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ABSTRACT
We propose an information propagation model that captures im-

portant temporal aspects that have been well observed in the dy-

namics of fake news diffusion, in contrast with the diffusion of

truth. The model accounts for differential propagation rates of

truth and misinformation and for user reaction times. We study a

time-sensitive variant of the misinformation mitigation problem,

where 𝑘 seeds are to be selected to activate a truth campaign so

as to minimize the number of users that adopt misinformation

propagating through a social network. We show that the resulting

objective is non-submodular and employ a sandwiching technique

by defining submodular upper and lower bounding functions, pro-

viding data-dependent guarantees. In order to enable the use of

a reverse sampling framework, we introduce a weighted version

of reverse reachability sets that captures the associated differen-

tial propagation rates and establish a key equivalence between

weighted set coverage probabilities and mitigation with respect to

the sandwiching functions. Further, we propose an offline reverse

sampling framework that provides (1 − 1/𝑒 − 𝜖)-approximate so-

lutions to our bounding functions and introduce an importance

sampling technique to reduce the sample complexity of our solu-

tion. Finally, we show how our framework can provide an anytime

solution to the problem. Experiments over five datasets show that

our approach outperforms previous approaches and is robust to

uncertainty in the model parameters.
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1 INTRODUCTION
Social networks have rapidly transformed into a prominent hub

for political campaigns, viral marketing, and the dissemination of

news and health information. As an unfortunate side effect, there
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Figure 1: Sample instance: edge labels = meeting delays (ML); MLs
not shown are 1; numbers besides nodes are reaction times = activa-
tion window (AW) lengths; AW lengths not shown are 0.

has been an increase in the number of “bad actors”, such as spam-

mers, hackers, and bots, exploiting these platforms to spread fake

news and misinformation. A fundamental question is: How can one
limit the spread of misinformation in social networks? Once mis-

information is detected, one feasible approach is to introduce a

truth campaign with a goal of reaching users before, or at least

not much later than, they are reached by the misinformation. The

misinformation mitigation (MM) problem [6, 14] aims to select ef-

fective seed nodes for the truth campaign such that the spread of

misinformation can be limited as much as possible.

Notably, existing propagation models considered in the MM lit-

erature [6, 11, 31, 33, 34, 39, 40, 44–47] fail to incorporate critical

temporal aspects that have been well observed in the dynamics of

fake news diffusion [13, 28, 49]. We argue that it is important to dis-

tinguish between the relative propagation dynamics of fake news

and truth as it has been observed that fake news often “spreads

like wildfire” online [49] while the adoption of truth occurs much

slower. For instance, Fig. 1 depicts a sample instance of misinforma-

tion/truth propagation, where all the edge propagation probabilities

are 1 and the edge labels indicate the diffusion delay for truth. E.g.,

if node 𝑣2 adopts misinformation at time 𝑡 , it will propagate to 𝑣8
at time 𝑡 + 1. By contrast, if 𝑣2 adopted truth at 𝑡 , it will propa-

gate to 𝑣8 at 𝑡 + 3. The differential propagation rates of truth and

fake news may have considerable consequences for the selection

of effective seed nodes. Secondly, important dynamics are at play

in user decision making. E.g., a recent study [13] observed that

approximately 59% of users forego reading articles linked in social

media posts before acting on them, while the time spent reading

linked articles [28] ranges from under a minute for short articles

to several minutes for longer articles. Thus, the “reaction times" of

users can vary considerably. To illustrate, in Fig. 1, all users save

𝑣3, 𝑣4 may react instantly (no reading), while 𝑣3 and 𝑣4 may read

linked articles before reacting, with 𝑣4 reacting quicker (1 time unit)

than 𝑣3 (4 time units). Finally, mitigation strategies for combating

misinformation are only effective when the truth arrives at a user
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either (a) before the arrival of the fake news or (b) shortly after the

user becoming aware of the fake news. In particular, truth arriving

later than misinformation may still have an effect, up to a reason-

able delay. E.g., suppose 𝑣0 is a seed for misinformation while 𝑣12 is

a seed for truth, with both adopting the information at time 0. Then

𝑣3, 𝑣4, 𝑣5 will become aware of the misinformation at time 1, while

the truth reaches 𝑣3, 𝑣4, 𝑣5 at times 6, 2, 2 respectively. Meanwhile,

𝑣3, 𝑣4, 𝑣5 will react at times 1 + 4 = 5, 1 + 1 = 2, and 1 + 0 = 1

respectively. Thus, truth reaches 𝑣4 in time for its reaction while

it arrives at 𝑣3 and 𝑣5 too late. Further, as illustrated above, as the

delay between the arrival of misinformation and truth increases,

the effectiveness of the mitigating campaign drops off significantly

[10, 32]. Models used in prior misinformation mitigation studies fail
to account for these phenomena, supported by real-world observations.

Novelty. In this paper, we study an interesting and realistic vari-

ant of the classic MM problem incorporating the twin time-critical

aspects of misinformation propagation that have been observed

and validated in earlier studies [13, 28, 49]: differential propagation

rates and user reaction times. Our approach uses a node-level dy-

namic penalty function based on the delay between the arrival of

the competing campaigns. We propose a new propagation model,

the Temporal Competitive Independent Cascade (TCIC) model which,

unlike existing propagation models, accounts for differential prop-

agation rates and user reaction times, by employing two critical

components which work jointly to properly model the dynamics of

diffusion: edge-level campaign-specific time-delayed propagation

and node-level activation windows for making adoption decisions.

We then define a novel optimization problem for misinforma-

tion mitigation under the TCIC model. Unlike prior MM models

[6, 36, 39, 40, 44, 46, 47], which are based on competitive IC [7],

whose objectives satisfy submodularity when the campaigns share

propagation probabilities, we show that submodularity does not

hold for our objective in the TCIC model even when the campaigns

share probabilities. We also show that the recent guarantees shown

for Greedy [4] based on curvature and submodularity ratio when

applied to non-submodular objectives, lead to degenerate results for

our objective function. To overcome this challenge, we employ the

Sandwich Approximation (SA) [27] and develop non-trivial upper

and lower bounding submodular functions to produce solutions

with a data-dependent approximation guarantee. Further, existing

state-of-the-art solutions for influence maximization (under a sin-

gle campaign), such as IMM [42], SSA [15, 30], and OPIM [41], are

based on reverse sampling (RS). However, adapting the RS machin-

ery (based on reverse reachability (RR) sets) to our propagation

model comes with the challenge that the set of nodes reached by

the misinformation is an unknown meaning our algorithm cannot

inherit the sample complexity lower bound from prior work and

thus requires a novel derivation, which we provide. We develop a

RS framework by building on the state-of-the-art OPIM algorithm.

Due to the complex interactions that occur during the propagation

of the fake and mitigating campaigns as well as the new temporal

model components, the construction of the analog to RR sets un-

der our new model requires great care. Further, adapting RR sets

to our setting requires pushing the idea of tie-breaking between

campaigns into the notion of RR sets. To the best of our knowledge,

we are the first to incorporate a proportional tie-breaking rule into

Table 1: Frequently used notation.
Notation Description

𝐺,𝑚,𝑛
Social network graph with 𝑛 nodes and 𝑚

edges

𝐹 ,𝑀 , 𝑆𝐹 , 𝑆𝑀
The misinformation and mitigation cam-

paigns and their seed sets, respectively

𝑚𝐹 (𝑢, 𝑣),𝑚𝑀 (𝑢, 𝑣) Meeting event probabilities

𝑋 , 𝑅𝑋
𝐹

Possible world of the TCIC model and set of

nodes reachable from 𝐹 in 𝑋

ℎ𝐹𝑒 , ℎ
𝑀
𝑒

Sampled meeting event edge lengths along

edge 𝑒 in 𝑋

𝜏𝑣 , 𝜋𝑣
Sampled AW length and in-neighbour permu-

tation in 𝑋

𝑡𝐹𝑣 , 𝑡
𝑀
𝑣 First step 𝑣 meets with 𝐹 ,𝑀

𝜌𝑋 (𝑣, 𝑆) Reward achieved in 𝑋 at 𝑣 by 𝑆

𝜇𝑋 (𝑆𝑀 ) , 𝜇 (𝑆𝑀 )
Total reward achieved by 𝑆 i n𝑋 and in ex-

pectation, respectively

𝜇, 𝜇
Submodular upper/lower bounding functions

of 𝜇

𝐼𝑁𝐹𝐹 , 𝐼𝑁𝐹1
Expected influence of 𝐹 and largest expected

influence of any size-1 node set

Γ Misinformation sampling error

𝐸𝑃𝑇
Expected complexity of generating an RDR

set

the reverse sampling framework, which introduces additional chal-

lenges in constructing RR sets. Second, in order to further reduce

the number of samples required by the RS framework, we define an

unbiased estimator for our upper and lower bound objectives based

on importance sampling leading to reduced variance and tighter

concentration bounds. We tackle the challenge of the sample com-

plexity depending on the expected influence of the misinformation,

an unknown, by developing a novel normalization term.

Our main contributions are: (1) we introduce a novel propagation

model capturing important temporal aspects pertaining to the diffu-

sion of and reaction to truth and misinformation and define a novel

MM problem formulation with delay-dependent reward (§ 2). (2)

We develop non-trivial upper & lower bounding submodular func-

tions for our non-submodular objective to use in a sandwiching

technique (§ 3). (3) We introduce an importance sampling tech-

nique to reduce the sample complexity of our solution (§ 4). (4) We

develop a reverse sampling framework that provides a (1− 1/𝑒 −𝜖)-
approximate solution to the upper & lower bounding objectives

yielding an instance-dependent approximation to the MM objec-

tive (§ 5). (5) We show that our algorithm can provide an anytime

solution to the MM problem (§ 5). (6) We present a thorough experi-

mental validation (§ 6). For lack of space, some proofs are sketched.

Complete details can be found in [37].

2 PRELIMINARIES
We formalize the notions of differential propagation rates and ac-

tivation windows and then present our new propagation model

referred to as TCIC (for Temporal Competitive Independent Cas-

cade). Let 𝐺 = (𝑉 , 𝐸) be a social network with sets of nodes 𝑉 and

directed edges 𝐸, where |𝑉 | = 𝑛, |𝐸 | =𝑚. Let 𝐹 (for “Fake”) and𝑀
(for “Mitigating”) denote two influence campaigns with seed sets

𝑆𝐹 and 𝑆𝑀 , respectively.
1
The seeds 𝑆𝐹 (𝑆𝑀 ) are active in campaign

1
We assume 𝑆𝐹 ∩ 𝑆𝑀 = ∅, w.l.o.g.
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𝐹 (resp. 𝑀) at time 𝑡 = 0. We assume each edge 𝑒 = (𝑢, 𝑣) in 𝐸 is

associated with a propagation probability 𝑝 (𝑢, 𝑣) ∈ (0, 1].
Meeting Events. We associate with each edge 𝑒 = (𝑢, 𝑣) meet-
ing probabilities𝑚𝐹 (𝑢, 𝑣),𝑚𝑀 (𝑢, 𝑣) ∈ (0, 1]. At any step, an active

node 𝑢 in campaign 𝐹 (or 𝑀) meets any of its currently inactive

neighbours 𝑣 independently with probability𝑚𝐹 (𝑢, 𝑣) (or𝑚𝑀 (𝑢, 𝑣)).
A node activated at time 𝑇 attempts to meet with its inactive out-

neighbours at every step 𝑡 ≥ 𝑇 +1 until there is a successful meeting.

Then, if a meeting event occurs between 𝑢 and 𝑣 in 𝐹 (or 𝑀) for

the first time at step 𝑡 , then 𝑢 is given a single chance to activate

𝑣 in 𝐹 (or 𝑀) with independent probability 𝑝 (𝑢, 𝑣). If the activa-

tion attempt is successful, 𝑣 becomes active in 𝐹 (or 𝑀) at time 𝑡

and enters an activation window, described below. Once activated,

subsequent meeting attempts from in-neighbours are ignored.

With the above formulation, we can capture the observation

that truth travels more slowly than fake news by setting𝑚𝐹 (𝑢, 𝑣) ≥
𝑚𝑀 (𝑢, 𝑣), ∀ edge (𝑢, 𝑣) ∈ 𝐸. As a special case, we can set𝑚𝐹 (𝑢, 𝑣) =
1, i.e., only apply the meeting events to nodes active in the miti-

gating campaign 𝑀 . This results in 𝐹 traversing every edge in a

single hop, while 𝑀 may be delayed by several meeting attempts.

For convenience, under this special case, for an edge 𝑒 = (𝑢, 𝑣) we
will write𝑚𝑀 (𝑢, 𝑣) as𝑚(𝑢, 𝑣) or𝑚(𝑒). We shall henceforth assume

this special case for ease of exposition, although our theory and

techniques apply to the general case.

Activation Windows. Motivated by concepts well established in

Sociology and Marketing [1, 2, 13, 18, 27, 28], we distinguish be-

tween awareness and adoption in our TCIC model by defining an

activation window (AW) for each node. The AW augments the prop-

agation behaviour defined by meeting events such that successful

activation attempts now result in awareness, and not adoption.

Specifically, we say node 𝑢 becomes aware in the first step that

an in-neighbour of 𝑢 active in either campaign 𝑀 or 𝐹 succeeds

in meeting with 𝑢. However, before deciding to commit to activa-

tion in either campaign, 𝑢 enters its activation window: a period
of time during which it may receive conflicting and/or reinforcing

information, which it factors in making an adoption decision. The

dynamics of the AW are governed by a node-level parameter 𝛾 (𝑢)
that determines the length of the AW for 𝑢. The closing function

𝛾 (·) → Z+ allows the model to capture varying window sizes,

typically related to the time spent reading articles linked in social

media posts. Example choices for the closing function include: (i)

a constant function where all nodes wait for some fixed number

of steps before making a decision, (ii) a uniform function where

window lengths are chosen uniformly at random between 0 and

some closing time 𝜏 , or (iii) an attenuating function (e.g. exponen-

tial decay with an appropriate mapping to Z+) where some users

may wait substantially longer (to gather additional information)

before making an adoption decision. Furthermore, 𝛾 (·) can be made

node-specific to capture the individual behaviour of users.

Tie-breaking Policy. Observe that (active users from) both cam-

paigns may meet with a node 𝑢 within the AW and at the end of

the window, 𝑢 must decide to adopt 𝐹 or 𝑀 . In such a scenario,

both campaigns are attempting to activate 𝑢 and so we require a

tie-breaking policy. We employ a weighted random choice policy
based on in-neighbour activation counts for each campaign over the

duration of the AW, described as follows: when the AW closes, the

probability that node𝑢 activates in campaign 𝐹 is |𝑁−
𝐹
(𝑢) |/|𝑁− (𝑢) |

where 𝑁−
𝐹
(𝑢) (resp. 𝑁− (𝑢)) is the set of in-neighbours of𝑢 that met

with𝑢 from campaign 𝐹 (resp. either campaign). Similarly, the prob-

ability that node 𝑢 activates in campaign𝑀 is |𝑁−
𝑀
(𝑢) |/|𝑁− (𝑢) |.

TCIC Model. Our new propagation model is defined by incor-

porating the edge-level meeting events and node-level activation

windows into a standard competitive independent cascade model

[7]. The propagation process terminates when all active nodes in

both campaigns have met with all their out-neighbours and no new

nodes can be activated in either campaign. The model parameters

allow for a great deal of expressiveness to accurately describe many

observed real-world adoption behaviours.

Problem Statement. We argue that in gauging the extent of mis-

information mitigation, merely counting the number of users pre-

vented from adopting the misinformation after the propagation

terminates is too restrictive. The reason is that the quality of the

mitigation depends on the delay, if any, in the arrival of the truth.

To help capture this, assume that there is a reward function 𝜌 (·) :
𝑉 × 2𝑉 → 𝑅>=0, which given a node 𝑣 and a seed set 𝑆𝑀 , returns a

real number indicating the effectiveness of the mitigation at 𝑣 after

the propagation terminates. We will provide more details on 𝜌 (·)
in the next section. Given such a reward function, we define the

expected mitigation by 𝜇 (𝑆𝑀 ) = E[
∑

𝑣 𝜌 (𝑣, 𝑆𝑀 )] where the expecta-
tion is taken over the randomness in the propagation process. We

are now ready to formally state the problem we study in this work.

Problem 1. Given a misinformation seed set 𝑆𝐹 , the misinforma-

tion mitigation (MM) problem under the TCIC model is to find a seed
set 𝑆𝑀 with at most 𝑘 nodes that maximizes the expected mitigation.
Formally, find a seed set 𝑆𝑀 satisfying argmax𝑆𝑀 ⊂𝑉 \𝑆𝐹 , |𝑆𝑀 | ≤𝑘 𝜇 (𝑆𝑀 ).

Possible Worlds.We can view the stochastic propagation process

under TCIC using an equivalent “possible worlds” interpretation.

Suppose that before the propagation process starts, a set of out-

comes for all meeting event attempts (i.e., the number of failed

meeting attempts before two neighbours successfully meet), activa-

tion windows parameters, and edge liveness are pre-determined.

Specifically, for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we declare the edge “live”
with probability 𝑝 (𝑢, 𝑣), or “blocked” otherwise. Further, for each
edge, we sample from a geometric distribution parameterized by

success probability𝑚𝐹 (𝑒) (𝑚𝑀 (𝑒)) the (random) number of meet-

ing event attempts, denotedℎ𝐹𝑒 (ℎ𝑀𝑒 ), required by campaign 𝐹 (or𝑀)

along 𝑒 . Next, a set of outcomes for all activation windows are pre-

determined. Specifically, for each node 𝑣 ∈ 𝑉 we sample a window

length 𝜏𝑣 from the closing function 𝛾 (𝑣) and a random permutation

𝜋𝑣 of the active in-neighbours of 𝑣 (i.e., those active in-neighbours

connected to 𝑣 by live edges) for the purpose of tie-breaking. All

random events, including coin flips are independent. Thus, a certain

set of outcomes of all coin flips and sampled parameter values cor-

responds to one possible world under the TCIC model. A possible

world, denoted𝑋 , is a deterministic graph obtained by conditioning

on a particular set of outcomes. We denote by 𝑅𝑋
𝐹
the set of nodes

reachable by 𝐹 in possible world 𝑋 in the absence of𝑀 .

Next, we define the notion of distance in 𝑋 for each campaign.

Consider a live edge 𝑒 = (𝑢, 𝑣) in 𝑋 . Traditionally, without meet-

ing events, 𝑣 is reachable from 𝑢 in a single hop. Now with pre-

determined meeting event attempts, 𝑣 is reachable from 𝑢 in ℎ𝐹𝑒 (or
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Figure 2: 𝜌𝑋 (𝑣3) with 𝜏𝑣3 = 4.

ℎ𝑀𝑒 ) hops. Then, the delayed-distance of a path 𝑃 from 𝑢 to 𝑣 is the

total number of hops along the edges of 𝑃 plus the sum of activa-

tion window lengths of nodes in 𝑃 \ {𝑢, 𝑣}. Finally, for campaign

𝐴 ∈ {𝐹,𝑀}, the delayed-distance 𝑑𝑑𝑋 (𝑆𝐴, 𝑣) from a seed set 𝑆𝐴 to

𝑣 in 𝑋 is the delayed-distance of the live-path 𝑃 from 𝑢 ∈ 𝑆𝐴 to 𝑣

that minimizes

∑
𝑒∈𝑃 ℎ

𝐴
𝑒 +

∑
𝑥 ∈𝑃\{𝑢,𝑣 } 𝜏𝑥 .

Example 1. We illustrate the propagation process on the network
in Fig. 1 under the TCIC model. For simplicity, we assume each edge
has propagation probability 𝑝 (𝑒) = 1. The sampled meeting delays
ℎ𝑀𝑒 and AW lengths 𝜏𝑣 are indicated in cyan and red labels respec-
tively. Let 𝜋𝑣4 = (𝑣11, 𝑣10, 𝑣𝐹 ) and 𝜋𝑣15 = (𝑣5, 𝑣12) be the sampled
permutations. Consider seeds 𝑣0 for campaign 𝐹 and 𝑣12 for campaign
𝑀 and consider the resulting cascade through the network. At time 1,
𝑣1, 𝑣2, 𝑣5, 𝑣6 adopt 𝐹 and 𝑣11 adopts𝑀 . Meanwhile, 𝑣3, 𝑣4 open their
AW’s. At time 2, both 𝐹 and𝑀 reach 𝑣15. Additionally,𝑀 reaches 𝑣4
as its AW closes. Tie-breaks result in 𝑣4 and 𝑣15 adopting 𝑀 and 𝐹

respectively. Meanwhile 𝑣7, 𝑣8, 𝑣9 adopt 𝐹 and 𝑣14 adopts𝑀 . Finally,
at time 5 𝑣10 adopts𝑀 and 𝑣3 adopts 𝐹 .

Using the above sampled parameters, with 𝑣0 as the 𝐹 seed, let us
compare 𝑀 seeds 𝑣12 and 𝑣14. It can be verified that 𝑣12 causes the
nodes 𝑣12, 𝑣11, 𝑣4, 𝑣14, 𝑣10 to either adopt or be informed of𝑀 . Of these
only 𝑣11 and 𝑣3 would have adopted 𝐹 if there was no𝑀 campaign,
so intuitively 𝑣12 “saves" 2 nodes. By contrast, 𝑣14 causes 𝑣14, 𝑣10, 𝑣3
to adopt or be informed of𝑀 , of which only 𝑣3 would have adopted 𝐹
if there was no𝑀 campaign, so 𝑣14 “saves" 𝑣3. □

2.1 Mitigation Reward
Motivated by the time-critical nature of the MM problem, we intro-

duce a novel reward function that intuitively captures the penalty

paid when mitigation arrives too late after the misinformation.

In particular, the reward function is designed such that in case

adoption of the truth cannot be secured, awareness is encouraged.

Delay-specific Reward Function. The reward function 𝜌𝑋 (·) is
defined w.r.t. activating a node in campaign 𝑀 relative to the be-

haviour of campaign 𝐹 . First, for nodes 𝑣 ∉ 𝑅𝑋
𝐹
that would not have

been activated in 𝐹 in the absence of 𝑀 we define 𝜌𝑋 (𝑣, 𝑆𝑀 ) = 0.

Next, consider a node 𝑣 that would have been activated in 𝐹 in the

absence of 𝑀 , i.e. there exists a path from 𝑆𝐹 to 𝑣 in 𝑋 . Let 𝑡𝐹𝑣 be

the first step in which 𝑣 meets with a node in campaign 𝐹 and 𝑡𝑀𝑣
be the first step in which 𝑣 meets with a node in campaign𝑀 . We

use the convention that 𝑡𝐹𝑣 (or 𝑡𝑀𝑣 ) is infinite if no meeting with

a node from 𝐹 (or𝑀) occurs. We define the reward 𝜌𝑋 (𝑣, 𝑆𝑀 ) for
node 𝑣 as a function of the amount of time that has passed between

the mitigation and the fake news arriving at 𝑣 . In particular, we

consider the step function given by Eq. (1). There are three cases for

the amount of reward achieved: (i) reward 2 if the truth arrives at 𝑣

sufficiently early such that the misinformation arrives after the AW

closes or if the presence of𝑀 stops 𝐹 from ever reaching 𝑣 (in the

case of 𝑡𝐹𝑣 = ∞), (ii) reward 1 if both the truth and misinformation

arrive at 𝑣 within the AW and (iii) no reward if the truth arrives

after the AW closes or not at all (i.e., 𝑡𝑀𝑣 = ∞). The reward function

is illustrated in Fig. 2 for 𝑣3 from Fig. 1 where 𝜏𝑣3 = 4.

𝜌𝑋 (𝑣, 𝑆𝑀 ) =


2 if 𝑡𝑀𝑣 < 𝑡𝐹𝑣 − 𝜏𝑣
1 if |𝑡𝑀𝑣 − 𝑡𝐹𝑣 | ≤ 𝜏𝑣

0 if 𝑡𝑀𝑣 > 𝑡𝐹𝑣 + 𝜏𝑣
(1)

When the context is clear, we write 𝜌𝑋 (𝑣, 𝑆𝑀 ) as 𝜌 (𝑣). We refer to

the reward achieved by set 𝑆𝑀 , given 𝑆𝐹 , after the propagation ter-

minates as themitigation and denote it by 𝜇𝑋 (𝑆𝑀 ) =
∑

𝑣 𝜌𝑋 (𝑣). Fur-
ther, we denote the expected mitigation by 𝜇 (𝑆𝑀 ) = E[𝜇𝑋 (𝑆𝑀 )].2

Design Decisions. The advantage of our new reward function,

and the purpose of the middle condition of Equation 1, is to pro-

mote campaign 𝑀 reaching nodes that are reached by campaign

𝐹 , despite not being able to guarantee adoption of 𝑀 , owing to

tie-breaking. Thus, even if a node does not end up activating in𝑀 ,

the user will be exposed to the true information, which we argue is

a natural goal to strive for. Clearly, in the event that adoption of𝑀

cannot be guaranteed, promoting its awareness is preferable to in-

action. If the truth reaches a user sufficiently early (compared to the

misinformation) then their adoption decision will be uncontested

by the misinformation. Thus, the subsequent propagation of truth

by the user leads to the desired outcome. Hence, this favourable

scenario contributes maximal reward towards the objective. Mean-

while, due to the tie-breaking policy, reaching users within their

AW always provides an opportunity for the adoption of truth and

its subsequent propagation. However, when both the misinforma-

tion and truth arrive within the AW, the adoption of truth is no

longer uncontested and, as such, contributes less reward. Finally,

when mitigation arrives too late after the misinformation, we pe-

nalize the mitigation campaign to capture its reduced effectiveness.

Further, recall that the reward function only attributes non-zero

values when campaign 𝐹 reaches node 𝑣 . Since we do not credit

any reward to those nodes reached by the mitigation but not the

misinformation, this encourages a solution to “focus” on mitigat-

ing the spread of misinformation, and discourages solutions that

blindly maximize the spread of the truth. We note that in place of

a step function, we could use an arbitrary non-increasing reward

function. We revisit this point in § 3.

Problem Properties. The original MM problem under the CIC

model [6] is NP-hard. It is a special case of MM under the TCIC

model, with all𝑚(𝑢, 𝑣) = 1, a length zero activation window, and

dominant tie-breaking.

Proposition 1. The misinformation mitigation problem is NP-
hard under the TCIC model.

An important observation is that, while the expected mitigation

𝜇 (·) is monotone under the TCIC model with reward function 𝜌 (·),
it is not submodular.

Theorem 1. Given a seed set 𝑆𝐹 , the mitigation function 𝜇 (·) is
not submodular in general under the TCIC model.

Bian et al. [4] recently provided approximation guarantees for

the standard greedy algorithm on non-submodular objectives based

on the submodularity ratio and curvature of the objective. Unfor-

tunately, the submodularity ratio of the MM objective can be as

2
Mitigation depends on 𝑆𝐹 , but we omit 𝑆𝐹 as an argument of 𝜇 (.) since 𝑆𝐹 is a fixed

input to the problem.
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small as 0 and thus their result does not provide any non-trivial

guarantees. To overcome the challenges of a non-submodular ob-

jective function, we leverage the Sandwich Approximation of [27]

by developing appropriate upper and lower bounding functions

for our mitigation objective, yielding a solution with non-trivial

data-dependent approximation guarantees.

3 SANDWICHING THE OBJECTIVE
The Sandwich Approximation (SA) of [27] leverages upper (𝜇) and
lower (𝜇) bounds on a non-submodular objective function to provide

data-dependent approximation guarantees. Specifically, given upper

& lower bounding functions that are submodular, we can obtain

solutions 𝑆𝑈 and 𝑆𝐿 resp. with approximation guarantees.

Lower Bound. We make the following observation to motivate

our choice of lower bound objective 𝜇 (·). The supermodular be-

haviour of 𝜇 (·) arises from the combined effort of seed nodes in

𝑆𝑀 which individually would not activate a target node 𝑣 . That is,

together they are able to block the paths from 𝑆𝐹 to 𝑣 such that

the mitigating campaign’s disadvantage, in the form of meeting

events, is overcome. E.g., in Fig. 1, suppose 𝑆𝐹 = {𝑣1}. Then neither

one of 𝑣2, 𝑣7 by itself can activate 𝑣8 in𝑀 . However, 𝑆𝑀 = {𝑣2, 𝑣7}
can. Thus, to eliminate the possibility of such coordination, we de-
fine a lower bound function 𝜇

𝑋
that only measures the maximum

mitigation achieved by any node in 𝑆𝑀 when it acts as a singleton

seed set. Formally, we define 𝜇
𝑋
(𝑆𝑀 ) =

∑
𝑣 max𝑢∈𝑆𝑀 𝜌𝑋 (𝑣, {𝑢})

and 𝜇 (𝑆𝑀 ) = E[𝜇
𝑋
(𝑆𝑀 )]. Note, 𝜇

𝑋
clearly lower bounds 𝜇𝑋 since

max𝑢∈𝑆𝑀 𝜌𝑋 (𝑣, {𝑢}) ≤ 𝜌𝑋 (𝑣, 𝑆𝑀 ).

Lemma 1. 𝜇 (𝑆𝑀 ) is submodular.

Upper Bound. An obvious candidate for 𝜇 (·) is to forego the meet-

ing events associated with campaign𝑀 and enforce an𝑀-dominant

tie-breaking rule. The resulting model reduces to the CIC model

under which previous results ensure that the resulting objective is

submodular. The existence of meeting events only acts to “hinder”

the mitigation and thus without them the mitigation would reach

every node sooner, thus increasing reward. Further,𝑀-dominant

tie-breaking rule ensures all propagation paths shared by the two

campaigns arewon by themitigation. However, we develop a tighter

upper bounding function so as to improve the data-dependent ap-

proximation guarantees.

Consider a possible world 𝑋 and call all edges touched by the

propagation of campaign 𝐹 in 𝑋 , critical edges 𝐸𝐶 ⊆ 𝐸. Next, con-

struct a modified possible world 𝑋 ′ by removing all meeting events

for campaign 𝑀 on critical edges. That is, ℎ𝑀𝑒 = 1 for all critical

edges 𝑒 ∈ 𝐸𝐶 . Next, define an overlap indicator variable I𝑂𝐿
𝑣 where

I𝑂𝐿
𝑣 = 0 iff the collection of paths from 𝑆𝐹 to 𝑣 is edge-disjoint from

the collection of paths from 𝑆𝑀 to 𝑣 in 𝑋 ′. Intuitively, if there is no
overlap then there is no opportunity for several seeds from 𝑆𝑀 to

“collude” together to achieve a larger reward than if they were to

act alone. Finally, we define a modified reward function 𝜌 ′
𝑋
(·) that

upper bounds 𝜌𝑋 (·) by lifting the reward to its maximum value

for the case that both campaigns reach some node 𝑢 within its

activation window. Denote 𝑡
𝐴,𝑋
𝑣 as the first step in which 𝑣 meets

with a node in campaign 𝐴 in possible world 𝑋 , where 𝐴 ∈ {𝐹,𝑀}.

We similarly define 𝜌 ′
𝑋
(𝑣, 𝑆𝑀 ) = 0 when 𝑣 ∉ 𝑅𝑋

𝐹
, and otherwise as

𝜌 ′𝑋 (𝑣, 𝑆𝑀 ) =
{
2 if 𝑡

𝑀,𝑋
𝑣 ≤ 𝑡

𝐹,𝑋
𝑣 + 𝜏𝑣

0 if 𝑡
𝑀,𝑋
𝑣 > 𝑡

𝐹,𝑋
𝑣 + 𝜏𝑣 .

(2)

Then, we define

𝜇𝑋 (𝑆𝑀 ) =
∑
𝑣

max

𝑢∈𝑆𝑀

{
𝜌𝑋 ′ (𝑣, {𝑢}) if I𝑂𝐿

𝑣 = 0

𝜌 ′
𝑋 ′ (𝑣, {𝑢}) if I𝑂𝐿

𝑣 = 1

(3)

and 𝜇 (𝑆𝑀 ) = E[𝜇𝑋 (𝑆𝑀 )].

Lemma 2. 𝜇 (𝑆𝑀 ) is submodular.

Reverse Delayed Reward Sets. State-of-the-art solutions for the
IM problem are based on the concept of Reverse Reachable (RR) sets.
We denote a possible world under the IC model by𝑊 .

Definition 1 (Reverse Reachable Set [42]). The reverse reach-
able (RR) set for a root node 𝑣 in𝑊 is the set of nodes that can reach
𝑣 in𝑊 . That is, for each node 𝑢 in the RR set, there is a directed path
from 𝑢 to 𝑣 in𝑊 .

The connection between RR sets and a node’s activation is for-

malized in the following equivalence lemma. It is the key result

that underpins the approximation guarantees of [30, 41, 42] by

establishing an unbiased estimator for the influence objective.

Lemma 3 (Activation Eqivalence [5]). For any seed set 𝑆 and
node 𝑣 , the probability that an influence propagation process from 𝑆

can activate 𝑣 equals the probability that 𝑆 overlaps an RR set for 𝑣 .

For our objective function, we seek an analog to the RR set

definition in the TCIC setting. Importantly, since RR sets are only

concerned with the coverage status of a node 𝑢 w.r.t. an RR set

𝑅, the presence of 𝑢 in 𝑅 implies this condition is satisfied. By

contrast, our analog must be able to express the reward associated

with each node present in the set. To overcome this challenge, we

introduce the notion of a Reverse Delayed Reward (RDR) set for a
node 𝑣 in a possible world 𝑋 of our TCIC model. RDR sets augment

the traditional RR sets by including delayed reward information

associated with each node in the RDR set. They can be viewed as a

weighted version of RR sets.

Definition 2 (Reverse Delayed Reward Set). The reverse de-
layed reward (RDR) set for node 𝑣 in𝑋 is the set of pairs (𝑢, 𝜌𝑋 (𝑣, {𝑢}))
of nodes that can reach 𝑣 in𝑋 and their associated reward (interpreted
as a weight). For each node 𝑢 in the RDR set, there exists a path 𝑃 in
𝑋 from 𝑢 to 𝑣 for which all tie-breaks along 𝑃 are won by 𝑀 when
{𝑢} is initially activated in𝑀 , achieving reward 𝜌𝑋 (𝑣, {𝑢}), where
𝜌𝑋 (𝑣, {𝑢}) is the reward computed in possible world 𝑋 .

Note that RDR sets are defined w.r.t. a fixed seed set 𝑆𝐹 given

by the problem instance. E.g., in Fig. 1, let all propagation proba-

bilities be 1 and 𝑆𝐹 = {𝑣0}. Then the RDR set for node 𝑣3 in this

possible world is {(𝑣10, 1), (𝑣14, 1), (𝑣2, 1)}. An𝑀 campaign started

at any other node either does not reach 𝑣3 or reaches it too late. We

make the following important observation: the delayed-distance

𝑑𝑑𝑋 (𝑢, 𝑣) from 𝑢 to 𝑣 in 𝑋 is necessary, but not sufficient, infor-

mation for determining the delay of 𝑀 reaching 𝑣 w.r.t. 𝐹 . The

simultaneous propagation of 𝐹 and𝑀 in 𝑋 can lead to interactions

resulting in a node’s AW opening before either campaign would
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have triggered it when propagating independently. As a result, this

may lead to a delay that is not simply 𝑑𝑑𝑋 (𝑢, 𝑣) −𝑑𝑑𝑋 (𝑆𝐹 , 𝑣). There-
fore, we cannot compute the reward associated with node𝑢 directly

from the delayed-distance. A random RDR set is defined in a similar

fashion to a random RR set where the “root” node 𝑣 is chosen at

random from 𝐺 . Since the mitigation objective is not submodular

(Theorem 1), we cannot leverage RDR sets directly for maximizing

𝜇 (.). Instead, we will establish a connection between RDR sets and

the bounding functions 𝜇 (·) and 𝜇 (·).
Reward Equivalence. We say a set 𝑆 covers an RDR set 𝑅 with

weight 𝜔𝑅 > 0, provided ∃𝑢 ∈ 𝑆 such that the pair (𝑢,𝜔𝑅) appears
in 𝑅 and 𝜔𝑅 is the largest weight over all nodes 𝑢 ∈ 𝑆 . Abusing

notation, we write this as 𝑆 ∩ 𝑅 = 𝜔𝑅 . If there are no pairs (𝑢,𝜔𝑅)
in 𝑅 such that 𝑢 ∈ 𝑆 , then we define 𝜔𝑅 = 0 and say 𝑆 does not cover
𝑅. Next, we establish reward equivalence for the two bounds.

Lemma 4. Let 𝑆𝑀 be a fixed set of nodes, and 𝑣 be a fixed node.
Suppose that we generate an RDR set 𝑅 for 𝑣 in a possible world 𝑋 .
Let 𝜚1 be the probability that 𝑆𝑀 covers 𝑅 with weight 𝜔𝑅 , and 𝜚2
be the probability that 𝑆𝑀 , when used as a seed set for campaign𝑀 ,
achieves a reward 𝜔𝑅 at 𝑣 in a propagation process on 𝐺 w.r.t 𝜇 (·).
Then, 𝜚1 = 𝜚2.

Lemma 5. Let 𝑆𝑀 be a fixed set of nodes, and 𝑣 be a fixed node.
Suppose that we generate an RDR set 𝑅 for 𝑣 in a possible world 𝑋 ′

where 𝑋 ′ is the modified possible world constructed from possible
world 𝑋 sampled from 𝐺 . Let 𝜚1 be the probability that 𝑆𝑀 covers 𝑅
with weight 𝜔

𝑅
, and 𝜚2 be the probability that 𝑆𝑀 , when used as a

seed set for campaign𝑀 , achieves a reward 𝜔
𝑅
at 𝑣 in a propagation

process on 𝐺 w.r.t. 𝜇 (·). Then, 𝜚1 = 𝜚2.

Lemmas 4 and 5 extend Lemma 3 by establishing a connection be-

tween the probability of a node receiving a particular reward value

and RDR coverage weights. As remarked in § 2.1, in place of step

reward, we could use arbitrary non-increasing reward functions

and find corresponding bounding functions needed for SA using the

step functions corresponding to Riemann sums [16] traditionally

used in numerical integration (more details in [37]).

4 IMPORTANCE SAMPLING
In this section, we describe how importance sampling can be used

in our framework to reduce the sample complexity by analyzing

the variance of the random variables associated with our unbiased

estimator. Having established reward equivalence for both our up-

per and lower bounding functions, all of the analysis in this section

applies to both functions. Therefore, to simplify the exposition, we

describe the idea behind importance sampling and the resulting

reverse sampling framework for a single abstracted objective 𝜎 (·)
which could be instantiated as the upper or the lower bounding

function, 𝜇 (·) or 𝜇 (·), of the mitigation objective.

Unbiased Estimators. Unlike the IM problem, where all nodes

are candidates to be influenced, in the the MM problem, only those

nodes that are influenced by the misinformation are candidates

to contribute reward. Unlike targeted IM [24], these nodes are

not known a priori nor can they be precomputed. As such, the

uniform sampling approach leveraged by random RR sets for the

IM problem is not directly useful for our setting. In theory, we

can apply Rejection Sampling (RS) by selecting source nodes 𝑣 for

our random RDR sets uniformly at random from 𝐺 and define the

corresponding random RDR set as empty if 𝑣 ∉ 𝑅𝑋
𝐹
. However, RS

is best suited when the target probability is high and becomes less

practical as the events become rarer.

A more sophisticated approach that yields improved sample

efficiency for estimating rare events is Importance Sampling (IS). IS

has been successfully leveraged for the targeted IM problem [24]. IS

estimates the expected value of a function 𝑓 in a probability space 𝑃

via sampling from another proposal distribution 𝑄 , then re-weights

the samples by an importance factor for unbiased estimation. When

applying IS, ideally 𝑄 is chosen to support efficient sampling.

IS for RDR Sets. To apply IS in our setting we select the root for a

random RDR set uniformly at random from the set 𝑅𝑋
𝐹
. This ensures

that the corresponding RDR set is non-empty. In other words, let

𝑃 be the probability space of RDR sets generated when the root

node is selected uniformly at random from 𝐺 . Then, we define 𝑄

as a subspace of 𝑃 that corresponds to the space of only non-empty

samples of 𝑃 , i.e., those RDR sets for which the root 𝑣 ∈ 𝑅𝑋
𝐹
. It

remains to define an appropriate importance factor to ensure we

have an unbiased estimator for 𝜎 (𝑆𝑀 ). We let 𝐼𝑁 𝐹𝐹 denote the

expected number of activated non-seed nodes due to seed set 𝑆𝐹 in

the absence of anymitigating campaign. In other words, 𝐼𝑁 𝐹𝐹 is the

expected influence of campaign 𝐹 in the absence of any mitigating

campaign while ignoring the activation of seed nodes. Consider a

set 𝑆 and a random RDR set 𝑅𝑖 (𝑣) rooted at 𝑣 generated with IS as

defined above. Define the following random variable:

𝑌𝑖 (𝑆) =
{
𝑆 ∩ 𝑅𝑖 (𝑣) = 𝜔𝑅𝑖 (𝑣) if 𝑆 covers 𝑅𝑖 (𝑣)
0 otherwise

(4)

Then, we have the following lemma.

Lemma 6. Given a random RDR set 𝑅𝑖 (𝑣) generated with impor-
tance sampling rooted at 𝑣 , for any set 𝑆 ⊆ 𝑉 , we have, 𝜎 (𝑆) =

E[𝑌𝑖 (𝑆)] · 𝐼𝑁 𝐹𝐹 .

Lemma 6 states that we can estimate the expected reward of the

mitigation campaign using random RDR sets generated with IS. Let

R be a collection of 𝜃 random RDR sets generated with IS and let

WR (𝑆) be the total weight of RDR sets in R covered by a node set

𝑆 . Then, based on Lemmas 4, 5 and 6, we can prove:

Corollary 1. E
[WR (𝑆)

𝜃

]
· 𝐼𝑁 𝐹𝐹 = 𝜎 (𝑆)

Concentration Bounds. Next, we analyze the random variables

associated with random RDR sets generated using IS. In particu-

lar, we show they have smaller variances than random RDR sets

generated by RS and, as a consequence, fewer samples are required

by our reverse sampling framework. Define the random variable

𝑍𝑖 (𝑆) = 𝑌𝑖 (𝑆) ·𝐼𝑁𝐹𝐹
𝑛 . Notice that the means of 𝑌𝑖 (𝑆) and 𝑍𝑖 (𝑆) are

E[𝑌𝑖 (𝑆)] = 𝜎 (𝑆)
𝐼𝑁𝐹𝐹

and E[𝑍𝑖 (𝑆)] = E[𝑌𝑖 (𝑆)] · 𝐼𝑁𝐹𝐹
𝑛 =

𝜎 (𝑆)
𝑛 respec-

tively. If we construct a set of random variables 𝑍1 (𝑆), . . . , 𝑍𝜃 (𝑆),
observe that

𝑛
𝜃

∑𝜃
𝑖=1 𝑍𝑖 (𝑆) is an empirical estimate of 𝜎 (𝑆). An im-

portant challenge is that 𝐼𝑁 𝐹𝐹 is #P-hard to compute. We overcome

this challenge by computing an approximation of 𝐼𝑁 𝐹𝐹 , denoted

ˆ𝐼𝑁 𝐹𝐹 , and define the random variable 𝑍𝑖 (𝑆) = 𝑌𝑖 (𝑆) · ˆ𝐼𝑁𝐹𝐹
𝑛 where

E[𝑍𝑖 (𝑆)] = 𝜎 (𝑆)
𝑛

ˆ𝐼𝑁𝐹𝐹
𝐼𝑁𝐹𝐹

. Notice that estimating 𝐼𝑁 𝐹𝐹 is a standard
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influence estimation task, where the associated random variables

form a martingale [42]. Thus, we can leverage existing solutions

for the influence estimation problem [29] to efficiently compute an

(𝜖, 𝛿)-approximation of 𝐼𝑁 𝐹𝐹 . Suppose we have computed a value

for ˆ𝐼𝑁 𝐹 𝐹 with error 𝜖 ′ that holds with probability 1 − 𝛿 ′. In order

to ease the exposition, we introduce the following definition.

Definition 3. The misinformation sampling error ratio is de-

fined as Γ =
ˆ𝐼𝑁𝐹 𝐹

𝐼𝑁𝐹𝐹
where (1−𝜖 ′) ≤ Γ ≤ (1+𝜖 ′) holds with probability

at least 1 − 𝛿 ′.

The variance of 𝑍𝑖 (𝑆) satisfies the following inequality.

Proposition 2. Var[𝑍𝑖 (𝑆)] ≤ 2Γ 𝜎 (𝑆)
𝑛

ˆ𝐼𝑁𝐹 𝐹

𝑛 .

Now, we seek a form of Chernoff bounds for random variable

𝑍𝑖 (𝑆) so as to provide performance guarantees of our reverse sam-

pling framework. A key requirement is to account for the error

associated with the estimation of 𝐼𝑁 𝐹𝐹 . This challenge, unique to

our setting, does not arise in previous applications of IS to targeted

IM [24] since the target set of nodes is pre-defined. We make use of

martingale-based concentration bounds in the following.

Definition 4 (Martingale). A sequence of random variables
𝑌1, 𝑌2, 𝑌3, . . . is a martingale if and only if E[|𝑌𝑖 |] < +∞ and
E[𝑌𝑖 |𝑌1, 𝑌2, . . . , 𝑌𝑖−1] = 𝑌𝑖−1 for any 𝑖 .

It is straightforward to show that the random variables 𝑍𝑖 (𝑆)
form a martingale. Thus, the Chernoff bounds for martingales (see

[42], Lemma 2) let us derive the following concentration bounds for

the random variables 𝑍𝑖 (𝑆) associated with our RDR sets generated

with IS, by plugging in the variance derived above. Note, we assume

that ˆ𝐼𝑁 𝐹 𝐹 ≤ 𝑛
2
as a necessary boundary condition for the deriva-

tion of our concentration bounds. In our experiments, the condition

always held since an unrealistic number of misinformation seeds

would be required to influence over half the networks considered.

Lemma 7. Given a fixed collection of 𝜃 RDR sets R constructed

with importance sampling and seed set 𝑆 , let Λ(𝑆) = ˆ𝐼𝑁𝐹 𝐹

𝑛 WR (𝑆)
be the normalized weighted coverage of 𝑆 in R. For any 𝜆 > 0,

Pr

[
Λ(𝑆) − 𝜎 (𝑆) · Γ𝜃

𝑛
≥ 𝜆

]
≤ exp

(
−𝜆2

2

3
𝜆 + 4𝜎 (𝑆)Γ 𝜃

𝑛

ˆ𝐼𝑁𝐹 𝐹

𝑛

)
Pr

[
Λ(𝑆) − 𝜎 (𝑆) · Γ 𝜃

𝑛
≤ −𝜆

]
≤ exp

(
−𝜆2

4𝜎 (𝑆)Γ 𝜃
𝑛

ˆ𝐼𝑁𝐹 𝐹

𝑛

)
We will make use of the above concentration bounds to derive

the approximation guarantees of our sampling framework and to

establish appropriate parameter settings.

5 REVERSE SAMPLING FRAMEWORK
Recently, Tang et al. [41] introduced the OPIM approach to the on-

line version of the IM problem. Interestingly, an adaptation of OPIM
to the traditional IM problem yields state-of-the-art performance.

Unlike IMM [42], which uses the same collection R of RR sets for

constructing the solution seed set 𝑆∗ and deriving its approxima-

tion guarantees, OPIM generates a solution on one collection of

RR sets R1 and then derives its approximation guarantees using

R1 and an independent collection of RR sets R2. In particular, the

concentration bounds leveraged by OPIM require that 𝑆∗ be a fixed
seed set independent of the RR sets on which it is being evalu-

ated. Intuitively, we can think of R1 as a set of nominators that
nominate 𝑆∗ as the IM solution and R2 as the set of assessors that
determine whether 𝑆∗ is a good enough solution. Notice that, if 𝑆∗

is not independent of R2, then the evaluation of 𝑆∗ could be biased.

We make the following important observation motivating our

framework: the combination of nominators and assessors leveraged
by the OPIM algorithm does not depend on any particular properties
of the IC diffusion model, as long as it satisfies activation equivalence
(Lemma 3). Thus, in view of Lemmas 4 and 5, which are weighted

versions of Lemma 3 for our RDR sets in the TCIC model, we can

employ a nominator-assessor framework to derive approximation

guarantees for our upper and lower bounding mitigation functions.

Thus, our technique and results apply to any propagation models

satisfying reward equivalence.

MM Solution. Our framework for finding solutions to the upper

and lower bounding objectives to the MM problem, NAMM (Nomi-
nators and Assessors for Misinformation Mitigation) is presented in

Algorithm 1. During its execution, NAMM invokes the standard

greedy algorithm for weighted maximum coverage to obtain a size-

𝑘 seed set 𝑆∗. All of the analysis in this section applies to both of

the upper or lower bounding functions, 𝜇 (·) or 𝜇 (·), of the mitiga-

tion objective. Therefore, to simplify the exposition, we refer to a

single abstracted objective 𝜎 (·) in our algorithm description. The

Algorithm 1 NAMM

Input: 𝐺 , 𝜖 ≥ 0, 0 < 𝛿 < 1, 𝑘

Output: An (1 − 1/𝑒 − 𝜖)-optimal solution 𝑆∗

1: 𝛿 ′ ← 𝛿
9
, 𝜖 ′ ← 𝜖

2
, Δ← 𝛿 − 𝛿 ′

2: compute ˆ𝐼𝑁 𝐹 𝐹 ; an (𝜖 ′, 𝛿 ′)-approximation of 𝐼𝑁 𝐹𝐹
3: set 𝑁𝑚𝑎𝑥 according to (5)

4: 𝑁0 = 𝑁𝑚𝑎𝑥 · 𝜖2 𝐿𝐵𝑛 ;

5: generate two collections,R1 andR2, of random RDR sets where

|R1 | = |R2 | = 𝑁0;

6: 𝑖𝑚𝑎𝑥 = ⌈log
2
( 𝑁𝑚𝑎𝑥

𝑁0

)⌉;
7: for 𝑖 ← 1 to 𝑖𝑚𝑎𝑥 do
8: 𝑆∗ ← WeightedMaxCover(R1, 𝑘, 𝑛)
9: compute 𝜎𝑙 (𝑆∗) and 𝜎𝑢 (𝑆𝑜 ) by (6) and (7) respectively, set-

ting 𝛿1 = 𝛿2 = Δ/(3𝑖𝑚𝑎𝑥 )
10: 𝛼 ← 𝜎𝑙 (𝑆∗)/𝜎𝑢 (𝑆𝑜 )
11: if 𝛼 ≥ (1 − 1/𝑒 − 𝜖) or 𝑖 = 𝑖𝑚𝑎𝑥 then
12: return 𝑆∗

13: double the sizes of R1 and R2 with new random RDR sets

approximation guarantee of NAMM relies on two critical lemmas

that establish an upper bound on the mitigation of the optimal

solution 𝑆𝑜 (𝜎𝑢 (𝑆𝑜 )) and a lower bound on the mitigation of the

current solution (𝜎𝑙 (𝑆∗)). After establishing an upper bound, 𝑁𝑚𝑎𝑥 ,

on the number of RDR sets required in the worst-case, we show that

NAMM achieves a (1 − 1/𝑒 − 𝜖)-approximation by leveraging our

newly defined concentration bounds (Lemma 7). Importantly, the

error associated with estimating 𝐼𝑁 𝐹𝐹 must be carefully accounted

for in deriving upper and lower bounds to ensure the desired ap-

proximation guarantees.
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Deriving 𝑁𝑚𝑎𝑥 . Tang et al. [42] derived a threshold for the maxi-

mum number of RR sets required by their IMM algorithm to ensure

that a (1− 1/𝑒 −𝜖) approximation guarantee holds with probability

at least 1 − 𝛿 . We derive the corresponding threshold for the MM

problem. Notably, the derivation requires a careful accounting of

the error associated with estimating 𝐼𝑁 𝐹𝐹 .

Lemma 8. Let R be a collection of random RDR sets and 𝑆∗ be a
size-𝑘 seed set generated by applying the greedy algorithm on R. For
fixed 𝜖 , 𝜖 ′, and 𝛿 , if 𝛿 ′ ≤ 𝛿

9
and |R | ≥ 8𝑛 (3+𝜖′) (1−1/𝑒) [ln 9

4𝛿
+ln (𝑛𝑘) ]

3·𝑂𝑃𝑇 [𝜖 (1+𝜖′)−2𝜖′ (1−1/𝑒) ]2
then 𝑆∗ is a (1 − 1/𝑒 − 𝜖)-approximate solution to 𝑂𝑃𝑇 with at least
1 − 𝛿 probability.

Define Δ = 𝛿 − 𝛿 ′ and let 𝐿𝐵 ≤ 𝑂𝑃𝑇 be a lower bound of the

optimal mitigation. Based on Lemma 8, we define

𝑁𝑚𝑎𝑥 =
8𝑛(3 + 𝜖 ′) (1 − 1/𝑒) [ln 27

4Δ + ln
(𝑛
𝑘

)
]

3 · 𝐿𝐵 [𝜖 (1 + 𝜖 ′) − 2𝜖 ′(1 − 1/𝑒)]2
, (5)

which is an upper bound on the number of RDR sets needed to

guarantee a (1 − 1/𝑒 − 𝜖)-approximation w.p. ≥ 1 − Δ/3.
Deriving 𝐿𝐵. In OPIM, a crude lower bound of 𝑘 is used which en-

sures the number of iterations is bounded by 𝑂 (log𝑛). By contrast,

due to the objective of the MM problem, the same lower bound is

no longer valid. To tackle this, we adopt ideas from the classical

Maximum Influence Arborescence (MIA) [51] approach to the IM

problem to derive a lower bound on 𝑂𝑃𝑇 . The MIA framework

assumes that influence only travels via the paths of maximum in-

fluence in the network and leverages the resulting structures to

estimate influence spread. AMIA structure constructed from a seed

set 𝑆 computes an activation probability 𝑎𝑝 (𝑣) for each node 𝑣 in

the arborescence. Our idea is to use a MIA to lower bound the in-

fluence of 𝑆𝐹 . Notice that the 𝑎𝑝 (𝑣) value gives a direct means of

estimating the expected reward achieved at 𝑣 by selecting 𝑣 as a

seed for the mitigating campaign. In particular, we select the top-𝑘

nodes at depth 1 in a MIA constructed for 𝑆𝐹 , ranked by activation

probabilities. Thus, the expected mitigation of the selected nodes

𝑆𝐿𝐵 is at least 𝐿𝐵 ≥ 2 ·∑𝑣∈𝑆𝐿𝐵 𝑎𝑝 (𝑣). We replace 𝑂𝑃𝑇 in Equation

5 with 𝐿𝐵 and note that this setting ensures that the number of

iterations is still bounded by 𝑂 (log𝑛).
Deriving 𝜎𝑙 (𝑆∗). Let Λ2 (𝑆∗) =

ˆ𝐼𝑁𝐹 𝐹

𝑛 WR2 (𝑆∗) be the weighted
coverage of 𝑆∗ in R2 and 𝜃2 = |R2 |. We have the following result.

Lemma 9. For any 𝛿 ∈ (0, 1) where 𝑎 = ln(1/𝛿), we have

Pr

[
𝜎 (𝑆∗) ≥

((√
Λ2 (𝑆∗) +

25𝑎

36

−
√
𝑎

)
2

− 𝑎

36

)
𝑛

𝜃2 (1 + 𝜖 ′)

]
≥ 1 − 𝛿.

Based on Lemma 9 and a parameter 𝛿2 to be discussed shortly,

we set

𝜎𝑙 (𝑆∗) =
((√

Λ2 (𝑆∗) +
25 ln(1/𝛿2)

36

−
√
ln(1/𝛿2)

)
2

− ln(1/𝛿2)
36

)
𝑛

𝜃2 (1 + 𝜖 ′)
(6)

Deriving 𝜎𝑢 (𝑆𝑜 ).We establish an upper bound of 𝜎 (𝑆𝑜 ) from the

weighted coverage of 𝑆∗ inR1, denoted asΛ1 (𝑆∗) =
ˆ𝐼𝑁𝐹 𝐹

𝑛 WR1 (𝑆∗),

by leveraging the property of the greedy algorithm that ensures

Λ1 (𝑆∗) ≥ (1 − 1/𝑒)Λ1 (𝑆𝑜 ).

Lemma 10. Let 𝜃1 = |R1 |. For any 𝛿 ∈ (0, 1) where 𝑎 = ln(1/𝛿),
we have

Pr

[
𝜎 (𝑆𝑜 ) ≤

(√
Λ1 (𝑆∗)
1 − 1/𝑒 + 𝑎 +

√
𝑎

)
2

𝑛

𝜃1 (1 − 𝜖 ′)

]
≥ 1 − 𝛿.

Based on Lemma 10 and a parameter 𝛿1 to be discussed shortly,

we set

𝜎𝑢 (𝑆𝑜 ) =
(√

Λ1 (𝑆∗)
1 − 1/𝑒 + ln(1/𝛿1) +

√
ln(1/𝛿1)

)
2

𝑛

𝜃1 (1 − 𝜖 ′)
(7)

Putting It Together. The reason NAMM ensures a (1 − 1/𝑒 − 𝜖)-
approximation with probability at least 1 − 𝛿 is as follows. First,

the algorithm has at most 𝑖𝑚𝑎𝑥 iterations. In each of the first

𝑖𝑚𝑎𝑥 − 1 iterations, Algorithm 1 generates a size-𝑘 seed set 𝑆∗

and derives 𝜎𝑙 (𝑆∗) and 𝜎𝑢 (𝑆𝑜 ) from R2 and R1, respectively, set-
ting 𝛿1 = 𝛿2 = Δ/(3𝑖𝑚𝑎𝑥 ). Then, it computes 𝛼 ← 𝜎𝑙 (𝑆∗)/𝜎𝑢 (𝑆𝑜 )
as the approximation guarantee of 𝑆∗. By Lemmas 9 and 10, and

conditioning on the event (1 − 𝜖 ′) ≤ Γ ≤ (1 + 𝜖 ′), 𝛼 is correct

with at least 1 − 2Δ/(3𝑖𝑚𝑎𝑥 ) probability. By the union bound, it

has at most
2Δ
3

probability to output an incorrect solution in the

first 𝑖𝑚𝑎𝑥 − 1 iterations. Meanwhile, in the last iteration, it returns

a seed set 𝑆∗ generated by applying the greedy algorithm on R1,
with |R1 | ≥ 𝑁𝑚𝑎𝑥 . By Equation 5 and conditioning on the event

(1 − 𝜖 ′) ≤ Γ ≤ (1 + 𝜖 ′), this ensures that 𝑆∗ is an (1 − 1/𝑒 − 𝜖)-
approximation with at least 1 − Δ/3 probability. Therefore, the

probability that NAMM returns an incorrect solution is at most

2Δ
3
+ Δ/3 + 𝛿 ′ = 𝛿 leading to the following regarding Algorithm 1.

Theorem 2. Algorithm 1 returns a (1 − 1/𝑒 − 𝜖)-approximate
solution for 𝜇 as well as 𝜇 with at least 1 − 𝛿 probability.

Runtime. The computation overhead of NAMM consists of (i) the

generation of RDR sets, (ii) the execution of greedy, and (iii) the

computation of 𝜎𝑙 (𝑆∗) and 𝜎𝑢 (𝑆𝑜 ). Both (ii) and (iii) are linear in

the number of RDR sets, therefore the time complexity of NAMM
is𝑂 (∑𝑅∈R1∪R2 𝐸𝑃𝑇 ), where 𝐸𝑃𝑇 is the expected runtime required

to generate an RDR set. Next, we compare 𝐸𝑃𝑇 to the expected

runtime required to generate a traditional RR set used for the IM

problem allowing us to gauge the time complexity of the MM prob-

lem relative to the IM problem. Let 𝐼𝑁 𝐹1 be the largest expected

influence of any size-1 node set in 𝐺 under the IC model. We have

the following lemma.

Lemma 11. The expected runtime to generate a RDR set is given

by 𝐸𝑃𝑇 = 𝑂

(
𝐼𝑁 𝐹𝐹 + 𝑚

𝑛 ·
(
𝐼𝑁 𝐹1

)
2
)
.

In contrast, the expected runtime to generate an RR set is𝐸𝑃𝑇𝑅𝑅 =

𝑂 (𝑚𝑛 · 𝐼𝑁 𝐹1). Thus, in terms of 𝐸𝑃𝑇𝑅𝑅 , the expected runtime to

generate an RDR set is 𝑂 (𝐼𝑁 𝐹𝐹 + 𝐸𝑃𝑇𝑅𝑅 · 𝐼𝑁 𝐹1). The additional
factor of 𝐼𝑁 𝐹1 in the runtime expression is explained by observing

that RDR generation has to potentially perform tie-breaking (lin-

ear in 𝐼𝑁 𝐹1) on every node reverse-reachable from the root of the

RDR set. Meanwhile, the additional 𝐼𝑁 𝐹𝐹 term follows from the

necessary computation of the set of nodes influenced by 𝐹 .
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Table 2: Network Statistics.
Gnutella Flixster D-B D-M DBLP

# nodes 6.3K 7.6K 23.3K 34.9K 317K

# edges 20.8K 75.7K 141K 274K 2.1M

avg. deg 3.3 9.43 6.5 7.9 6.62

type dir undir dir dir undir

Sandwich Algorithm. Based on the above results, the SA algo-

rithm is given in Algorithm 2, which returns the seed set 𝑆∗ ∈
{𝑆𝐿, 𝑆𝑈 } that leads to the largest objective value w.r.t. the original

objective. The solution produced by SA has the following perfor-

mance guarantee due to [27].

Lemma 12 ([27]). 𝜇 (𝑆∗) ≥ 𝛽 · (1 − 1/𝑒) · 𝜇 (𝑆𝑜 ), where 𝛽 =

max

{ 𝜇 (𝑆𝑈 )
𝜇 (𝑆𝑈 ) ,

𝜇 (𝑆𝑜 )
𝜇 (𝑆𝑜 )

}
and 𝑆𝑜 is the optimal MM solution.

Algorithm 2 Sandwich Approximation(𝜇, 𝜇, 𝐺 , 𝑘)

1: 𝑆𝐿 ← 𝑁𝐴𝑀𝑀 (𝜇,𝐺, 𝑘)
2: 𝑆𝑈 ← 𝑁𝐴𝑀𝑀 (𝜇,𝐺, 𝑘)
3: return 𝑆∗ = argmax𝑆 ∈{𝑆𝐿,𝑆𝑈 } 𝜇 (𝑆)

Anytime Algorithm. Often, in MM applications, it is advanta-

geous to be able to know how close to the optimum the current

solution at any time is, so we can stop if desired. The OPIM algo-

rithm developed for IM is such an anytime algorithm. Unlike IM,

the non-submodular objective of MM complicates the development

of an anytime algorithm. We overcome this challenge as follows.

Lemmas 9 and 10 are the key ingredients required for an anytime

algorithm for the MM problem. We can modify Algorithm 1 to stop

at a user-specified timestamp and produce a seed set along with

its current approximation assurance. However, due to the non-

submodular behaviour of the mitigation objective, the anytime

algorithm has to generate RDR sets for both the upper and lower

bounding functions simultaneously in order to apply Algorithm

2 on the resulting anytime solutions. Formally, for each of the

submodular bounding functions, given the collections R1 and R2
of RDR sets that have been generated so far, our anytime algorithm

derives a size-𝑘 seed set 𝑆∗ and derives 𝜎𝑙 (𝑆∗) and 𝜎𝑢 (𝑆𝑜 ) from
R2 and R1, respectively, and returns 𝛼 ← 𝜎𝑙 (𝑆∗)/𝜎𝑢 (𝑆𝑜 ) as the
approximation guarantee of 𝑆∗. By Lemmas 9 and 10, 𝛼 is correct

with at least 1−𝛿1−𝛿2 probability. Therefore, setting 𝛿1 = 𝛿2 = 𝛿/2
suffices to ensure the failure probability does not exceed 𝛿 .

6 EXPERIMENTS
Setup. We perform experiments on 5 real networks. The seeds for

campaign 𝐹 are generated in two ways. First, we sample a small

number of nodes from the top-𝑘 most influential nodes in the net-

work to simulate the spread of fake news by a few popular users

in the network. Second, we sample a larger number of users at

random from the network to simulate the coordinated spread of

misinformation by several bots or newly created puppet accounts.

Figures for each network depict the results for influential fake seeds
(left) and random fake seeds (right). In our experiments, the mitiga-

tion achieved by the final solution of each algorithm is evaluated

by 20K Monte Carlo simulations. All experiments are performed on

a Linux machine with Intel Xeon 2.6 GHz CPU and 128 GB RAM.

Networks. Table 2 summarizes the networks and their character-

istics. Flixster is mined from a social movie site and a strongly

connected component is extracted. Gnutella is a peer-to-peer file

sharing network. Douban is a Chinese social network, where users

rate books, movies, music, etc. All movie and book ratings of the

users in the graph are crawled separately to derive two datasets

from book and movie ratings: Douban-Book and Douban-Movie.

Finally DBLP, a peer collaboration network, is a large network that

we use to test scalability.

Baselines. Since there is no previous algorithm explicitly address-

ing the model and reward function considered in this paper, we

compare the mitigation achieved by NAMM against the following

baselines. IMM [42] is a state-of-the-art solution for the IM problem.

The Influential baseline selects seeds in decreasing order of ex-

pected influence. The Proximity baseline selects seed nodes from

the out-neighbors of the fake seeds, where a preference is given

to those nodes connected by a high probability edge. Random is a

baseline method which selects the seeds randomly.

Default Parameters. Following previous works [27, 39, 41, 42, 44,
46, 47] we set edge probabilities for 𝑒 = (𝑢, 𝑣) to 1/𝑖𝑛𝑑𝑒𝑔(𝑣), where
𝑖𝑛𝑑𝑒𝑔(𝑣) is the in degree of node 𝑣 . Unless otherwise specified, we

use 𝜖 = 0.1 and 𝛿 = 1/𝑛 as our default for all methods.

Meeting Probabiltiies. In the same way as [8], where meeting

events were introduced, we samplemeeting delays from a geometric

distribution. We calibrate the meeting probabilities for campaign

𝑀 based on observations made in [49]. The authors investigate

the temporal characteristics of the propagation of true and false

news over all the fact-checked cascades that spread on Twitter

from 2006 to 2017 totalling over 126,000 cascades. The classification

into truth or falsehood was established by six independent fact-

checking organizations. The resulting cascades were compared on

depth (number of retweet hops from the source tweet), size (number

of users involved in the cascade), maximum breadth, and structural

virality. The authors observed that falsehood diffused significantly

farther, faster, deeper, and more broadly than the truth. In particular,

it was observed that truth rarely reached more than 1500 users and

it took the truth about six times as long as falsehood to reach 1500

people. Based on these observations, the meeting delay distribution

is parameterized by success probability 𝑚(𝑒) = 1/6 so that, on

average, the misinformation propagates 6× faster than the truth.

Activation Windows. The activation window lengths are gener-

ated by a two-step procedure. First, we simulate if a user reads the

linked content following observations in [13] on real-world click-

through behaviours. The authors present a large scale, unbiased

study of social clicks by gathering a month of web visits to online

resources mentioned in Twitter. Their dataset covers 2.8 million

shares and 9.6 million actual clicks. The authors estimate that a

majority (59%) of URLs mentioned on Twitter are not clicked at

all. Informed by these observations, we first flip a biased coin with

probability 0.6 and set the AW length to 0 if the flip succeeds.

Meanwhile, non-zero AW lengths are generated based on obser-

vations made in [28] on real-world reading times of social media

users. The authors utilize audience behaviour metrics provided by

the web analytics firm Parse.ly covering 117 million anonymized,
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complete cellphone interactions with 74,840 articles from 30 news

websites in the month of September 2015. Overall, short-form news

stories (< 1000 words) represent 76% of the articles while long-

form articles (≥ 1000 words) account for the remaining 24% of

articles. The authors observe that on short-form and long-form

articles users spend on average 57 seconds and 123 seconds reading,

respectively. Further, a more fine-grained breakdown of average

reading times reveals a distribution that closely resembles a geo-

metric distribution. Based on these observations, we generate a

sample distribution of reading times from a geometric distribution

parameterized by 𝑝 = 1/57 with probability 0.76 and 𝑝 = 1/123
with probability 0.24 reflecting the distribution of short-form and

long-form articles. Finally, we apply the bias-corrected maximum

likelihood estimator for geometric distributions [9] to learn a AW

length parameterization of 74 seconds.

Finally, AW lengths must be normalized to the length of a single

hop in our model, which corresponds to the base propagation rate

of misinformation measured in seconds. We learned a normaliza-

tion factor from a collection of retweet cascades of misinformation

crawled from Twitter during Oct. 10–Nov. 10, 2020. We extract the

distribution of retweet intervals from the cascades and clean the

distribution by removing the effect of bots that are programmed

to instantly retweet particular accounts, by removing intervals of

length less than 3 seconds. We observed that the resulting distri-

bution closely resembles a geometric distribution. As a result, we

apply the bias-corrected maximum likelihood estimator for geomet-

ric distributions [9] to learn a base propagation rate of 200 seconds

for campaign 𝐹 .

Mitigation Results. Across all datasets our NAMM algorithm sig-

nificantly outperforms the baselines in terms of mitigation achieved.

Among the baselines, IMM typically outperforms the rest and even

produces the best mitigation on Douban-Movie under random fake

seeds illustrating that, in some specific scenarios, a “blanket” ap-

proach that tries to spread the truth blindly to as much of the

network as possible may outperform a more targeted approach. Fig.

3, 4, & 5 also show lower bounds on the data-dependent approxi-

mation guarantee (Lemma 12) achieved by NAMM. Specifically, we

compute
𝜇 (𝑆𝑈 )
𝜇 (𝑆𝑈 ) which acts as a lower bound on the data-dependent

guarantee of NAMM. Across all datasets we observe that 𝛽 > 0.6

and that 𝛽 is typically better when the fake seeds are chosen at ran-

dom. In Fig. 6 we plot the reward breakdown achieved by NAMM
on Gnutella and Douban-Book where the blue (red) component

refers to the the fraction of nodes for which a reward of 2 (1) was

achieved. We observe a strong tendency for reward 2 nodes to dom-

inate the total reward breakdown. In particular, on Gnutella, over

99% of the reward is due to winning outright under both influential

and random fake seeds.

Running Time. Next, we investigate the running time achieved

when leveraging importance sampling (IS) compared to rejection

sampling (RS). We observe three interesting parameter domains

exhibiting different behaviours.

First, on the medium datasets (Fig. 7, middle two), we observe

that RS is typically faster than IS. To explain, consider the com-

peting mechanisms at play that contribute to running time. On

the one hand, RS typically requires more iterations of NAMM to

Table 3: Effect of varying meeting delays on Flixster.
FSTop FSRan

ML NAMM Inf Prox Ran NAMM Inf Prox Ran

6 (709.34) (461.70) (162.93) (35.72) (186.43) (101.63) (74.56) (8.75)

5 +7.81 +14.19 +2.56 -1.40 +2.12 +2.95 +0.22 -1.51

4 +17.17 +24.01 +2.68 -9.14 +4.31 +6.41 -0.03 +1.63

3 +14.11 +30.53 +2.44 +9.18 +2.5 +6.95 +0.24 -0.08

2 +39.62 +50.85 +6.47 +33.22 +8.67 +12.58 +0.40 -1.14

1 +76.38 +117.34 +13.39 -29.27 +17.63 +27.29 +0.54 +4.59

terminate due to the possibility of generating “empty” RDR sets

that do not contribute reward signal. On the other hand, IS incurs

additional runtime overhead as it is required to maintain and man-

age significantly more state than RS. Recall, under IS, the root of

the RDR set is selected from 𝑅𝑋
𝐹
. Thus, in order to faithfully rep-

resent the possible world, the traversal tree from this first phase

must be constructed and stored for every sample generated under

IS. Further, in order to ensure efficient edge liveness lookups in

the backward traversal, the edges traversed by 𝐹 must be sorted,

incurring additional overheard. Note, we also tested storing these

live edges in a hashmap, but observed an increase in runtime.

Interestingly, this trend is reversed in one parameter domain

and mixed in another. First, while NAMM terminates as soon as

a (1 − 1/𝑒 − 𝜖) approximation guarantee is achieved for each of

the upper and lower bounding functions, the algorithm can be

run beyond such a threshold. In the left plots of Fig. 7 we observe

that there is not a clear winner when the guarantee 𝛼 is increased

beyond (1 − 1/𝑒 − 𝜖). Second, on the large dataset (right of Fig.

7) we see that IS outperforms RS for larger seed set sizes. In this

regime, the cost of additional iterations of NAMM outweighs the

cost of additional state management.

Alternative Parameter Settings. We conduct experiments that

consider how the ability to mitigate the spread of fake news is

impacted by varying the reading probabilities, activation window

lengths and meeting delays. In particular, we are interested in de-

termining if mitigation can improve when users are more likely

to click through and read an article, spend more time reading and

considering the content and/or are exposed to true information

with a similar propagation rate as false information.

Table 3 shows the effects of reducing the meeting delay disadvan-

tage incurred by campaign𝑀 . In particular, we see that as the prop-

agation rate of truth and misinformation approach an equal footing,

there is a steady increase in the mitigation achieved by NAMM
and Inf. Furthermore, we observe that the marginal gain achieved

increases as the propagation rate of campaign𝑀 approaches that of

𝐹 . Meanwhile, we observe that the Random and Prox baselines do

not exhibit monotone behaviour when varying the meeting delay.

Table 4 shows the effects of elongating the AW length. We see a

similar trend where the mitigation gain of NAMM grows at an

increasing rate with longer AW lengths. Meanwhile, the baselines

all exhibit non-monotone behaviour with varying AW lengths and

lower total gains. Finally, we did not observe a noticeable change in

mitigation when varying the reading probability. To explain, notice

that even when the reading probability succeeds (i.e., AW length is

positive), the AW length sampled is unlikely to exceed a few hops in

the propagation model. As such, there is little effect on the overall

mitigation as the reading probability goes to 1.
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Figure 3: Mitigation on Gnutella (left) & Flixster (middle) with 10 (50) influential (random) fake seeds. Lower bound of 𝛽 for SA (right).
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Figure 4: Mitigation on D-B (left) & D-M (middle) with 50 (200) influential (random) fake seeds. Lower bound of 𝛽 for SA (right).
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Figure 5: Mitigation onDBLPwith 50 (200) influential (random) fake
seeds and lower bound of 𝛽 .
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Figure 6: Reward breakdown on Gnutella (left) & Douban-Book
(right) with influential & random fake seeds respectively.

Table 4: Effect of varying activation window length on Flixster.
FSTop FSRan

AW NAMM Inf Prox Ran NAMM Inf Prox Ran

30 (719.47) (374.44) (150.28) (25.52) (191.36) (74.87) (70.30) (3.71)

60 +10.51 +12.72 -0.76 -10.04 +0.12 -0.03 +0.45 +4.87

120 +24.41 -8.10 -0.51 +7.39 +4.47 +1.87 -0.23 -3.73

240 +48.56 +7.94 +2.23 +4.68 +8.6 +1.95 +0.53 +0.47

480 +73.59 +15.70 +0.24 -3.70 +17.07 +3.06 -0.71 +1.47

In Fig. 8 and 9 we show the mitigation achieved under two

alternative models: ego-centric meeting events and fixed edge prob-

abilities respectively. First, under ego-centric meeting events, we

consider𝑚(𝑢, 𝑣) = 𝑐/(𝑑𝑜𝑢𝑡 (𝑢) + 𝑐), since it is reasonable to deem

that the more friends 𝑢 has, the less probable that 𝑢 could meet a

certain individual in one time unit. Here 𝑐 is a smoothing constant

and we set it according to [8] which introduced meeting events in

a single campaign setting. We find that the mitigation behaviour

closely matches the results without ego-centric meeting events (Fig.

3) both in terms of outperforming the baselines and in absolute

reward values. Second, we consider fixing edge probabilities to

𝑝 = 0.1 and continue to observe superior performance by NAMM.

Robustness. In real deployment, wemay not have the exact ground

truth values of the parameters. How robust are our solutions in the

face of possibly imperfect temporal parameter settings? Also, how

Table 5: Jaccard similarity of seed sets for ground truth, 5/10% per-
turbed, and no temporal parameter values on Flixster.

FSTop FSRan

k P5 P10 CIC P5 P10 CIC

1 1.00 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 0.50 1.00 1.00 0.50

5 1.00 1.00 0.55 1.00 1.00 0.67

10 1.00 0.91 0.82 1.00 1.00 0.67

15 0.88 0.94 0.67 0.94 0.94 0.67

20 1.00 0.86 0.74 0.86 0.86 0.63

Table 6: Jaccard similarity of seed sets for ground truth, 5/10% per-
turbed, and no temporal parameter values on Douban-Book.

FSTop FSRan

k P5 P10 CIC P5 P10 CIC

1 1.00 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 1.00 0.50

5 1.00 1.00 1.00 0.84 0.84 0.67

10 0.91 0.91 0.67 1.00 1.00 0.67

15 1.00 1.00 0.94 1.00 1.00 0.67

20 0.90 0.90 0.74 0.95 0.90 0.78

do our solutions compare with models such as CIC which have

no temporal parameters? In Tables 5 and 6 we show the Jaccard

similarity between seed sets selected under a fixed ground truth,

corresponding to the default parameter settings of TCIC, and those

selected when the temporal parameters are perturbed and/or ig-

nored. Specifically, we generate solutions after perturbing each of

the meeting delay, activation window length, reading probability,

and base propagation rate parameters with 5 & 10% Gaussian noise

(P5 and P10). Additionally, we consider solutions generated with

all temporal parameters “turned off’, i.e., all meetings delays set

to 1 and activation window lengths of 0, which reduces TCIC to

CIC. We observe that perturbed solutions retain high similarity

with the ground truth seed sets across both influential and random

fake seeds. Furthermore, the similarity is always greater compared

to seed sets generated under CIC, highlighting the importance of

capturing the differential propagation rates of truth andmisinforma-

tion. Finally, the relative drop in mitigation for solutions generated

under CIC is up to 20% and 4.62% on Flixster and Douban-Book

respectively.

7 RELATEDWORK
Influence Maximization. The IM problem was formulated as

a discrete optimization problem by Kempe et al. [19] where the
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Figure 7: Running time (left) under varying 𝛼 ’s on Flixster, (middle) on D-M and (right) DBLP with 50 (200) influential (random) fake seeds.
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Figure 8: Mitigation under ego-centric meeting delays on Gnutella
(left) & Flixster (right).
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Figure 9: Mitigation under fixed propagation probabilities on
Gnutella (left) & Flixster (right).

independent cascade (IC) and linear threshold (LT) models were

introduced. Since then, various aspects of IM, and its variants, have

been extensively studied (see [7, 23] for surveys). State-of-the-art

IM solutions [15, 30, 41–43] rely on reverse sampling for their

efficiency. Our edge-level time-delayed propagation is similar to

the diffusion dynamics captured by the IC-M model of [8] set in

a single campaign propagation setting to model the log-in and

log-out behaviour of users. The concept of a time-sensitive reward

function was considered in [21, 26] to better model time-sensitive

information such as product sales. IM under competition is studied

in [3, 25, 27] among others. Finally, models that distinguish between

awareness and adoption have been considered in [2, 27].

Misinformation Mitigation. The MM problem was first studied

under an independent cascade model by Budak et al. [6] and under

a linear threshold model in [11, 14]. In both settings, the objective is

shown to be monotone and submodular, thus the greedy algorithm

provides a (1 − 1/𝑒)-approximation. Subsequently, there have been

a number of works that either study variants of the classical MM

problem or improve the running time of the greedy approach. The

related problem of determining the budget required to reach a

threshold mitigation level is investigated in [11, 33, 34].

Each of [36, 39, 40, 44, 46, 47] considers MM variants under mod-

els that ignore the temporal nature of misinformation propagation.

Roughly speaking, they parallel the improvements made in reverse

sampling frameworks developed for the IM problem. Most relevant,

[40] uses a competitive IC model augmented with meeting events

that are shared by both campaigns. Thus, the observed difference

in propagation rates between fake and true information is not cap-

tured. Notably, none of the above studies incorporates activation

windows or a reward function that is time-critical.

Finally, related versions of the MM problem have been investi-

gated by other communities including crowd-sourced mitigation

[22, 48], epidemiology [20, 35, 38, 50, 52, 53], and ML [12, 45]. In

particular, the epidemiology community focuses on preemptive
strategies, without propagation for the mitigating side, that limit

the susceptibility of a network, and consider propagation models

without the temporal notions we study. The ML approaches aim to

learn mitigation strategies trained on a fixed input graph which lim-

its their transferability to new graph instances. Recently, Juul et al.

[17] repeat the comparison of the spread of fake and true news con-

ducted by [49] on two subsampled datasets with exactly the same

size distribution. Interestingly, they find that under these conditions,
the propagation characteristics become indistinguishable, which

has important consequences for misinformation detection. We note

that our work focuses on the general case where the propagation

differences observed by Vosoughi et al. [49] do hold. In particular,

the authors of [17] confirm that false and true information prop-

agate at different rates when the naturally occurring cascade size

distributions remain unaltered.

8 CONCLUSION AND FUTUREWORK
In this paper, we address a major shortcoming of existing MM prop-

agation models by introducing the TCIC model, which captures

important temporal aspects of fake news diffusion and formulate a

time-sensitive variant of the MM problem. We prove our mitigation

objective is non-submodular and develop submodular upper and

lower bounding functions to sandwich the objective and provide

data-dependent approximation guarantees. Finally, we propose a re-

verse sampling framework that provides (1− 1/𝑒 − 𝜖)-approximate

solutions to our bounding functions and present an anytime version

of our approach. Using experiments over five datasets, we demon-

strate that our NAMM algorithm outperforms various baselines

including those that are oblivious to time-critical aspects.

The techniques developed here are applicable to other problem

settings. In the filter bubble problem, multiple conflicting opinions

propagate in a social network and the goal is to ensure balanced

exposure. As the set of users adopting any particular opinion is sto-

chastic, our NAMM algorithm can be applied to help obtain a more

balanced exposure. Further, revisit the “classic” competitive IM prob-

lem, where realistically the diffusion rates of companies/brands may

differ owing to differences in reputation and marketing strategies.

In this case, NAMM can be applied for the competitive IM problem

from a follower perspective. Notice that previous techniques for

competitive IM do not apply to this setting.

For simplicity of exposition, we considered a fixed set of fake

seeds. However, our proposed solution retains its guarantees even

when the fake seeds are not known exactly but are chosen from a

distribution. It is interesting to study the scenario where the fake

seed set is dynamically evolving. This is closely tied with adaptive

influence maximization, and we leave it for future work.
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