Jaehong Min and Chenxingyu Zhao, University of Washington; Ming Liu, University of Wisconsin-Madison; Arvind Krishnamurthy, University of Washington
Emerging Zoned Namespace (ZNS) SSDs, providing the coarse-grained zone abstraction, hold the potential to significantly enhance the cost-efficiency of future storage infrastructure and mitigate performance unpredictability. However, existing ZNS SSDs have a static zoned interface, making them in-adaptable to workload runtime behavior, unscalable to underlying hardware capabilities, and interfering with co-located zones. Applications either under-provision the zone resources yielding unsatisfied throughput, create over-provisioned zones and incur costs, or experience unexpected I/O latencies.
We propose eZNS, an elastic-zoned namespace interface that exposes an adaptive zone with predictable characteristics. eZNS comprises two major components: a zone arbiter that manages zone allocation and active resources on the control plane, a hierarchical I/O scheduler with read congestion control, and write admission control on the data plane. Together, eZNS enables the transparent use of a ZNS SSD and closes the gap between application requirements and zone interface properties. Our evaluations over RocksDB demonstrate that eZNS outperforms a static zoned interface by 17.7% and 80.3% in throughput and tail latency, respectively, at most.
OSDI '23 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Jaehong Min and Chenxingyu Zhao and Ming Liu and Arvind Krishnamurthy},
title = {{eZNS}: An Elastic Zoned Namespace for Commodity {ZNS} {SSDs}},
booktitle = {17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23)},
year = {2023},
isbn = {978-1-939133-34-2},
address = {Boston, MA},
pages = {461--477},
url = {https://www.usenix.org/conference/osdi23/presentation/min},
publisher = {USENIX Association},
month = jul
}