Confidential computing solutions are crucial to address the cloud privacy concerns. Although SGX has witnessed significant adoption in the cloud, the reliance on hardware implementation is restrictive for cloud providers in terms of orchestrating deployments and providing stronger security to their clients’ enclaves. eOPF addresses this limitation by providing a comprehensive, secure hypervisor-level instrumentation framework with the ability to monitor all enclave-OS interactions and implement protected services. eOPF overcomes several challenges including bridging the semantic gap between the hypervisor and SGX and attesting the co-location of the framework with enclaves. Using eOPF, we implement two protected services that provide platform resource orchestration and complementary enclave side-channel defense. Our evaluation shows that eOPF incurs very low performance overhead (<2%) in its default state and only a modest overhead (geometric mean of 17% on SPEC) when strong, complementary side-channel defenses are enabled, making eOPF an efficient and practical solution for the cloud.

OSDI '23 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {288534,
author = {Adil Ahmad and Alex Schultz and Byoungyoung Lee and Pedro Fonseca},
title = {An Extensible Orchestration and Protection Framework for Confidential Cloud Computing},
booktitle = {17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23)},
year = {2023},
isbn = {978-1-939133-34-2},
address = {Boston, MA},
pages = {173--191},
url = {https://www.usenix.org/conference/osdi23/presentation/ahmad},
publisher = {USENIX Association},
month = jul
}

Presentation Video