
PLIN: A Persistent Learned Index for Non-Volatile Memory with
High Performance and Instant Recovery

Zhou Zhang
University of Science of Technology

of China
zzwolf@mail.ustc.edu.cn

Zhaole Chu
University of Science of Technology

of China
czle@mail.ustc.edu.cn

Peiquan Jin*
University of Science of Technology

of China
jpq@ustc.edu.cn

Yongping Luo
University of Science of Technology

of China
yoluo@mail.ustc.edu.cn

Xike Xie
University of Science of Technology

of China
xkxie@ustc.edu.cn

Shouhong Wan
University of Science of Technology

of China
wansh@ustc.edu.cn

Yun Luo
Tencent

cloudluo@tencent.com

Xufei Wu
Tencent

feiwu@tencent.com

Peng Zou
Tencent

lynzou@tencent.com

Chunyang Zheng
Intel Corporation

james.zheng@intel.com

Guoan Wu
Intel Corporation

dennis.wu@intel.com

Andy Rudoff
Intel Corporation

andy.rudoff@intel.com

ABSTRACT
Non-Volatile Memory (NVM) has emerged as an alternative to next-
generation main memories. Although many tree indices have been
proposed for NVM, they generally use B+-tree-like structures. To
further improve the performance of NVM-aware indices, we con-
sider integrating learned indexes into NVM. The challenges of such
an integration are two fold: (1) existing NVM indices rely on small
nodes to accelerate insertions with crash consistency, but learned
indices use huge nodes to obtain a flat structure. (2) the node struc-
ture of learned indices is not NVM friendly, meaning that accessing
a learned node will cause multiple NVM block misses. Thus, in this
paper, we propose a new persistent learned index called PLIN. The
novelty of PLIN lies in four aspects: an NVM-aware data placement
strategy, locally unordered and globally ordered leaf nodes, a model
copy mechanism, and a hierarchical insertion strategy. In addition,
PLIN is proposed for the NVM-only architecture, which can support
instant recovery. We also present optimistic concurrency control
and fine-grained locking mechanisms to make PLIN scalable to
concurrent requests. We conduct experiments on real persistent
memory with various workloads and compare PLIN with APEX,
PACtree, ROART, TLBtree, and Fast&Fair. The results show that
PLIN achieves 2.08x higher insertion performance and 4.42x higher
query performance than its competitors on average. Meanwhile,
PLIN only needs ∼30 𝜇s to recover from a system crash.

PVLDB Reference Format:
Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie, Shouhong
Wan, Yun Luo, Xufei Wu, Peng Zou, Chunyang Zheng, Guoan Wu, Andy
Rudoff. PLIN: A Persistent Learned Index for Non-Volatile Memory
with High Performance and Instant Recovery. PVLDB, 16(2): 243 - 255,
2022.
doi:10.14778/3565816.3565826

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/tawnysky/PLIN.

1 INTRODUCTION
1.1 Background
The advance in main memory databases and near-memory big
data processing calls for new memory technologies. Recently,
Non-Volatile Memory (NVM), such as Phase Change Memory
(PCM) [19], STT-MRAM [29], ReRAM [46], and Optane Persistent
Memory [9, 13, 40], has offered an alternative to the next-generation
main memories. Accordingly, many studies have proposed to re-
visit the key modules in database engines to make them NVM-
aware, including indexing [7, 15, 24–26, 28], join processing [30, 37],
and buffer management [43, 44].

Regarding NVM-aware indices, most of existing studies proposed
to improve the conventional B+-tree to make it NVM friendly. One
approach is to adopt an unordered node design in the B+-tree [5]
and use data structures such as bitmap, slot array [6], or finger-
print [33] in nodes to mark the validity of slots and the order of
keys. With this strategy, a newly inserted key to the B+-tree can
be written to any free slot without moving other data in the node,
thus reducing the number of CLWB and SFENCE instructions. An-
other approach is to keep the data ordered and move the data in
nodes one by one when inserting a key. It does not need CLWB and
SFENCE instructions when moving data in the same cacheline [14].
So far, most existing NVM-aware indices use small nodes, e.g., 256
bytes, because the current commercial NVM product, Intel Optane

this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565826

243

https://doi.org/10.14778/3565816.3565826
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/tawnysky/PLIN
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565826
https://www.acm.org/publications/policies/artifact-review-and-badging-current


DC persistent memory, accesses data at a block granularity of 256
bytes [24, 40]. Thus, the height of a tree index will become high
when facing large datasets, which will worsen the read and write
performance. For example, the height of the B+-tree with the 256-
byte node size will be over 8 when 100 million keys are loaded.
Since the current read latency of NVM is still higher than that of
DRAM [9, 40], a high tree height will lead to a long traversal path
and extra NVM accesses.

Recently, an emerging index structure, learned index [18],
promises better read/write performance and space efficiency than
conventional tree indices. A learned index can sense the distribution
pattern of data and locate the storage position of a key by model
inference inside nodes. The node size of a learned index is much
larger than that of B+-tree, and each node can store thousands
to hundreds of thousands of keys [42]. Therefore, the shape of a
learned index is much flat, which usually has only two or three
layers. Although the nodes of a learned index are large, they can
quickly narrow down the search to tens of slots by model infer-
ence. Because of high space efficiency and search performance, the
learned index has been one of the hottest research fields in the
database community in recent years [10–12, 31, 38, 42].

1.2 Motivation
Therefore, an intuitive idea is to employ the learned-index approach
to further improve the performance of NVM-aware indices. How-
ever, current NVM-aware indices do not consider machine learning.
In addition, the existing crash-consistency schemes for NVM-aware
indices are efficient only for small nodes but have high write costs
for huge nodes that are common in a learned index. On the other
hand, existing learned indices are not NVM friendly. Currently,
learned indices mainly run on DRAM, but porting a learned index
to NVM will degrade write performance. For example, as reported
by previous work [4], simply implementing the state-of-the-art
learned index ALEX [10] on NVMwill lower the write performance
by more than 80%. This is mainly because the node structure of ex-
isting learned indices is not NVM friendly. For instance, accessing a
node of a learned index requires first fetching the model parameters
in the node header, which needs an extra NVM block access; next,
a local search is performed based on the predicted position, which
will also cause multiple NVM block accesses. Therefore, current
learned indices usually have low efficiency on NVM.

To the best of our knowledge, there is only one recent work called
APEX [25] that has noticed the necessity of re-visiting learned
indices for NVM. APEX is toward the hybrid memory architecture
composed of NVM and DRAM. It uses several DRAM structures to
maintain metadata information of the index. We noted that such
a design would have high latency of crash recovery because all
DRAM structures are required to be re-built during a crash. We
implemented APEX and measured its recovery time, and the results
are shown in Fig. 1. We can see that APEX needs about 1,700 ms
for resuming throughput from a system crash in the single-thread
environment. While evaluated in the multi-thread environment,
APEX also costs about 160 ms for recovery.

Therefore, to offer instant recovery for learned indices on NVM,
we turn to the NVM-only memory structure. Although current
NVM products show a bit worse read/write performance than

Figure 1: The recovery performance of APEX.

DRAM, it is reported that the next-generation NVM will deliver a
high bandwidth comparable to DRAM, e.g., Intel has announced that
its Optane 300 series has a 3-4 GB/s random I/O bandwidth and a 6-8
GB/s sequential I/O bandwidth. On the other hand, how to use NVM
in memory hierarchy is still an open issue. While some indices were
toward the DRAM+NVM-based hybrid architecture [7, 24, 33, 45],
others focused on the NVM-only architecture [1, 6, 14, 15, 26, 28].
So far, both research directions are worth studying, and there is no
evidence that one will dominate the future memory architecture.
Notably, our study is the first one addressing the learned indices
on the NVM-only architecture.

1.3 Our Contributions
In this paper, we propose a persistent learned index called PLIN
(Persistent Learned INdex), which is toward the NVM-only archi-
tecture. PLIN aims to reduce the crash consistency cost of write
operations and improve the efficiency of NVM block usage while
maintaining the advantages of learned indices. It is also designed to
offer instant recovery support for a system crash. Specifically, PLIN
adopts several new designs, including NVM-aware data placement,
locally unordered and globally ordered leaf nodes, model copy, and
hierarchical insertion. It also uses optimistic concurrency control
and fine-grained locking to support concurrent operations. Briefly,
we make the following contributions in this paper.
• We devise a novel learned index structure for PLIN to make it

NVM friendly. First, PLIN uses an NVM-aware data placement
strategy in the nodes to ensure that only one NVM block is
accessed for each request. Second, PLIN adopts the locally un-
ordered and globally ordered policy to organize leaf nodes. Thus,
it can avoid additional data movements caused by insertions
while maintaining the high search performance of learned in-
dices. Third, PLIN maintains the model parameters of a node in
the parent node to avoid extra NVM block accesses. (Section 3)

• We detail the algorithms of the operations on PLIN, including
query, upsert, delete, bulk load, and recovery. We demonstrate
that the algorithms can reduce the number of NVM block ac-
cesses and ensure instant recovery. Particularly, we propose a
hierarchical insertion strategy for PLIN, including deterministic
insertion for leaf nodes, opportunistic insertion for bottom inner
nodes, and no insertion for other inner nodes. The opportunistic
insertion strategy is implemented with the bulk rebuilding of
inner nodes, which can avoid costly data movement. (Section 4)

244



• We implement concurrency control to ensure the scalability of
PLIN. To be more specific, we adopt an optimistic concurrency-
control scheme to achieve reader-writer coordination and a fine-
grained locking technique to achieve writer-writer coordination.
We also use amulti-level lockingmechanism to support leaf-node
splitting and inner-node rebuilding. (Section 5)

• We conduct experiments on a server with real Intel Optane DC
persistentmemory and compare PLINwith state-of-the-art NVM-
oriented indices, includingAPEX [25], PACtree [15], ROART [28],
TLBtree [26, 27], and Fast&Fair [14], on various workloads. The
experimental results show that PLIN has higher read and write
performance than its competitors. Particularly, the read andwrite
performance of PLIN is 4.49 times and 2.40 times higher than
compared indices on average. Meanwhile, PLIN only needs ∼30
𝜇s to recover from a system crash. (Section 6)

2 RELATEDWORK
2.1 NVM-Oriented Tree Indices
The Intel Optane DC persistent memory is the first commercial
NVM. It has the following important characteristics that influence
the design of indices on it. First, since NVM exchanges data directly
with the CPU cache, crash consistency for data needs to be recon-
sidered [36]. Second, the Intel Optane DC persistent memory is
accessed at a block granularity of 256 bytes [24, 40]. Third, it has a
higher read latency and a lower bandwidth than DRAM [40].

To ensure crash consistency, a commonly used solution is to
use a CLWB instruction to write CPU cachelines back to the NVM
after each write instruction and then to use an SFENCE instruction
to isolate subsequent write instructions [20, 36]. However, the in-
sert operations in the B+-tree will cause data movements, which
require multiple NVM write instructions invoking many CLWB and
SFENCE instructions, which becomes the main cost of the crash con-
sistency in B+-tree-like indices. Recent work has proposed a variety
of approaches to reduce this cost, such as selective persistence [41],
unordered leaf nodes [5], slot arrays [6], fingerprints [33], toler-
ating transient inconsistent states [14], batch updating [45], and
speculative data movements [24].

For example, accessing an unordered node requires scanning the
entire node, while tolerating transient inconsistent states requires
moving data one by one within the node when handling insert
operations, both of which are positively related in cost to the node
size. Recent studies have shown that setting the node size of the
B+-tree to 256 bytes, which is the access granularity of the Intel
Optane DC persistent memory, is a good choice [24, 27]. Therefore,
existing NVM-oriented B+-trees usually have a high tree height
and a long traversal path.

So far, NVM-oriented indices can be classified into two types.
The first type is for the NVM+DRAM hybrid memory architec-
ture [7, 24, 33, 45], while the second type is for the NVM-only
architecture. The indices for hybrid memory place the inner nodes
in DRAM and the leaf nodes in NVM. However, since the inner
nodes are not persistent, they need to rebuild the inner nodes dur-
ing recovery. On the other hand, the indices for the NVM-only
architecture place the entire index in NVM [1, 3, 14–16, 26, 28],
which can offer instant recovery. At present, both directions are
worth investigating, depending on the advance of the future NVM.

2.2 Learned Indices
The idea of the learned index is to use machine learning models
instead of traditional index structures. The first learned index is RMI
(Recursive Model Index) [18], which is a hierarchical model structure
consisting of multiple models [34]. Each model in the RMI takes a
key as input and returns a position. The output of the upper layer
model is used to select the model of the next layer, and the output
of the last layer model is used as the output of RMI. Compared
with traditional indices, learned indices have lower space costs and
higher query performance [31].

However, RMI has some drawbacks. First, RMI uses a simple
uniform data partition strategy that cannot sense the data distribu-
tion during the learning phase. In the worst case, the data range
cannot be fitted well by the given model, which will lead to a large
maximum error of the model and increase the local search cost.
Some recently learned indices use a bottom-up data segmentation
strategy [11, 12, 17, 42]. This strategy performs a segmented fitting
algorithm, which can complete data partitioning and model fitting
by scanning the dataset in only one trip in a sequential manner. For
example, PGM-index [11] uses a piecewise linear approximation
algorithm called OptimalPLR [39], which guarantees the maximum
error of each model is less than a user-specified threshold. In addi-
tion, unlike RMI which only stores keys in leaf nodes, most existing
learned indices also store keys in inner nodes to ensure that the pre-
dictions of the upper layer models are immediately corrected and
to avoid errors being amplified at the bottom layer [10, 12, 38, 42].
The learned index discussed in this paper also stores keys at each
layer. Second, RMI does not support insertions because: (1) model
retraining is costly; (2) insertions lead to model failure; and (3) the
nodes in a learned index have a large amount of data, and insertions
can lead to expensive data movement costs.

To solve problem (1), a common solution is to use simple models
such as linear regression. To solve problem (2) and problem (3),
existing solutions are mainly divided into out-of-place and in-place
insertions. The out-of-place insertion is to write the new keys into a
buffer and perform a bulk merge when the buffer is full [12, 35]. The
performance of the buffer strategy is affected by the buffer size [42].
Another out-of-place insertion strategy is to use multi-level global
buffers [11], which is similar to LSM-tree [32]. This strategy has
good write performance but poor read performance because multi-
ple buffers must be traversed for each query. The in-place insertion
is to reduce the cost of data movement by redesigning the node
structure. For example, ALEX [10] uses gapped arrays [2] to reduce
the data movements during insertions.

2.3 NVM-oriented Learned Indices
Most of the existing learned indices were proposed for working on
DRAM. It is promising to design an NVM-oriented learned index.
On the one hand, the learned indices have flat structures, which can
solve the problem of the high tree heights of existing NVM-oriented
indices. On the other hand, NVM can make the learned indices
persistent. However, designing an NVM-oriented learned index
requires solving the crash consistency problem and reducing the
high cost of NVM write instructions. In particular, the node size of
a learned index is much larger than the NVM block granularity, and
the data movement cost on NVM is higher than that of DRAM [4].

245



Figure 2: The overall index structure of PLIN.

The existing crash consistency solutions for B+-trees, such as the
unordered nodes of wB+-tree [6] and the transient-inconsistency
tolerance of Fast&Fair [14], are based on the assumption of small
nodes, which cannot be directly applied to learned indices.

To the best of our knowledge, APEX [25] is the only NVM-
oriented learned index. It places ALEX [10] on NVM and uses a
probe-and-stash mechanism to reduce the cost of insert operations.
It introduces accelerators that reside in DRAM for storing metadata,
locks, bitmaps, and fingerprints. However, as APEX uses several
DRAM structures to maintain metadata information of the index,
it will lead to high latency of crash recovery because all DRAM
structures are required to be re-built. Unlike APEX, in this paper,
we present the first learned index for the NVM-only architecture,
which can offer instant recovery and reduce DRAM usage.

3 INDEX STRUCTURE OF PLIN
3.1 Overall Structure
PLIN is a learned index designed for NVM-only architecture. All
components of PLIN are preserved in NVM. The index structure of
PLIN is shown in Fig. 2. The leaf and inner nodes are learned nodes,
i.e., a machine learning model is used to accelerate the node search.
PLIN uses a bottom-up recursive approach to build the index, so
it is a balanced tree. PLIN fits the dataset using the OptimalPLR
algorithm [39], and each node holds a linear regression model. All
models are monotonically increasing and are guaranteed to train
with a maximum error less than a user-given threshold 𝜖 . Each
model includes two parameters 𝑠𝑙𝑜𝑝𝑒 and 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 . for a given
𝑘𝑒𝑦, PLIN uses (1) to predict the position of the key.

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑘𝑒𝑦) = 𝑠𝑙𝑜𝑝𝑒 × 𝑘𝑒𝑦 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (1)

In addition to the learned nodes, PLIN contains other data struc-
tures, including the root node, the left/right buffers, and the over-
flow trees. Among them, the root node and the left/right buffers
are unique. The size of the root node is 256 bytes, which includes
index metadata and a set of node pointers. The index metadata
includes the minimum and maximum keys of the piecewise linear
model and a pointer to the left/right buffers. PLIN decides whether

to go to the learned nodes or the left/right buffers to lookup based
on which range the key falls in. The left/right buffers are used to
support the insertion of keys outside the coverage of the piecewise
linear model. PLIN uses a well-known NVM-oriented B+-tree called
Fast&Fair [14] as the left/right buffers and the overflow trees. Any
other NVM-oriented data structure can be used as an alternative.
The structure of the leaf and inner nodes will be described below.

3.2 Key Designs
To improve the read and write performance, PLIN is designed to
reduce the number of NVM blocks to be accessed for index oper-
ations and the number of CLWB and SFENCE instructions required
for insert operations. The novel designs of PLIN are as follows.

NVM-aware data placement. A search on a conventional
learned index might read many slots around the predicted slot
because the predicted position may not be exact as expected. Thus,
a search operation will read multiple NVM blocks. To solve this
problem, we propose an NVM-aware data placement strategy, en-
suring most searches only need to read one NVM block. The core
idea of the NVM-aware data placement is to adjust the data slot
when building nodes. (1) Why is the adjustment allowed? This is
because PLIN always remains some empty slots in a node. (2) How
to adjust the data slot when placing data? We first place the data
in the position obtained from the model calculation. If the position
has been used, we place the data in another slot within an NVM
block size (256 bytes). (3) How to deal with conflicts? We divide the
node space into NVM blocks and allow data to be offset within the
blocks. If the NVM block is full, an overflow tree will be used. (4)
What are the benefits of NVM-aware data placement? We decouple
the local search range from the maximum error of the model. Thus,
a local search need not access multiple NVM blocks.

Locally unordered, globally ordered leaf nodes. Inserting a
key using an in-place insertion strategy may cause the movement of
other keys, resulting in multiple write instructions. To ensure crash
consistency, these write instructions need to be isolated using the
SFENCE instructions and guaranteed to be persisted to NVM using
the CLWB instructions, which results in very costly data movement.
Unordered nodes are usually used to avoid data movement, but
each lookup requires scanning the entire node, so they are not suit-
able for the large nodes of a learned index. Therefore, we propose
locally unordered and globally ordered leaf nodes, which can re-
duce extra data movements and maintain high lookup performance
simultaneously. Specifically, PLIN uses an unordered design within
each block and keeps the order between blocks. As each model
is monotonically increasing, the NVM-aware data placement en-
sures the order between blocks. With this approach, each insertion
only needs to find an empty slot in the block to execute the write
instruction, which does not cause the movement of other keys.

Storing a model copy in the parent node. In a learned index,
when accessing a node, the model parameters need to be fetched
from the node header first. PLIN uses a piecewise linear approxi-
mation to fit the dataset, with each node corresponding to a linear
regression model. The parameter size of a linear regression model is
only a dozen bytes. However, an additional NVM block needs to be
accessed to obtain the model parameters, resulting in inefficient use
of the NVM block. To solve this problem, PLIN generates a copy of

246



Figure 3: The structure of leaf nodes.

the parameters needed to perform the prediction, packed with the
key and pointer of the node in the parent node. This approach can
skip accessing the node header when accessing the node, improving
the efficiency of the NVM block usage.

Hierarchical insertion. The unordered node design is not suit-
able for inner nodes. This is because most operations in inner nodes
are lookup operations based on a lower bound, which can only be
performed in ordered arrays. Thus, the keys in an inner node of
PLIN are ordered. In the worst case, performing an insertion may
cause all the keys in the node to move position, which is very bad
for large nodes. PLIN uses a hierarchical insertion strategy to avoid
this case. In leaf nodes, PLIN guarantees to perform insertion every
time. Insertion may lead to splitting of a leaf node, which results
in insertions in an inner node. PLIN adopts an opportunistic in-
sertion strategy in inner nodes. Specifically, insertion is executed
only when an empty slot exists in the target block of the key to
be inserted. If an empty slot does not exist in the target block, this
insertion is stopped. The leaf node that is not inserted into the
parent node is called an orphan node. PLIN uses a bidirectional
pointer to connect all the leaf nodes to ensure that the keys in the
orphan nodes can also be found. When the number of orphan nodes
is large, PLIN rebuilds all inner nodes.

3.3 Structure of Leaf Nodes
The structure of leaf nodes in PLIN is shown in Fig. 3. Since the
access granularity of Intel Optane DC persistent memory is 256
bytes [40], we align the node space by 256 bytes and divide it into
blocks of 256 bytes size. The first block is used as the node header to
store node metadata, including locks, model parameters, number of
blocks, number of overflow keys, and the sibling pointers to the left
and right sibling nodes. The later blocks are used to store data. Each
block contains 15 leaf slots, and each leaf slot has a size of 16 bytes
and consists of an 8-byte key and an 8-byte payload. A payload can
either store a value whose size is not over eight bytes or a pointer
to a value larger than eight bytes. The first 16 bytes of each block
are used as the block header. Among these, eight bytes are used to
store a lock, a block version, and a global version, and the other
eight bytes store a pointer to the overflow tree. The overflow tree
is constructed only when necessary, and a null pointer is stored if
the overflow tree does not exist.

The leaf nodes of PLIN use the in-place insertion strategy and
the NVM-aware data placement strategy. When building a leaf
node, we allocate twice as much space (same as B+-tree) to support
insertions and extend the mapping of the model to the scaled node
space. Then, we use the model to predict the position of each key
and place the key and the corresponding payload into any free leaf

Figure 4: The structure of inner nodes.

slot in the block predicted by themodel. If the block is full, the data is
inserted into the overflow tree. The leaf nodes are partially ordered,
i.e., keys within a block are unordered, but all blocks are ordered.
The idea of making keys unordered in a block can avoid additional
data movements during insertions which generate additional write
instructions. However, as the models are monotonically increasing,
it is natural to keep order between blocks. In a leaf node, we do
not use a bitmap to mark whether the leaf slot is occupied or not.
Instead, since the model coverage is limited, we use a key outside
the model coverage as a free flag to fill the free slots in a node.
Specifically, PLIN uses the largest possible value of the key’s type
(e.g., 65535 for uint16_t) as the free flag and stores the keys with the
largest possible value in the right buffer to avoid collisions. Thus,
the free flag is consistent across nodes and needs not to be updated
when rebuilding a node. The delete flag is implemented similarly.

3.4 Structure of Inner Nodes
We also make the space of an inner node 256-byte aligned and
divide it into 256-byte blocks. The first block stores metadata and
the others store data. Each block contains eight 32-byte inner slots.

As shown in Fig. 4, an inner slot contains an eight-byte key and
a pointer to a child node. An inner slot also contains a copy of the
parameters of the child node, including the model parameters 𝑠𝑙𝑜𝑝𝑒
and 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and the number of blocks in the child node. Using
these three parameters, we can predict the position of the key in the
child node before accessing the child node without having to access
the header of the child node. When performing the prediction, the
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 does not need too much precision since it needs to be
rounded at the end, and we allocate four bytes for it. We allocate
four bytes for the number of blocks, which can support nodes with
up to 64 billion slots and cope with almost all cases. An inner slot
also contains some special bits, where 𝑡𝑦𝑝𝑒 is used to mark whether
the child node is a leaf node or an inner node, and 𝑙𝑜𝑐𝑘 is used to
mark whether the child node is splitting, which contains a read lock
and a write lock. On today’s AMD64 and Intel® 64 architectures,
only 48 bits of the pointer are valid, and we integrate these two
special bits into the eight bytes of the pointer. A key outside the
coverage of the model is also used as a free flag in an inner node to
fill all free inner slots.

All slots in an inner node are stored in order, and we also use
the NVM-aware data placement for inner nodes. When building an
inner node, we prioritize the placement of a key in the block pre-
dicted by the model. Unlike the leaf nodes, we allow the key using
the space of the subsequent blocks if the block is full. Therefore, no

247



overflow block exists in an inner node. Instead, we allocate addi-
tional 𝜖/𝑁 blocks for each inner node to ensure that the overflow
data in the last block can be loaded, where 𝜖 is the error threshold
of the model and 𝑁 is the number of inner slots in each block.

4 OPERATIONS OF PLIN
4.1 Query
PLIN supports point and range queries. The input of a point query
is a key, and the output is the payload corresponding to the key.
In the index metadata, we reserve the coverage of the piecewise
linear model, i.e., a minimum key and a maximum key. The query
first visits the metadata and determines whether the target key is
within the coverage of the model. If it is, we need to access the root
node; otherwise, we access the left/right buffer. When accessing
each node of PLIN except the root node, we use a copy of that
node’s model parameters in the parent node to predict the position
of the target key in the node. Since the inner nodes of PLIN use
an opportunistic insertion strategy, there are a small number of
orphan nodes in the leaf nodes. An orphan node can only be found
through its left sibling node. Since no parent node exists for an
orphan node, it is necessary to access the node header to obtain
the model parameters. Then, we perform a local search based on
the predicted position. If the node is an inner node, we search left
or right until we find the largest key in the node that is less than
or equal to the target key. If the node is a leaf node, we compute
the starting address of the block where the predicted position is
located and scan the entire block. If the target key is found, the
corresponding payload is returned. Otherwise, the current block is
checked to see if there is an overflow tree. If it exists, the overflow
tree is searched. Since we use a piecewise linear approximation
algorithm to train the model, we can guarantee the maximum error
of the model is less than a threshold 𝜖 .

The input of a range query is a lower bound and an upper bound,
and the output is all the indexed keys covered by the range as well
as the corresponding payloads of the keys. The first half of the
range query proceeds the same as the point query, where we find
the leaf node and the block where the smallest key greater than
or equal to the lower bound is located. Then, since all leaf nodes
of PLIN are ordered, and all blocks in a leaf node are also ordered,
we perform a block-grained scan, which processes one block and
its corresponding overflow tree until a key larger than the upper
bound is found. Since the leaf nodes are linked by bidirectional
pointers, the scanning process does not need to backtrack the inner
nodes.

4.2 Upsert
PLIN requires the key in the index to be unique and supports upsert
operations. When a key and its payload need to be inserted into
PLIN, we need not perform a lookup to determine whether the
target key already exists in the index. The upsert interface of PLIN
can make this judgment automatically. If the target key does not
exist, the key and payload are inserted into the index. If the target
key exists, the payload of the key is changed to the newer one. The
first half of the upsert process is the same as the point query, which
requires first finding the leaf node where the target key is located.
Then, we use the model to predict a block in the leaf node and scan

this block. If there is a target key in the predicted block, the update
is executed. Otherwise, the algorithm tries to perform an insertion.
We scan the predicted block again and look for a free slot, i.e., the
key of the slot equals the free flag. If a free slot is found, we insert
the key and payload into the slot. Specifically, we first write the
eight-byte payload, and then write the eight-byte key.

The upsert operation of PLIN is crash consistent. After an up-
date or insertion, we use a CLWB instruction to write the cacheline
back to NVM and an SFENCE instruction to isolate the subsequent
write instructions. In the case of insertion, we need to write two
eight-byte contents, i.e., two CPU write instructions are required.
However, we only need to use one CLWB instruction and one SFENCE
instruction. Since the node space is aligned by 256 bytes, the con-
tents of the same leaf slot must be in the same cacheline. The CPU
can guarantee that the write operations in the same cacheline will
be executed in order. Therefore, the write of the payload and the
key will not be disordered. One problem is that the writing payload
is completed, but the key has not been written into the node. If the
system crashes between a key write and a payload write, since the
key of the leaf slot still equals the free flag, it is recognized as a free
slot, and the status of the index remains unchanged, meaning that
the insertion is automatically aborted. In the inner nodes, we also
use a similar method to insert an inner slot.

If a free slot is not found in the predicted block, the upsert of the
overflow tree needs to be executed. We have slightly modified the
source code of Fast&Fair to make it support the upsert interface. Its
upsert algorithm returns a flag that tells PLINwhether the execution
is an update or an insertion. If it is an insert, we add one parameter
𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤_𝑛𝑢𝑚𝑏𝑒𝑟 stored in the node header. A leaf node uses this
parameter to count the amount of overflow data in the node and to
decide whether to perform a split. If the overflow data exceeds a
percentage of the node size, the algorithm returns a split flag, which
informs PLIN of performing a split operation. The split operation
is done by a background thread, and the thread responsible for the
upsert operation does not need to wait for it.

4.3 Structure-Modified Operations
When a certain upsert returns a split flag, PLIN performs a split
operation for the leaf node. First, the left and right siblings of the
target node need to be recorded. Then, we scan all the data in the
target node, retrain the model, and build a new set of leaf nodes. Un-
like the B+-trees, a split operation in PLIN may yield more than two
new nodes or only one node. The number of new nodes depends
on the number of segments output by the piecewise linear approx-
imation algorithm [39]. We use the REDO logging to guarantee
the crash consistency of split operations. Although some NVM-
oriented B+-trees proposed to use a log-free manner [1, 14, 24], it is
not costly to use logs in PLIN because the nodes of PLIN are large,
and split operations will not be triggered frequently. Relatively,
each split is more expensive, so using logs for split operations does
not add many extra costs. We use the REDO logging to ensure
that all pointer-modification operations generated by a split opera-
tion are done. The pointer modification operations include sibling
pointer updates in left/right sibling nodes and pointer updates and
insertions in the parent node.

248



Figure 5: The hierarchical insertion strategy.

Figure 6: Bulk rebuilding of inner nodes.

As shown in Fig. 5, PLIN uses different insertion strategies for
nodes at different layers. For leaf nodes, PLIN uses a deterministic
insertion strategy to ensure that the new key can be inserted into
the index. Note that PLIN’s overflow tree is a B+-tree that can grow
without limit. Therefore, any insert operation in a leaf node will not
fail even if the leaf node is full. For the parent nodes of leaf nodes,
PLIN uses an opportunistic insertion strategy to insert the new leaf
nodes generated by a split into the parent node. First, we use the
model to locate a block in the node and then look for a free inner
slot inside. If found, we perform the insertion. If not found, the
insertion is aborted, but the splitting will not be canceled. Then, the
leaf node produced by the splitting becomes an orphan node, which
is linked to its left sibling node. Since all the slots in an inner node
are ordered, the opportunistic insertion strategy prevents a single
insertion from causing many data movements. The opportunistic
insertion strategy guarantees that only the parent nodes of leaf
nodes will perform insertions. Since no splitting is triggered in
the parent nodes, no insertion will occur in the upper layer of the
parent nodes. PLIN monitors the number of orphan nodes. When
the number of orphan nodes exceeds a certain percentage of the
total number of leaf nodes, PLIN rebuilds all inner nodes, as shown
in Fig. 6. The rebuild operation eventually modifies the root node
pointer and ensures crash consistency.

4.4 Delete
When a record needs to be deleted, PLIN finds the target key in the
block and updates it to a delete flag. Similar to the free flag, the
delete flag is also a key outside the coverage of the model, but is
not equal to the free flag. The query operations will skip the slot
with a delete flag, while the upsert operations treats it as a free slot.
Similar to the state-of-the-art indices [10, 38], the delete operation
in PLIN does not result in node merging because real-world data
tends to grow over time.

4.5 Bulk Load
PLIN requires learning the distribution of the dataset, so it does not
support the case of inserting from zero. We propose to use a B+-tree
to handle this case and convert the index to PLIN when the dataset
size increases. A bulk load interface is provided by PLIN to load the
dataset. The bulk load requires the input data to be arranged in the
order of the key. We use the OptimalPLR algorithm [39] to scan a
trip to the dataset and get a set of models. After that, leaf nodes
are built using each model and the corresponding piece of data
in turn. We use the minimum key of each node as a new dataset
to construct the inner nodes and recursively execute this process
until the root node can load the output nodes. When building a
leaf node or an inner node, we first allocate extra space to the node
proportionally and adjust the mapping range of the model to the
whole node space. Then, we use the free flag to fill all leaf/inner
slots and use the NVM-aware data placement strategy to place data
into the slots.

4.6 Instant Recovery
Since NVM is a persistent storage device, the data structures on
NVM need to be guaranteed to recover quickly from a system
crash. As all the structures of PLIN are reserved in NVM and all
upsert operations are atomic, PLIN can ensure instant recovery.
During recovery, we only need to check the REDO log and re-
execute the pointer update operations in the log, which is updated
during structure-modified operations. Note that APEX [25] uses
many DRAM structures in its implementation. Thus, it needs to
rebuild the structures in DRAM during a recovery process, which
is time-consuming and will lower the throughput.

5 CONCURRENCY
Using node-level locking mechanisms is inefficient because learned
indices use huge nodes and result in expensive costs in node split-
ting. Some learned indices on DRAM use a two-phase compaction
mechanism based on read-copy-update (RCU) to support lock-
free node splitting [23, 35]. However, the two-phase compaction
mechanism causes write amplification and is unsuitable for use
on NVM. PLIN adopts optimistic concurrency control [21, 22] and
fine-grained locking with the following design principles: (1) Min-
imize the time to lock the entire node. (2) Accessing additional
NVM blocks due to lock acquisition should be avoided unless a
structure-modified operation occurs.

PLIN uses multiple granularities of locks and versions. In the
index header, PLIN reserves a global lock 𝑙𝑜𝑐𝑘𝑔 and a global version
𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 . In the node header in an inner node or a leaf node, PLIN
reserves a node-level lock 𝑙𝑜𝑐𝑘𝑖 or 𝑙𝑜𝑐𝑘𝑙 , respectively. In the block
header of a block in a leaf node, PLIN reserves a 1-bit block-level
lock 𝑙𝑜𝑐𝑘𝑏 , a 31-bit global version 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 , and a 32-bit block-level
version 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏 . In the following, we describe how PLIN uses these
locks and versions for concurrency control.

Reader-writer coordination. PLIN adopts optimistic concur-
rency control for reader-writer coordination. Query operations
need to check 𝑙𝑜𝑐𝑘𝑏 but do not need to modify it. Upsert operations
and delete operations need to acquire 𝑙𝑜𝑐𝑘𝑏 and update 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏
before writing in a slot. The query operations check 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏 once

249



when checking 𝑙𝑜𝑐𝑘𝑏 and after fetching the record. If 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏 ob-
tained twice are equal, the read is successful; otherwise, the record
must be fetched again. Since both 𝑙𝑜𝑐𝑘𝑏 and 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏 are located
inside the block, we need not access an additional NVM block.

Writer-writer coordination. Upsert operations and delete op-
erations require acquiring 𝑙𝑜𝑐𝑘𝑏 and updating 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏 . 𝑙𝑜𝑐𝑘𝑏 is
used to block other write operations, so a block (containing the
overflow tree) allows only one thread to perform a write operation
at a time. Since PLIN uses block-level locks instead of node-level
locks, the blocking probability is substantially reduced. Note that
the use of fine-grained locks presupposes that PLIN uses an NVM-
aware data placement policy. Write operations in other learned
indices (e.g., ALEX [10]) involve the entire memory space of the
node, so fine-grained locks cannot be used.

Splitting of leaf nodes.A split operation of a leaf node requires
using node-level locks. 𝑙𝑜𝑐𝑘𝑙 contains three status bits, which are
used to indicate blocking split operations, blockingwrite operations,
and blocking read operations, respectively. When a node splitting
occurs, (1) acquire 𝑙𝑜𝑐𝑘𝑙 in the splitting node and the left and right
sibling nodes, set the lock status of the splitting node to block
split operations and write operations, and set the lock status of the
left and right sibling nodes to block split operations. (2) Get the
data in the splitting node, train new models, and build new leaf
nodes. (3) Acquire 𝑙𝑜𝑐𝑘𝑖 in the parent node to block other write
operations and add blocking read operations to the lock status of
𝑙𝑜𝑐𝑘𝑙 in the splitting node. (4) Update the left and right sibling node
pointers and update the pointers in the parent node. (5) Release all
locks. In step (1), if any lock acquisition fails, this split operation
will be abandoned immediately without blocking the subsequent
operations of the thread. Since the overflow trees in PLIN have no
capacity limit, giving up a split operation does not cause the node to
be unable to insert new records. The next insert operation on that
node will cause PLIN to try a split operation again. In addition, most
of the time in a split operation is spent on step (2), which does not
block read operations. Finally, since read/write operations require
checking the read/write status of 𝑙𝑜𝑐𝑘𝑙 , PLIN reserve a copy of these
two status bits in the inner slot in the parent node. Therefore, read
and write operations do not need to access the node header to check
the lock status.

Rebuilding of inner nodes. A split operation is not allowed
during the rebuilding of inner nodes in PLIN. 𝑙𝑜𝑐𝑘𝑔 is used to avoid
this kind of conflict. 𝑙𝑜𝑐𝑘𝑔 contains a status bit and a 31-bit reference
count. When a node splitting occurs, the reference count will be
increased. When a rebuild operation is triggered, the status bit
of 𝑙𝑜𝑐𝑘𝑔 is set to block split operations. After this, no new split
operations are allowed. PLIN waits for the ongoing split operations
to complete and begins the rebuild operation. Similarly, a blocked
split operation does not need to wait but is aborted immediately.

Avoiding deadlocks. Since NVM is a persistent storage device,
deadlocks caused by crash recovery need to be avoided. The global
lock and node-level locks are used only when a structure-modified
operation occurs, so we can complete the operation and release the
locks by checking REDO logs. For the block-level locks, PLIN uses
𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 to avoid deadlocks. PLIN reserves 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 in the index
header and updates the version number after a recovery. When a
write operation acquires 𝑙𝑜𝑐𝑘𝑏 , it checks 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 in the block, and
only a lock with matching 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 is valid. If 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 does not

Table 1: Server configuration.

Component Description

CPU Intel® Xeon® Gold 6242 CPU
Dual-socket with 40 cores at 3.1GHz

L1 cache 32 KB iCache & 32 KB dCache (per-core)
L2 cache 1 MB (per core)
L3 cache 36 MB (per socket)

Total DRAM 256 GB (2 (socket) x 4 (channel) x 32 GB)
Total NVM 2,048 GB (2 (socket) x 4 (channel) x 256 GB)

match, which means 𝑙𝑜𝑐𝑘𝑏 is out-of-date, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑔 is updated to the
new one when 𝑙𝑜𝑐𝑘𝑏 is fetched.

6 PERFORMANCE EVALUATION
In this section, we first detail the experimental settings and then
report the comparative results between PLIN and other indices.

6.1 Experimental Setup
We conduct experiments on a server equippedwith real Intel Optane
DC persistent memory. Table 1 shows the environment configura-
tion for the experiments. The server contains 256 GB DRAM and
2,048 GB Intel Optane DC persistent memory, equally distributed
over two Sockets. We configure all Optane modules to App-Direct
mode and create a DAX-aware ext4 file system. Then, we mount
the file system using the DAX option.

Datasets.We use three datasets in our experiments, namely, the
Normal dataset, the Lognormal dataset, and the OSM dataset. In
the first two datasets, the keys are randomly generated numbers.
The keys in the OSM dataset are the earth longitude attribute of
the entity object extracted from the OpenStreetMap dataset1. Each
dataset has 200M key-value pairs, where both the key and value
size is 8 bytes. The keys in each dataset are unique.

Competitors.We compare PLINwith fiveNVM-oriented indices
and use their open-source codes in our evaluation, including APEX2,
TLBtree3, Fast&Fair4, ROART5, and PACTree6. TLBtree [26, 27] and
Fast&Fair [14] are two state-of-the-art NVM-oriented B+-tree-like
indices. PACTree [15] and ROART [28] are two state-of-the-art
NVM-oriented trie-like indices. APEX [25] is the state-of-the-art
learned index designed for the NVM+DRAM hybrid memory ar-
chitecture. It maintains sophisticated data structures on DRAM
to accelerate the query and write process. As APEX is the only
NVM-aware learned index, we also include it in the comparison.
However, to make the comparison fair and without changing the
key idea of APEX, we place all its data structures on NVM to make
it suitable for the NVM-only architecture. Specifically, when APEX
needs to allocate memory for a DRAM structure, we will allocate
a piece of persistent memory for it. The DRAM structures include
locks, metadata, stash bitmaps, accelerators, and overflow buck-
ets [25]. Write operations on these structures do not use the CLWB
1The OpenStreetMap dataset. https://registry.opendata.aws/osm.
2APEX source code. https://github.com/baotonglu/apex.
3TLBtree source code. https://github.com/ypluo/TLBtree.
4Fast&Fair source code. https://github.com/DICL/FAST_FAIR.
5ROART source code. https://github.com/madsys-dev/ROART.
6PACtree source code. https://github.com/cosmoss-vt/pactree.

250



and SFENCE instructions because they are not required to guaran-
tee crash consistency. Note that we also include the experimental
comparison between PLIN and the original APEX version running
on DRAM and NVM in Section 6.5. To make the presentation clear,
in the following text, we use the notation "APEX" to represent
the APEX implementation for the NVM-only architecture and use
"APEX(hybrid)" to indicate the original APEX implementation for
the DRAM-NVM hybrid architecture.

We implemented PLIN using C++. We use PMDK to handle large
chunks of persistent memory allocation and use the memory allo-
cator offered by TLBtree [27] to allocate small chunks for nodes
efficiently. TLBtree and Fast&Fair also use the same interface. For
APEX, PACtree, and ROART,we use their own persistentmemory al-
locators. The leaf node size of TLBtree/Fast&Fair/ROART/PACtree
is set to 256/512/1024/1024 bytes. All competitors use CLWB and
SFENCE instructions to ensure crash consistency. Because we do
not focus on the optimization of the NUMA effect, all the persis-
tent memory is allocated on one NUMA node, and all tasks are
running on the same node. Each set of experiments uses the "-O3"
optimization. Before each experiment, we execute 100 million query
operations as a warm-up to ensure that the CPU cache is used effi-
ciently. Note that all indices (except the original APEX discussed in
Section 6.5) only use the NVM capacity, i.e., all the structures and
data of an index are placed on NVM.

Default parameters. Some adjustable parameters are used in
the PLIN implementation. If we do not talk about them specifically,
we use the default values of the parameters in our experiments.
We set the block size in the leaf/inner nodes to 256 bytes to match
the NVM block granularity for a good locality. The OptimalPLR
algorithm [39] requires a maximum error 𝜖 for the input. If we
use a larger 𝜖 , each model can cover more data, thus reducing the
number of nodes and decreasing the tree height. However, using
a larger 𝜖 may lead to more overflow data. We use a large 𝜖 , i.e.,
256, in the leaf nodes to ensure that the tree is flat enough. And we
use a small 𝜖 , i.e., 16, in the inner nodes to reduce overflow data in
the inner nodes. Since PLIN can significantly reduce the number of
leaf nodes, using inner nodes with loose density will not incur high
space costs. Therefore, we set the initial fill rate of inner nodes to
20% to avoid frequent triggering of rebuilding. Moreover, we set
the maximum overflow rate to 30% and trigger node splitting if
the amount of the overflow data exceeds this rate. Also, we set the
maximum orphan rate to 10% and start rebuilding inner nodes if
the number of the orphan nodes exceeds this rate.

6.2 Read and Write Performance
In this experiment, we run all indices on five workloads that have
different read and write ratios, namely write-only, upsert, write-
heavy (50% write and 50% read), read-heavy (5% write and 95%
read), and read-only. The last three workloads correspond to YCSB
A, B, and C workloads [8], respectively. Each write operation ex-
cept upsert inserts a new key into the index. The workload upsert
consists of 50% insertions and 50% updates. The read and update
operations in all workloads follow the Zipfian (𝑧𝑖𝑝 𝑓 =0.99) distribu-
tion. The experiments scale from one thread to 40 threads. When
the number of threads is less than or equal to 20, each thread uses a
separate physical core. When the number of threads exceeds 20, the

exceeding threads will use hyper-threading. Figures (7-9) show the
throughput of PLIN and the other five indices on the three datasets.
The unit of the Y-axis is𝑀𝑜𝑝𝑠 , which means one million read/write
operations per second. We observe that PLIN exhibits much better
performance than the other indices on all workloads and datasets.
Note that the running time of PLIN includes all inner-node rebuild-
ing time.

Figures (7-9)(a) show the throughput of the six indices on the
read-only workload, PLIN scales nearly linearly to the thread num-
ber.When the thread number varies from 1 to 8, the read throughput
of PLIN is slightly lower than that of APEX. However, when the
thread number increases from 16 to 40, APEX does not get many
benefits, but PLIN shows an explicit throughput increase and even-
tually achieves up to 2.01 times higher throughput than APEX. We
can see that APEX has a performance drop when the number of
threads is increased from 20 to 24, this is because of the impact of
hyper-threading. In contrast, PLIN is not affected significantly. By
analyzing the runtime statistics of APEX and PLIN, we find that the
query process of APEX requires accessingmore NVM blocks. Specif-
ically, for a query operation, the model, locks, and data of the leaf
node are located in different NVM blocks. Moreover, each query of
APEX needs to update the metadata. Therefore, the contention for
NVM bandwidth limits its scalability. In PLIN, accessing the model
and locks of a leaf node does not result in additional NVM block
accesses. However, APEX usually needs to scan only one cacheline
in a leaf node to find the target key, while PLIN usually needs to
scan more than two cachelines. Therefore, the single-threaded read
performance of APEX is slightly higher than that of PLIN.

Figures (7-9)(b) show the throughput of the six indices on the
write-only workload. The figures show that PLIN achieves the
best performance and scalability compared to other indices. More
specifically, when the thread number varies from one to eight, PLIN
scales nearly linearly due to the fine-grained lockmechanism.While
the thread number increases from 16 to 40, the growth of PLIN’s
throughput becomes slow. PLIN achieves 1.38-1.41 times higher
throughput than the second place under 40 threads. We can see that
APEX also scales well when the thread number varies from one to
eight.While the thread number ranges from 16 to 40, the throughput
of APEX is even decreasing, and it gets the worst performance under
40 threads. This is because APEX requires metadata and auxiliary
data structures to be updated during insertions, resulting inmultiple
NVM writes. It can cause severe NVM bandwidth contention in
multi-thread concurrent environments.

Figures (7-9)(c) and (d) show the throughput of the six indices
on the mixed workload. We can see that PLIN achieves the best
performance again. More specially, all the indices exhibit a similar
performance trend on the read-heavy workload and the read-only
workload, and PLIN achieves 2.22-2.49 times higher throughput
than the second place under 40 threads. For the write-heavy work-
load, all the indices have the same trend as the write-only workload,
and PLIN achieves 1.45-1.50 times higher throughput than the sec-
ond place under 40 threads. We can see that PLIN performs better
when the workload has a higher read ratio. This is because the per-
formance improvement of PLIN is mainly owing to the reduction
of the index height and the number of NVM blocks accessed.

251



Figure 7: Throughput on the Normal dataset.

Figure 8: Throughput on the Lognormal dataset.

Figure 9: Throughput on the OSM dataset.

Figures (7-9)(e) show the performance of the six indices on the
workload upsert. We observe that the performance of upsert op-
erations follows a similar trend as it exhibits on the write-only
workload. PLIN also scales well when the thread number ranges
from one to eight, while the performance stops scaling beyond 16
threads because of the impact of synchronization. However, PLIN
still achieves the best performance, and its throughput on the upsert
workload is about 1.46 times higher than the second place under
40 threads.

We observe that the read and write performance of PLIN and
APEX is affected by the data distribution. PLIN achieves the best
read performance on the Normal dataset and the best write per-
formance on the OSM dataset. APEX performs best on the OSM
dataset for both read and write. Although both PLIN and APEX
aim to fit the data distribution, there are still some data that are
hard to be fitted, which will cause performance degradation. The
performance of ROART and PACTree is also influenced by the data
distribution because they both adopt the trie structure. Hence, differ-
ent datasets may produce different index structures, which impact

the performance. In summary, PLIN can achieve high and scalable
performance on read-intensive and write-intensive workloads.

6.3 Performance with Varying Access Patterns
In this experiment, we evaluate the query performance when vary-
ing the access pattern. We main vary the skewness of accesses to
see whether PLIN can maintain the performance superiority over
other indices.

Figure 10(a) shows the query throughput on the three datasets
under 20 threads with random accessing patterns. It can be seen
from the figure that PLIN is still the fastest one among the six
indices. Figure 10(b) shows the query throughput on the Lognormal
dataset under 20 threads with varying skewness, indicating that all
the indices achieve better performance with higher skewness. High
skewness means that most accesses focus on a small set of hot keys;
therefore, the index can utilize the cache better. In addition, PLIN
achieves the highest performance with all skewness, meaning that
it can maintain stable performance for different access patterns.

252



Figure 10: Throughput under the uniform and Zipfian distri-
butions with varying skewness.

Figure 11: Comparison of the bulk load time.

6.4 Bulk-Load Performance
Figure 11(a) shows the bulk load times of PLIN and competitors
on different datasets, with 100 million keys loaded for each set of
experiments. Among the six indices, only PLIN and APEX provide
a bulk load interface. Since the other four indices do not provide a
bulk load interface, we call their insert interfaces to insert keys one
by one. We can see that the bulk load speeds of PLIN and APEX are
much faster than other indices. On all datasets, PLIN consumes less
than 15 seconds, while APEX consumes 2x more time than PLIN.
Moreover, the other four indices consume at least 100 seconds. This
is because the fitting algorithm used by PLIN requires only one scan
of the dataset, i.e., it has an 𝑂 (𝑛) time complexity. Also, since the
node number and the tree height of PLIN are much less than those
of other competitors, PLIN builds fewer nodes and processes fewer
layers recursively, helping accelerate the bulk loading process. Fig-
ure 11(b) shows the bulk load time with different dataset sizes. The
bulk load time for PLIN and other indices grows linearly with the
dataset size. PLIN is consistently faster than the other competitors,
suggesting its high performance in training models and building
the index structure.

6.5 Comparison with the Original APEX
In this section, we compare PLIN with the original APEX, which is
denoted as "APEX(hybrid)".

Read and write performance. This experiment was performed
on the Lognormal dataset. As shown in Fig. 12(a), APEX(hybrid)
achieves higher read performance when the thread number scales
from 1 to 20. However, its performance decreases when the number

Figure 12: Throughput comparison with APEX(hybrid).

Table 2: Runtime states of PLIN and APEX(hybrid).

Index Dataset #inner
nodes

#leaf
nodes

Fill rate in
leaf nodes

Overflow rate
in leaf nodes DRAM size PM size

(without data)

PLIN

Normal 5 589 89.69% 10.30% 0 MB 0.13 MB

Lognormal 12 776 89.70% 10.29% 0 MB 0.18 MB

OSM 30 4224 90.81% 9.08% 0 MB 0.92 MB

APEX
(hybrid)

Normal 1 23450 80.28% 2.91% 759.66 MB 9.23 MB

Lognormal 587 22689 80.30% 2.87% 756.71 MB 24.35 MB

OSM 557 25814 80.63% 2.37% 653.56 MB 11.11 MB

of threads is increased from 20 to 24. This is due to the impact of
hyper-threading. PLIN is only slightly affected by hyper-threading
and outperforms APEX(hybrid) in read performance when the num-
ber of threads is greater than 32. Figure 12(b) shows that the write
throughput of APEX(hybrid) is higher than that of PLIN. This is be-
cause that APEX(hybrid) has many accelerating structures residing
in DRAM, ensuring that it can have fewer NVM writes than PLIN.

Space efficiency. In this experiment, we build PLIN and
APEX(hybrid) on the three datasets and measure their space effi-
ciency. For each dataset, we first load half of the data using the
bulk load interface and then insert the other half. Table 2 shows
the runtime states of PLIN and APEX(hybrid). We can see that
PLIN has a flat structure on all datasets. On both the Normal and
Lognormal datasets, PLIN has only hundreds of leaf nodes and is
only three layers high. While APEX(hybrid) has tens of thousands
of leaf nodes on all three datasets.

Compared with APEX(hybrid), PLIN has higher space efficiency.
We divide the space cost into two parts, namely the data fill rate and
the index size. The index size is composed of the DRAM size and the
PM size. The data fill rate refers to the percentage of filled data-slots
in leaf nodes. Table 2 shows that the fill rate of APEX(hybrid) is
∼80%, while PLIN has a higher fill rate up to ∼90%. This is because
the node splits in PLIN are not triggered by the data filling of nodes
but are only invoked when the percentage of the overflow data
reaches 30%. We observe that the overflow data percentage in PLIN
is ∼10%. The second part of the space cost is the index size without
data slots, including inner nodes and the metadata of leaf nodes.
As shown in Table 2, PLIN only takes less than 1 MB PM spaces,
while APEX(hybrid) takes over 10 MB PM spaces on average. In
addition, PLIN does not use any DRAM space, but APEX(hybrid)
consumes up to 700 MB of DRAM space because it maintains many
data structures in DRAM.

253



Figure 13: Comparison of the recovery performance.

Recovery. This experiment aims to evaluate the recovery time.
First, we use the Lognormal dataset and load 100 million keys.
Then, we start another process to recover the index and execute
queries simultaneously. Because all the structures of PLIN are placed
on persistent memory, PLIN can achieve instant recovery. The
experiment shows that PLIN’s recovery takes 15.387 ms on average.
APEX(hybrid) achieves a similar result (16.146 ms) because it defers
the real recovery work to runtime [25]. We also test the recovery
time of PLIN in the worst case, i.e., the recovery process is killed
during node splits or rebuilding, and the result shows both cases
only incur an overhead of ∼30 𝜇s.

Figure 13 shows the trend of throughput since the beginning of
recovery. APEX(hybrid) exhibits a low throughput at the beginning
of recovery because it has to recover the DRAM structures. As
a result, APEX(hybrid) takes about 1,700 ms (one thread) or 160
ms (20 threads) to resume its normal throughput, while PLIN can
instantly resume a high throughput at the very beginning of the
recovery.

6.6 Overhead of Structure-Modified Operations
In this experiment, we study the overhead of structure-modified
operations during insertions. We use the OSM dataset and the
write-only workload and measure the overhead of splitting a leaf
node, rebuilding inner nodes, and writing logs during splitting. The
results show that the overhead of splitting a leaf node is 1.40%
of the total overhead, the overhead of rebuilding inner nodes is
0.007% of the total overhead, and the overhead of writing logs is
0.0006% of the total overhead and 0.046% of the splitting overhead.
The average overhead of each splitting is 793 𝜇s, and the average
overhead of each rebuilding is 2.258 ms. Although the overhead of a
single structure-modified operation is a bit high, the total overhead
of structure-modified operations is low because such operations are
not triggered frequently. In addition, the percentage of the writing
logs overhead among all overheads is quite low.

6.7 Impact of PLIN Design Choices
In this section, we study the impact of PLIN design choices on read
and write performance and latency.

Locally unordered, globally ordered leaf nodes. This exper-
iment aims to reveal the impact of the design of locally unordered
and globally ordered leaf nodes in PLIN. Thus, we change the leaf
nodes of PLIN to be ordered and keep the other designs unchanged.
We find that it causes a dramatic drop in write performance. In

particular, in the single-thread environment, the write throughput
of PLIN is 0.29 𝑀𝑜𝑝𝑠 (78% drop). In the 20-thread environment,
the write throughput of PLIN is 3.68 𝑀𝑜𝑝𝑠 (62% drop). Such per-
formance drops are caused by the additional data movements in
the ordered leaf nodes when inserting keys, which introduce many
extra CLWB and SFENCE instructions.

Storing a model copy in the parent node. To measure the
impact of storing a model copy in the parent node, we remove the
model copy mechanism and leave the other designs unchanged.
When removing the model copy, we can infer that each operation
has to access the node header to obtain the model parameters
and node-level locks, which needs additional NVM block accesses,
causing the degradation in performance. The experimental result
shows that in the single-thread environment, the read throughput of
PLIN is 2.29𝑀𝑜𝑝𝑠 (38% drop) and the write throughput is 1.10𝑀𝑜𝑝𝑠

(18% drop). In the 20-threaded environment, the read throughput
of PLIN is 45.44𝑀𝑜𝑝𝑠 (37% drop) and the write throughput is 8.28
𝑀𝑜𝑝𝑠 (15% drop). All the results demonstrate the efficiency of the
model copy mechanism in PLIN.

Other design choices of structure-modified operations. The
performance of structure-modified operations in PLIN are impacted
by background threads and orphan nodes, which are used to re-
duce the tail latency. In this experiment, we disable all background
threads and let structure-modified operations be done in the fore-
ground. The result shows that the 99.999% tail latency increases
from 25.94 𝜇s to 757.39 𝜇s (29.20 times increase). Next, we disable
all orphan nodes, which will cause the frequent rebuilding of inner
nodes. In this case, the 99.9999% tail latency increases from 636.97
𝜇s to 2222.32 𝜇s (3.49 times increase). Thus, we conclude that the
design of background threads and orphan nodes in PLIN is efficient.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented PLIN, a persistent learned index for
the NVM-only memory architecture. The main contribution of
PLIN is that it lowers the height of NVM-oriented tree indices by
incorporating the learned index structure. We proposed several
new designs in PLIN, including NVM-aware data placement, locally
unordered and globally ordered leaf nodes, storing a model copy
in the parent node, and a hierarchical insertion strategy. We also
adopted optimistic concurrency control and fine-grained locking
mechanisms to improve the scalability of PLIN. The experimental
results showed that PLIN achieved higher performance and faster
recovery than several NVM-oriented indices and the state-of-the-
art persistent learned index APEX. In the future, we will focus on
the adaptivity of PLIN to the NVM-only and NVM-DRAM-based
hybrid architecture. We notice that both architectures have their
own advantages, but neither of them can satisfy various demands.
Therefore, a better solution is to find out some adaptive approach
to ensure that the index can run on both architectures. In addition,
we will devise new techniques to support duplicated keys in PLIN.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation of
China (No. 62072419) and Tencent. We also thank the KeeWiDB
group in Tencent for their valuable suggestions on improving the
paper. Peiquan Jin is the corresponding author.

254



REFERENCES
[1] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson. 2018.

BzTree: A high-performance latch-free range index for non-volatile memory.
Proc. VLDB Endow. 11, 5 (2018), 553–565.

[2] Michael A. Bender and Haodong Hu. 2007. An adaptive packed-memory array.
ACM Trans. Database Syst. 32, 4 (2007), 26.

[3] Hokeun Cha, Moohyeon Nam, Kibeom Jin, Jiwon Seo, and Beomseok Nam. 2020.
B3-tree: Byte-addressable binary B-tree for persistent memory. ACM Trans.
Storage 16, 3 (2020), 17:1–17:27.

[4] Leying Chen and Shimin Chen. 2021. How does updatable learned index per-
form on non-volatile main memory?. In HardBD@ICDE. IEEE Computer Society,
Chania, Greece, 66–71.

[5] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking database
algorithms for phase change memory. In CIDR. www.cidrdb.org, Asilomar, CA,
USA, 21–31.

[6] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in non-volatile main memory.
Proc. VLDB Endow. 8, 7 (2015), 786–797.

[7] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. 𝜇Tree:
A persistent B+-tree with low tail latency. Proc. VLDB Endow. 13, 11 (2020),
2634–2648.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. ACM,
Indianapolis, Indiana, 143–154.

[9] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing persistent memory bandwidth utilization for OLAP workloads. In
SIGMOD. ACM, Virtual Event, China, 339–351.

[10] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David B. Lomet, and Tim Kraska. 2020. ALEX: An updatable adaptive learned
index. In SIGMOD. ACM, Portland, Oregon, USA, 969–984.

[11] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: A fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175.

[12] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. FITing-Tree: A data-aware index structure. In SIGMOD. ACM,
Amsterdam, The Netherlands, 1189–1206.

[13] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
idiosyncrasies of real persistent memory. Proc. VLDB Endow. 14, 4 (2020), 626–
639.

[14] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable transient inconsistency in byte-addressable persistent B+-tree. In
FAST. USENIX Association, Oakland, CA, USA, 187–200.

[15] Wook-Hee Kim, Madhava Krishnan Ramanathan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. 2021. PACTree: A high performance persistent range index
using PAC guidelines. In SOSP. ACM, Virtual Event / Koblenz, Germany, 424–439.

[16] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. 2018. clfB-tree:
Cacheline friendly persistent B-tree for NVRAM. ACM Trans. Storage 14, 1 (2018),
5:1–5:17.

[17] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A single-pass learned
index. In aiDM@SIGMOD. ACM, Portland, Oregon, USA, 5:1–5:5.

[18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In SIGMOD. ACM, Houston, TX, USA,
489–504.

[19] Taehyun Kwon, Muhammad Imran, and Joon-Sung Yang. 2021. Reliability En-
hanced Heterogeneous Phase Change Memory Architecture for Performance
and Energy Efficiency. IEEE Trans. Computers 70, 9 (2021), 1388–1400.

[20] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. 2019. Recipe: Converting concurrent DRAM indexes to persistent-
memory indexes. In SOSP. ACM, Huntsville, ON, Canada, 462–477.

[21] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic
lock coupling: A scalable and efficient general-purpose synchronization method.
IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[22] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN. ACM, San Francisco, CA, USA,
3:1–3:8.

[23] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: A fine-grained
learned index scheme for scalable and concurrent memory systems. Proc. VLDB
Endow. 15, 2 (2021), 321–334.

[24] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+-trees: Optimizing persistent
index performance on 3DXPoint memory. Proc. VLDB Endow. 13, 7 (2020), 1078–
1090.

[25] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.
2021. APEX: A high-performance learned index on persistent memory. Proc.
VLDB Endow. 15, 3 (2021), 597–610.

[26] Yongping Luo, Peiquan Jin, Qinglin Zhang, and Bin Cheng. 2021. TLBtree: A
read/write-optimized tree index for non-volatile memory. In ICDE. IEEE Com-
puter Society, Chania, Greece, 1889–1894.

[27] Yongping Luo, Peiquan Jin, Zhou Zhang, Junchen Zhang, Bin Cheng, and Qinglin
Zhang. 2021. Two birds with one stone: Boosting both search and write perfor-
mance for tree indices on persistent memory. ACM Trans. Embed. Comput. Syst.
20, 5s (2021), 1–25.

[28] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and Yongwei Wu. 2021. ROART: Range-query optimized persistent ART.
In FAST. USENIX Association, Indianapolis, Indiana, 1–16.

[29] Nooshin Mahdavi, Farhad Razaghian, and Hamed Farbeh. 2022. Data block
manipulation for error rate reduction in STT-MRAM based main memory. J.
Supercomput. 78, 11 (2022), 13342–13372.

[30] Tobias Maltenberger, Till Lehmann, Lawrence Benson, and Tilmann Rabl. 2022.
Evaluating In-Memory Hash Joins on Persistent Memory. In EDBT. 2:368–2:372.

[31] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking learned
indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.

[32] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The log-structured merge-tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385.

[33] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In SIGMOD. ACM, San Francisco, CA, USA, 371–386.

[34] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,
Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In ICLR. OpenReview.net, Toulon,
France.

[35] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie
Wang, and Haibo Chen. 2020. XIndex: A scalable learned index for multicore
data storage. In PPoPP. ACM, San Diego, California, USA, 308–320.

[36] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and durable data structures for non-volatile byte-
addressable memory. In FAST. USENIX Association, San Jose, CA, USA, 61–75.

[37] Stratis Viglas. 2014. Write-limited sorts and joins for persistent memory. Proc.
VLDB Endow. 7, 5 (2014), 413–424.

[38] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing.
2021. Updatable learned index with precise positions. Proc. VLDB Endow. 14, 8
(2021), 1276–1288.

[39] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014.
Maximum error-bounded Piecewise Linear Representation for online stream
approximation. VLDB J. 23, 6 (2014), 915–937.

[40] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An empirical guide to the behavior and use of scalable persistent
memory. In FAST. USENIX Association, Santa Clara, CA, USA, 169–182.

[41] Jun Yang, Qingsong Wei, Chundong Wang, Cheng Chen, Khai Leong Yong, and
Bingsheng He. 2016. NV-Tree: A consistent and workload-adaptive tree structure
for non-volatile memory. IEEE Trans. Computers 65, 7 (2016), 2169–2183.

[42] Zhou Zhang, Peiquan Jin, Xiao-Liang Wang, Yan-Qi Lv, Shouhong Wan, and
Xike Xie. 2021. COLIN: A cache-conscious dynamic learned index with high
read/write performance. J. Comput. Sci. Technol. 36, 4 (2021), 721–740.

[43] Zhiyong Zhang, Zhaoyan Shen, Zhiping Jia, and Zili Shao. 2020. UniBuffer:
Optimizing Journaling Overhead With Unified DRAM and NVM Hybrid Buffer
Cache. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 9 (2020), 1792–
1805.

[44] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. 2021. Spitfire: A
Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. In SIGMOD.
2195–2207.

[45] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
Differential indexing for persistent memory. Proc. VLDB Endow. 13, 4 (2019),
421–434.

[46] Farzaneh Zokaee, Mingzhe Zhang, Xiaochun Ye, Dongrui Fan, and Lei Jiang.
2019. Magma: A Monolithic 3D Vertical Heterogeneous ReRAM-based Main
Memory Architecture. In DAC. 115.

255


	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Our Contributions

	2 Related Work
	2.1 NVM-Oriented Tree Indices
	2.2 Learned Indices
	2.3 NVM-oriented Learned Indices

	3 Index Structure of PLIN
	3.1 Overall Structure
	3.2 Key Designs
	3.3 Structure of Leaf Nodes
	3.4 Structure of Inner Nodes

	4 Operations of PLIN
	4.1 Query
	4.2 Upsert
	4.3 Structure-Modified Operations
	4.4 Delete
	4.5 Bulk Load
	4.6 Instant Recovery

	5 Concurrency
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Read and Write Performance
	6.3 Performance with Varying Access Patterns
	6.4 Bulk-Load Performance
	6.5 Comparison with the Original APEX
	6.6 Overhead of Structure-Modified Operations
	6.7 Impact of PLIN Design Choices

	7 Conclusions and Future Work
	Acknowledgments
	References

