
TiQuE: Improving the Transactional Performance of Analytical
Systems for True Hybrid Workloads

Nuno Faria
INESCTEC and University of Minho

Braga, Portugal
nuno.f.faria@inesctec.pt

José Pereira
INESCTEC and University of Minho

Braga, Portugal
jop@di.uminho.pt

Ana Nunes Alonso
INESCTEC and University of Minho

Braga, Portugal
ana.n.alonso@inesctec.pt

Ricardo Vilaça
INESCTEC and University of Minho

Braga, Portugal
ricardo.p.vilaca@inesctec.pt

Yunus Koning
MonetDB Solutions

Amsterdam, The Netherlands
yunus.koning@monetdbsolutions.com

Niels Nes
MonetDB Solutions and CWI
Amsterdam, The Netherlands

niels.nes@monetdbsolutions.com
niels.nes@cwi.nl

ABSTRACT

Transactions have been a key issue in database management for a
long time and there are a plethora of architectures and algorithms
to support and implement them. The current state-of-the-art is
focused on storage management and is tightly coupled with its de-
sign, leading, for instance, to the need for completely new engines
to support new features such as Hybrid Transactional Analytical
Processing (HTAP). We address this challenge with a proposal to
implement transactional logic in a query language such as SQL.
This means that our approach can be layered on existing analytical
systems but that the retrieval of a transactional snapshot and the
validation of update transactions runs in the server and can take ad-
vantage of advanced query execution capabilities of an optimizing
query engine. We demonstrate our proposal, TiQuE, on MonetDB
and obtain an average 500× improvement in transactional through-
put while retaining good performance on analytical queries, making
it competitive with the state-of-the-art HTAP systems.

PVLDB Reference Format:

Nuno Faria, José Pereira, Ana Nunes Alonso, Ricardo Vilaça, Yunus Koning,
and Niels Nes. TiQuE: Improving the Transactional Performance of
Analytical Systems for True Hybrid Workloads. PVLDB, 16(9): 2274 - 2288,
2023.
doi:10.14778/3598581.3598598

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/nuno-faria/tique.

1 INTRODUCTION

Transactions in database systems allow sequences of operations,
possibly issued interactively, to be grouped andmade atomic regard-
ing both concurrency and faults. The traditional architecture for
a transactional system is that isolation and recovery are encapsu-
lated within a Transaction Storage Manager (TSM) layer [61] using

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598598

a form of locking or timestamp ordering to exclude anomalous
non-isolated executions, and logging to guarantee atomic recov-
ery and durability [40, 56]. Query processing happens on top of
the abstraction of isolated and recoverable table and index stor-
age exposed by the TSM. This architecture for a general-purpose
database system does however impose a significant performance
overhead [60] and has led to specialization [98]. This approach has
been particularly successful for analytical workloads with the intro-
duction of column-oriented systems, that enable advanced query
processing techniques such as vectorized processing and adaptive
indexing, however, at the expense of limited concurrent operational
performance [27]. Figure 1 illustrates this tradeoff: MonetDB [8],
in the lower-right corner, has much higher analytical performance
than PostgreSQL [14], a general-purpose system, but its operational
performance is limited and strongly impacted by concurrency. (Ex-
perimental conditions and further details in Section 4.)

Some scenarios call for high-performance analytical operations
together with fine-grained update transactions to achieve Hybrid
Transactional-Analytical Processing (HTAP). This is useful, for in-
stance, for Internet-of-Things (IoT) and streaming applications, and
has been a driver for recent innovation in transactional systems.
The common way to do this is to start from a transactional system
and add the ability to execute long-lived analytical queries on fresh

1415 tx/s
1210 s

26 tx/s
166 s

531 tx/s
203 s

331 tx/s
236 s

450 tx/s
188 s

0

200

400

600

800

1000

1200

1400

03006009001200

O
LT

P
Th

ro
ug

hp
ut

 (t
x/

s)

OLAP Total Response Time (s)

PostgreSQL
MonetDB
MonetDB+TiQuE
SingleStore
TiDB

Figure 1: Trade-off between transactional and analytical per-

formance and the contribution of TiQuE. Transactional and ana-
lytical workloads tested separately (32 OLTP clients; 1 OLAP client).

2274

https://doi.org/10.14778/3598581.3598598
https://github.com/nuno-faria/tique
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598598
https://www.acm.org/publications/policies/artifact-review-and-badging-current

data by materializing a snapshot [34, 67], by outright replicating
the database [63, 109], but also by implementing a storage manager
that judiciously holds recent updates in memory, separately from
persistent data [87]. As shown also in Figure 1 for TiDB and Single-
Store, this allows for much higher operational throughput without
compromising analytical performance.

Our goal is an alternative approach for implementing transac-
tions that eases innovation in existing systems by avoiding the
effort of rewriting the storage management layer. Our contribution
is an add-on layer aimed at analytical systems. This should allow us
to substantially improve transactional performance without costly
redeployment and retraining processes for a new HTAP engine.

The key insight of our proposal – transactions in the query engine
(TiQuE) – is to leverage the flexibility and efficiency of a generic
query optimizer and execution engine in the manipulation of meta-
data (e.g., timestamps) required for multi-record transactions. This
means that part of the traditional responsibility of the TSM is actually
expressed in a high-level query language such as SQL. As shown in
Figure 1, this allows us to build on MonetDB a solution that pre-
serves a good analytical performance while competing with state-
of-the-art HTAP in operational performance in a non-distributed
deployment. As we show in Section 4.3.3, this approach is effective
even with simultaneous operational and analytical workloads.

In addition to it being easier to deploy and maintain, this ap-
proach allows isolation criteria and concurrency control to be ex-
pressed as high-level queries. The latter point is especially impor-
tant to tune performance based on workload [101] and client re-
quirements (stronger, weaker, eventual, or none at all). It also allows
transparent exploitation of advanced query processing techniques,
such as vectorization, as found in column-oriented engines [27].

In short, the hypothesis supporting TiQuE is that given the diver-
sity and continuous evolution of application requirements, environ-
ments, and hardware capabilities, it is likely that a query optimizer
(and tuning by developers and administrators) will generate a better
(custom) implementation of multi-statement transactions than a sin-
gle, one size fits all, hard-coded solution. A particularly interesting
consequence is that it can be applied to specific tables, avoiding
any overhead on OLAP-only tables. Our main contributions are:

• We describe a set of assumptions on existing analytical
data stores to support TiQuE, propose the mechanism in
terms of a generic SQL schema and queries, and provide a
correctness argument (Section 2)

• We specialize the generic proposal and describe an imple-
mentation of TiQuE on MonetDB, discussing the strategy
used to ensure each assumption and to obtain the best per-
formance (Section 3).

• We evaluate the correctness and performance of TiQuE as
implemented onMonetDB, with demanding workloads, and
compare it to state-of-the-art HTAP proposals (Section 4).

Finally, we discuss related work (Section 5) and conclude the paper,
pointing out interesting future research directions (Section 6).

2 TRANSACTIONS IN THE QUERY ENGINE

Figure 2 summarizes the TiQuE approach. The Client application
requests an Abstract schema that contains only application-level
data. This is translated automatically by TiQuE to a Physical schema

Client

(e.g., TPC-C, CH-benCHmark)

Abstraction Layer

(views, rules, Begin/Commit statements)

Physical Layer

(data tables, metadata tables, sequences, procedures)

BEGIN
SELECT
FROM T

UPDATE T COMMIT

BEGIN
procedure

SELECT FROM
T_Storage ...

INSERT
INTO T_Cache

COMMIT
procedure

Figure 2: Architecture of TiQuE.

that exists in the database engine and contains also transactional
metadata. Client requests are then intercepted by TiQuE, which
translates them into queries that enforce isolation and forwards
them to the Physical Layer for execution. We choose to target
Snapshot Isolation [39], in which transactions execute under a data
snapshot taken at their start time. This widely used isolation [1, 15,
21, 23, 25] is specifically chosen given it allows non-blocking reads
with concurrent writes, ideal for HTAP workloads.

2.1 Assumptions

The base assumption is that we have an optimizing query engine,
that compiles and executes SQL statements, without1 multi-item
update transactions. In detail, we assume:

For generality. The generality of the approach, meaning that
TiQuE can be used on different database systems and is applicable
to existing off-the-shelf database applications, assumes that client
requests can be intercepted and modified. For standard APIs, this
can be achieved at the client side by a driver wrapper or hook.
Alternatively, read statements can often also be intercepted at the
server side by views and write statements by rules, using session
variables to hold the transaction state.We use the first, more general
approach in Section 3, although we have also tested the second.

For correctness. The correctness of the approach, meaning that
TiQuE does, in fact, enforce Snapshot Isolation [39], depends on
being able (i) to atomically and concurrently append rows to some
tables, as well as being able to correctly read them; and (ii) to
maintain and observe sequential counters. The first requirement is
generally available, with high performance even in a distributed
setting, in modern data stores. The second is not as widely available
but can be implemented in user-defined functions (see Section 3)
or resort to a coordination system such as ZooKeeper [64] in a
distributed setting. In fact, some systems provide access to atomic
counters even without multi-operation transactions [20].

For performance. The performance of the approach, meaning
that TiQuE achieves high concurrent operational and analytical
performance, depends on (i) the query processing engine being able
to successfully optimize physical queries resulting from TiQuE and
(ii) sustaining high throughput append-only tables. In Section 3, we
show how both can be met by a state-of-the-art analytical engine.

1Or not making use of multi-item transactions, due to their impact on performance.

2275

Table1 (view)
k v

Txn
txid status sts cts

Table1_Storage
k v

a) original b) transactional isolation with TiQuE

Table1_Cache
k v del txid

Views

Tables

Tables
Table1
k v

Figure 3: Example of an original schema (a)) converted into

one which supports transactional isolation in SQL (b)).

2.2 Schema translation

TiQuE uses regular tables to hold application data and transaction
metadata, and SQL queries to manage both of them. As shown in
Figure 3, for each Abstract Table defined by the application, TiQuE
creates the corresponding Physical Schema to be used by future
data query and modification operations. This is done as follows:

Storage tables. These tables contain data and have the exact
schema requested by the application. We identify them in this text
with the “_Storage” suffix. The rows in these tables are considered
stable, meaning they are contained in the history of the snapshot
of every current and future transaction. We use this property to
our advantage to avoid storing timestamp metadata for each row.

Cache tables. These tables, identified with the “_Cache” suffix,
contain additional data with associated metadata for each table
requested by the application. Unlike storage tables, cache tables
store uncommitted or recently committed data, and oftentimes
store multiple versions of the same row [91]. As data stored in these
tables might not be included in the history of every transaction,
we append metadata to each row for snapshot computation (Fig-
ure 3): the 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 field – used to specify if a row was deleted (also
known as a “tombstone”) – and the transaction identifier (𝑡𝑥𝑖𝑑).
This is analogous to what is done in the low-level representation of
records by existing database systems, such as PostgreSQL [96, 99].
Eventually, cache data that becomes stable can be checkpointed to
the respective storage table (Section 2.4.1). If the underlying data
store supports it, we can place the cache tables in a different format
from the storage ones (e.g., row format for cache and columnar
format for storage), combining fast writes with fast analytical scans.
Note that, for simplicity, we assume that a cache row referring to an
Update also has the data of the columns that were not modified. An
implementation of TiQuE could store only the modified columns
and merge them with the previous data when reading. Also note
that we consider cache tables to have the same schema as their
storage counterparts (plus metadata). However, they could also be
designed using, for example, a key-value model, where the value in
each row is merged into a single column, later being deserialized
when reading. This would still allow efficient selection by key.

Txn table. This table stores the transactions’ metadata: the start
(𝑠𝑡𝑠 , for reading) and commit timestamps (𝑐𝑡𝑠 , for conflict detection
and write visibility) of every transaction executed or currently
being executed, as well as their status, (running (R), committing (C),
committed (T), or aborted (A)). These metadata are used to compute

BEGIN:
 ① SELECT NEXT(TXID)
 ② SELECT STS
 ③ INSERT INTO Txn
EXECUTE:
 ④ UPDATE Table1
 SET v = v || '.2'
 WHERE k = 'k1'
COMMIT:
 ⑤ SELECT NEXT(CTS)
 ⑥ UPDATE Txn
 ⑦ SELECT CERTIFY()
 ⑧ UPDATE Txn
 ⑨ SELECT NEXT(STS)

⑤
Transaction 12

Table1_Cache
k v deleted txid
k1 v1 false 5
k1 v1.2 false 12

STS

8 9

CTS

8 9

Txn
txid status sts cts
5 T 3 6
12 R 8
12 C 8 9
12 T 8 9

③

④

⑥

TXID

11 12
① ⑨

⑧

Figure 4: Example of a transaction execution in TiQuE. Based
on the schema presented in Figure 3. Note that steps 6○ and 8○ are updates
to the previous Txn row and not new inserts.

the snapshot, provide conflict detection, determine which data can
be checkpointed to the storage, and enable recovery after a crash.

2.3 Operation translation

2.3.1 Transaction demarcation. A transaction is started by exe-
cuting a Begin procedure, which assigns transactions identifiers
(𝑡𝑥𝑖𝑑) and starting timestamps (𝑠𝑡𝑠) (Figure 4 1○- 3○). Transactions
in TiQuE execute over multi-versioned data and under optimistic
assumptions, meaning they perform all of their reads and writes
without acquiring any locks, and, at commit time, the write-set
is validated against the write-set of concurrent transactions [71].
The optimistic model is widely used due to its low overhead in
low-contention settings [22, 24, 46, 58, 107]. It also has the advan-
tage of fitting nicely with TiQuE’s design, as it does not require
managing locks on writes, but can cause starvation of long-running
read-write transactions. An optimization to this problem is later
discussed and evaluated in Sections 2.3.4 and 4.3.4, respectively.
By not requiring locking on writes, it also opens the possibility of
buffering them at the client side [71], helping mitigate the effects
of client-server latency on multi-write transactions.

To end a transaction, the Commit procedure is executed, com-
mitting or aborting it based on the certification outcome (Figure 4
5○- 9○). Read-only transactions can skip this step.
The following sections describe how reads (Section 2.3.2) and

writes (Section 2.3.3) are translated in a way that is both efficient
and transparent to existing application code, and how transactions
are validated and committed (Section 2.3.4).

2.3.2 Snapshot computation. Read operations within TiQuE must
ensure that an isolated snapshot is obtained independently of con-
current writes from other transactions. This is done by replacing
each user-visible table with a computation of the snapshot in the
context of the current transaction, by using a view or direct replace-
ment in the intercepted statement. The resulting composite query
is then compiled, optimized, and executed as a whole.

The transaction’s starting timestamp (𝑠𝑡𝑠), assigned at its incep-
tion (Figure 4 2○), encompasses all previously committed transac-
tions – that committed with timestamp 𝑐𝑡𝑠 and have a status of “𝑇 ”
– and as such is used to determine the data visible in the snapshot. If

2276

Listing 1: Snapshot query of transaction MY_TXID.

1 SELECT k, v
2 FROM (
3 SELECT *, rank() OVER (-- order recent versions first
4 PARTITION BY k ORDER BY cts DESC NULLS FIRST) AS rk
5 FROM (
6 -- Storage data
7 (SELECT k, v, false AS deleted, 0 AS cts
8 FROM Table1_Storage)
9 UNION ALL
10 -- Cache data
11 (SELECT k, v, deleted, cts
12 FROM Table1_Cache C
13 JOIN Txn ON Txn.txid = C.txid
14 -- get committed data or its own uncommitted writes
15 WHERE (Txn.status = 'T' OR Txn.txid = MY_TXID)
16 -- filter out future writes
17 AND (cts <= MY_STS or cts IS NULL))
18) T1
19) T2
20 -- select only the most recent version of each row
21 WHERE rk = 1
22 -- remove deleted rows
23 AND NOT deleted;

this timestamp captures more than one version of the same row, we
only return the most recent one. Additionally, a transaction might
itself have written uncommitted data which must be read back.
These data will replace committed rows which have the same key,
as they are considered more recent. With these considerations, the
snapshot for 𝑇𝑎𝑏𝑙𝑒1 of Figure 3 is computed with the SQL query
shown in Listing 1, where MY_STS and MY_TXID are the session
variables representing the transaction’s 𝑠𝑡𝑠 and 𝑡𝑥𝑖𝑑 , respectively.

In detail, we first combine (line 9) storage data (lines 7,8) with
readable committed data in the cache and the transaction’s uncom-
mitted writes (lines 11-17). Note that we project the storage’s 𝑐𝑡𝑠
(which is not stored) as 0 (line 7), to guarantee that we order the
stable rows after any other present in the cache. Additionally, we
also project false as the 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 field in the storage (line 7), since
we guarantee that deleted tuples are not persisted past the cache
(Section 2.4.1). Next, since multiple past versions of the same row
can be returned, we must select only the most recent one. To do
so, we sort the rows by key and timestamp – prioritizing the trans-
action’s writes – by performing a ranking window function (lines
3, 4) and selecting only the most recent version for each key, i.e.,
ranking of 1 (line 21). Finally, we filter out deleted rows (line 23).

Figure 5 illustrates the snapshot computation with an example.
Briefly, the transaction’s snapshot only contains rows ⟨𝑘1, 𝑣100⟩,
⟨𝑘2, 𝑣20⟩ and ⟨𝑘4, 𝑣4⟩. The remaining rows were either replaced
by newer versions (⟨𝑘1, 𝑣1⟩,⟨𝑘2, 𝑣2⟩,⟨𝑘3, 𝑣3⟩), were committed after
transaction 4 started (⟨𝑘2, 𝑣2000⟩), or were deleted (⟨𝑘3,⊥⟩).

Describing the snapshot reconstruction as a view has interesting
consequences: First, when used in a complex query, the optimizer
has the ability to translate it to different physical plans (Section 4.2).
This admits the possibility that filters are pushed down below snap-
shot reconstruction and that the join operations used there are in
fact re-ordered with other joins in the query. This can be partic-
ularly useful in the face of parallelism or vectorization. Second,
there is also ample possibility of intervention, by an administrator,
to configure indexes appropriate for each application scenario, or
even switch to different view implementations.

Txn
txid status sts cts
1 T 1 2
2 T 2 3
3 T 2 4
4 R 4
5 T 4 5

Table1(view)
k v
k1 v100
k2 v20
k4 v4

Table1_Cache
k v deleted txid
k1 v100 false 4
k2 v20 false 2
k2 v2000 false 5
k3 ⊥ true 3

Table1_Storage
k v
k1 v1
k2 v2
k3 v3
k4 v4

Figure 5: Example of the resulting snapshot of 𝑇𝑎𝑏𝑙𝑒1 for

transaction 4. ⟨𝑘1, 𝑣1⟩ is replaced by the transaction’s temporary
write ⟨𝑘1, 𝑣100⟩; ⟨𝑘2, 𝑣2⟩ is replaced by the committed tuple ⟨𝑘2, 𝑣20⟩;
⟨𝑘2, 𝑣2000⟩ was committed after transaction 4 started; ⟨𝑘3, 𝑣3⟩ is replaced
by the committed ⟨𝑘3,⊥⟩; ⟨𝑘3,⊥⟩ is flagged as deleted.

One thing to note is that the code in Listing 1 is not the only way
to compute the snapshot. Alternatives include: performing a left
anti-join to filter the storage values with the cache; combining both
tables with a full join instead of a union; usingDistinct On instead
of the window function; and so on. In practice, different snapshot
reconstruction code can generate different plans. This is a key
advantage of our solution, as we found that between multiple plans,
one was optimal for transactional workloads while another was
optimal for analytical ones (Section 3.2). For example, the snapshot
in Listing 1 is not optimal for queries that retrieve large amounts
of data as it requires computing a ranking window function over
the returned rows. We can thus select the best query for each case.

2.3.3 Handling writes. Insert, Update, and Delete statements
in TiQuE must be rewritten to modify data according to its encod-
ing of transactional metadata. All these statements will thus be
translated into Inserts on the cache tables, to be later validated
and committed. Figure 4 4○ shows an example where an Update to
Table1, to concatenate “.2” to 𝑣 of the row with 𝑘 = “𝑘1”, is instead
translated as an Insert to Table1_Cache of ⟨𝑘1, 𝑣1.2, 𝑓 𝑎𝑙𝑠𝑒, 12⟩.

Listing 2 presents an example of an Update rule (PostgreSQL’s
syntax) on𝑇𝑎𝑏𝑙𝑒1 of Figure 3, where MY_TXID is the session variable
that contains the transaction’s identifier. In detail, we capture an
Update to the view Table1 (line 3) and redirect it as new Insert(s)
to the respective cache, Table1_Cache (lines 6, 7). If the same trans-
action attempts to update the same row twice, we update the one
previously inserted by it (lines 10, 11). Insert and Delete follow a
similar implementation, with the only difference being that Delete
inserts rows with the deleted flag set to true.

The flexibility of TiQuE, which enables slightly different imple-
mentations for each transaction, allows the option of buffering
writes in the client just until the commit operation (Section 3.2.3),
reducing round-trips. This precludes that a transaction reads its
own writes but is admissible as many transactional applications
do not in fact try to do it as they proceed in two separate steps:
first, reading from existing data and then performing the updates.
This is the case, for instance, in TPC-C [88]. This technique is also
employed by data stores such as Spanner [49].

2277

Listing 2: Definition of a rule over Updates (PostgreSQL).

1 CREATE RULE "update_rule" AS
2 -- capture updates to view 'Table1' ...
3 ON UPDATE TO Table1
4 DO INSTEAD
5 -- ... and perform new inserts to 'Table1_Cache'
6 INSERT INTO Table1_Cache
7 VALUES (NEW.k, NEW.v, FALSE, MY_TXID)
8 -- replace previous inserts/updates/deletes
9 -- performed by this transaction
10 ON CONFLICT (k, txid)
11 DO UPDATE SET v = EXCLUDED.v, deleted = FALSE;

Listing 3: Transaction validation for Table1.

1 SELECT EXISTS(-- returns 'true' if there are conflicts
2 SELECT 1
3 FROM (-- select the transaction's write-set
4 SELECT k
5 FROM Table1_Cache
6 WHERE txid = MY_TXID
7) WS
8 -- join by primary key to find potential conflicts
9 JOIN Table1_Cache C ON C.k = WS.k
10 -- get the metadata of the potential conflicts
11 JOIN Txn ON Txn.txid = C.txid
12 -- it's a conflict if it ended during this txn's runtime
13 WHERE Txn.cts > MY_STS and Txn.cts < MY_CTS
14 -- and committed or currently committing
15 AND (Txn.status = 'T' OR Txn.status = 'C')
16);

2.3.4 Certification and commit. Our Commit procedure can be
divided into three main steps: obtaining the commit timestamp; per-
forming write-set certification, in which the transaction’s writes are
compared against all non-stable data committed after it started; and
durable confirmation of the transaction as committed or aborted.

The first step uses a monotonically increasing counter to assign
a commit timestamp (𝑐𝑡𝑠), stored in the transaction’s record on the
𝑇𝑥𝑛 table (Figure 4 5○, 6○). Note that we use two separate sequences
to generate the commit and starting timestamps. Although a single
onewould suffice for correction, it would block starting transactions
while another is committing, to prevent reads of uncommitted data.

In the second, certification, we validate that a transaction 𝑇 can
commit if there were no write-write conflicts with concurrent trans-
actions (Figure 4 7○). In this case, it means not having a new version
of some key in the write-set that was committed after 𝑇 started –
i.e., with a 𝑐𝑡𝑠 greater than its 𝑠𝑡𝑠 . Given that we store all data and
metadata using relations, the conflict detection algorithm is also
computed using SQL code. Using 𝑇𝑎𝑏𝑙𝑒1 of Figure 3, the existence
of conflicts can be computed with a join between 𝑇 ’s write-set and
the previously committed/currently committing data, as exempli-
fied in Listing 3, where MY_TXID, MY_CTS, and MY_STS are session
variables referring to 𝑇 ’s identifier, 𝑐𝑡𝑠 , and 𝑠𝑡𝑠 , respectively. In
detail, we determine𝑇 ’s write-set (lines 3-7), find potential conflicts
by joining by primary key (line 9), determine the potential conflicts’
metadata (line 11), and select only the data of the transactions that
ended during the runtime of 𝑇 (line 13) and either committed or
are committing (line 15). If the certification step for some table
returned any conflicts, we consider 𝑇 as aborted. If not, we repeat
the process for the other tables. If no conflicts are found for any
table, we consider 𝑇 as valid.

Note that by formulating the certification step as a SQL query,
it becomes eligible for optimization. For instance, in a distributed-
parallel system where data are partitioned by the application key
column, 𝑘 , execution of this step should naturally be executed in
parallel. Also note that the storage tables are not used in the certifi-
cation step, as data there is stable and therefore is guaranteed to be
committed after the transaction started, improving performance.

For the third and final step – i.e., mark the transaction as com-
mitted or aborted – we only need to set its status in Txn as “𝑇 ”
or “𝐴”, respectively (Figure 4 8○). As this is an atomic operation,
transactions in TiQuE are therefore also atomic. The current 𝑠𝑡𝑠
needs to be updated to make the newly committed data visible in
the snapshot of future transactions. As multiple transactions can
commit concurrently, we must ensure that 𝑠𝑡𝑠 advances monoton-
ically and only after all transactions with 𝑐𝑡𝑠 ≤ 𝑠𝑡𝑠 have finished.
To do this, a transaction𝑇 simply needs to wait until 𝑠𝑡𝑠 = 𝑐𝑡𝑠𝑇 − 1
and then setting 𝑠𝑡𝑠 to 𝑐𝑡𝑠𝑇 (Figure 4 9○). Since this can cause trans-
actions with long write-sets to delay other concurrent transactions,
one alternative would be to decouple the commit ordering from
the commit timestamp. However, we consider here only a single
timestamp to more easily describe our solution.

The flexibility of TiQuE also allows mitigating the possibility of
starvation due to long-running read-write transactions and the first-
committer-wins rule [71] with the option of assigning transactions
a priority flag: on a failed certification, instead of marking the
transaction as aborted, we refresh its starting timestamp and re-
execute it. Assuming that the key-set remains the same between
tries, the long-running transaction aborts, at most, once. We explore
this possibility in Section 4.3.4.

2.4 Checkpointing and recovery

2.4.1 Checkpointing. As TiQuE relies on storing multiple versions
of the same row, we employ a periodic checkpointing mechanism
that 1) moves the stable cache data to the storage and 2) removes
obsolete rows. This prevents large data storage overheads and keeps
the cache tables relatively small.

Stable data refers to the rows which have 𝑐𝑡𝑠 ≤ 𝜆, where 𝜆 is the
minimum 𝑠𝑡𝑠 of the set of running transactions, or the database’s
current 𝑠𝑡𝑠 if none is running, meaning they are included in the
history of every current and future transaction. When flushing the
stable cache data to the storage, we simply overwrite old versions,
as they are now obsolete. Likewise, we only flush the most recent
version of each stable row to the storage, as the others are not
readable anymore. If the most recent version of a row was marked
as deleted, we also do not flush it to the storage, in addition to
deleting the storage version (if present). After flushing, we delete
the stable rows from the cache. In addition to the cache tables, the
stable timestamp is also used to clean up the Txn metadata table.

Checkpointing does not require atomicity, therefore, we can
flush one row at a time and still ensure consistent snapshots. The
reason for this is that data being flushed will always be read first
from the cache, replacing storage versions currently being modi-
fied, thus precluding concurrency issues. Likewise, deleting stable
cache data does not require atomicity, as long as we delete them by
ascending 𝑐𝑡𝑠 order (another alternative is to first delete the older
versions from the cache tables and then delete the most recent

2278

ones). Although we can end up with a snapshot that contains, for
the same transaction, half of the data retrieved from the storage
and half retrieved from the cache, it will always contain completed
transactions – as stable cache data being deleted is guaranteed to
be persisted in the storage – and the view will prevent duplicate
versions. This property is important since it means that the check-
pointing operation has minimal impact on foreground load, as it
does not require blocking running transactions.

2.4.2 Recovery. The recovery process procedure runs upon restart
and relies on Txn table, working as follows: The first thing we do
is set the running (𝑠𝑡𝑎𝑡𝑢𝑠 = “𝑅”) and committing (𝑠𝑡𝑎𝑡𝑢𝑠 = “𝐶”)
transactions as aborted. Although committing transactions could
be salvaged, this simplifies the recovery and ensures the client that
their uncommitted transactions always abort in case of a crash;
Then, we set the 𝑠𝑡𝑠 value to the last committed 𝑐𝑡𝑠 . This ensures
that the committed transactions that were waiting to advance the
𝑠𝑡𝑠 are visible in the snapshot (to handle crashes between 8○ and 9○
of Figure 4); Finally, we also set the current 𝑐𝑡𝑠 to the last committed
𝑐𝑡𝑠 . This ensures that future transactions are able to advance, as
they must wait for the previous 𝑐𝑡𝑠 to be visible in 𝑇𝑥𝑛 in order to
proceed (to handle crashes between 5○ and 6○ of Figure 4).

2.5 Correctness argument

We argue that multi-row transactional execution under Snapshot
Isolation can be correctly ensured with two simple guarantees: 1)
atomic single-row writes respecting total order and 2) non-corrupt
single-row reads. Next, we provide the reasoning behind this as-
sumption, which is backed up by empirical testing in Section 4.1.

Atomic multi-row transactions in TiQuE mimic the ones found
in data stores usingwrite-ahead logging (WAL) [81]: writes, together
with the respective identifier, are added to append-only mediums
(Cache tables), while the transaction commit (or abort) is marked
at the end with another write (Txn table). As the commit marker is
a single row with the identifier, status, and timestamps, its write is
atomic according to 1), thus the transaction is by consequence also
atomic. Just likeWAL, data from transactions without the respective
commit marker are not recovered after a crash (Section 2.4.2).

Snapshot Isolation requires a transaction 𝑇𝑖 to be able to read
the most recent committed data if and only if it belongs to a trans-
action 𝑇𝑗 (𝑇𝑖 ≠ 𝑇𝑗) committed before 𝑇𝑖 started. TiQuE ensures this
by assigning transactions monotonically increasing start (𝑠𝑡𝑠) and
commit timestamps (𝑐𝑡𝑠). When some 𝑇𝑗 finishes, the current 𝑠𝑡𝑠
is incremented – with total order guarantees – to include 𝑇𝑗 .𝑐𝑡𝑠
(Section 2.3.4). When 𝑇𝑖 starts, the 𝑇𝑖 .𝑠𝑡𝑠 provided is thus guaran-
teed to include only data committed before that time (Listing 1, l.
17). This also avoids non-repeatable reads, as future commits are
not included. Likewise, dirty reads are also ignored, as data from a
non-committed𝑇𝑗 are filtered out by not having the commit marker
(Listing 1, l. 15). As for the most recent data requirement, this is
ensured by sorting the readable versions and selecting the first one
(Listing 1, l. 3, 4, 21), which also precludes primary key constraint
violations. These points rely on the ability to read uncorrupted data
from the Cache, Storage, and Txn tables, which is guaranteed by 2).

Finally, Snapshot Isolation states that 𝑇𝑖 can commit if and only
if there is no other𝑇𝑗 committed in𝑇𝑖 ’s interval and wrote data that
𝑇𝑖 also wrote. This is ensured by intersecting𝑇𝑖 ’s key-set (Listing 3,

Listing 4: Changesmade to the reads andwrites in application

code running under MonetDB with TiQuE (Python syntax).

1 # database schema
2 schema = { ... }
3 # dynamic snapshot generation
4 snapshot = lambda tablename, sts: f""" (
5 SELECT {columns(tablename, join=',')} -- e.g., k, v
6 FROM ...) as {tablename}_snapshot """
7 # reads (SELECT * FROM Table1 WHERE k <= 10)
8 cursor.execute(f"""SELECT *
9 FROM {snapshot('Table1', sts)} WHERE k <= 10""")
10 # writes (UPDATE Table1 SET v = v+1 WHERE k <= 10)
11 cursor.execute(f"""
12 INSERT INTO Table1_Cache SELECT k, v + 1, false, {cts}
13 FROM {snapshot('Table1', sts)} WHERE k <= 10""")

l. 3-9) with data whose 𝑐𝑡𝑠 ≤ 𝑇𝑖 .𝑠𝑡𝑠 (Listing 3, l. 13) while ignoring
data committing after 𝑇𝑖 .𝑐𝑡𝑠 , which conforms with the Snapshot
Isolation’s first-committer-wins rule.

3 IMPLEMENTATION

We implement TiQuE on MonetDB, which focuses on analytical
performance by employing a column-based storage architecture
and vectorized execution, among other design decisions [65].

3.1 Meeting requirements

3.1.1 Views, rules, and session variables. The implementation of
TiQuE in MonetDB is complicated by not having support for session
variables or rules. To work around this, we implement reads by
dynamically building the SQL queries with the identifier injected
into them. As for writes, we also manually convert them into new
inserts to the respective cache tables. Listing 4 shows an example
of the modifications we perform for the reads and writes.

3.1.2 Avoiding Update. As MonetDB does not support Updates on
the same columnwithout triggering concurrency-induced rollbacks,
using a single Txn table and performing successiveUpdateswas not
viable. Therefore, we split this table into one for each transaction
status (began, committing, committed, and aborted). This way, we
only rely on the Insert statement, which does not trigger conflicts.

3.1.3 Sequences. As the snapshot must advance sequentially, a
transaction needs to wait for the current 𝑠𝑡𝑠 to be equal to its 𝑐𝑡𝑠−1.
Our initial implementation simply relied on a MonetDB sequence
and actively waiting for the current 𝑠𝑡𝑠 to match 𝑐𝑡𝑠 − 1, which
meant successively querying the database. As expected, the active
wait, combined with the successive Selects, would lower scalabil-
ity. Our current solution addresses this by relying on MonetDB’s
powerful user defined functions [10] – in C – to generate sequences
and waiting using pthread conditions.

3.1.4 Unlogged tables. As most metadata (apart from the transac-
tion identifier and the commit timestamp) are not required after
the transactions that depend on them finish, we can rely on fast,
in-memory tables to store them. Given that MonetDB’s temporary
tables are constrained to the session they were created, we imple-
mented unlogged tables that offer the same functionality as regular
tables but without flushing to disk, meaning data is not persisted
on server restarts but write performance is greatly increased.

2279

3.1.5 Begin and Commit. As MonetDB, much like other systems
such as PostgreSQL, executes stored functions in a transactional
block, we had to rely on application code to implement the Com-
mit procedure, as otherwise we would not be able to read the
most recent Txn data while committing, which is critical for TiQuE.
Nonetheless, even if we had non-transactional procedures, we still
need to call begin() and commit() explicitly in the application
code, which is not ideal. Again, just like with reads and writes, this
can be avoided with a driver-level implementation.

3.2 Performance tuning

Finally, we consider tuning the combined application and TiQuE
workload. This is a key advantage of our proposal, as it allows data-
base system developers and administrators to tune the performance
of the transactional layer using common techniques and tools. To
make it a fairer comparison, native MonetDB also relies on the
optimizations described in Sections 3.2.1, 3.2.3, and 3.2.5.

3.2.1 Optimizer pipeline. The first thing we noticed was the fact
that our snapshot computation was considerably slower than the
native Select. Although we expect some overhead, our solution
was more than 10× slower than the baseline. We narrowed the
problem down to the Union All operator, as performing it with
two simple Selects resulted inmore than 9× the response time than
running a simple Select on its own. The cause was the considerably
large plans generated for queries with a Union All operator. After
testing various MonetDB optimizer pipelines [9], we found that the
minimal_fast yields the best results, making the Union All just
1.5× slower than the single Select.

3.2.2 OLTP and OLAP snapshots. We found the snapshot code in
Listing 1 to be the best alternative for transactional queries, i.e.,
queries that often retrieve only one or a few rows. However, using it
with analytical queries would not produce a good plan, even leading
to out-of-memory crashes. For those queries, we take advantage of
the possibility to use different formulations for the same query and
use a snapshot that separately processes each table and combines
the results, avoiding full-relation sorts.

3.2.3 Buffered writes. We also buffer a transaction’s writes in the
client and, at commit time, send them to the database to be applied.
This allows multiple writes in the same TiQuE transaction to be
flushed to disk simultaneously, which would otherwise not be pos-
sible as we rely on the auto-committed mode and cannot control
the flush manually. The downside is that a transaction is not able
to read the effect of its temporary writes. However, that is often
not needed, as is the case with TPC-C, thus, this is often done in
transactional systems [49].

3.2.4 Materialized write-set relation. To improve performance, we
use only a single in-memory relation to certify transactions, named
Write_Sets. This relation is comprised of two columns, one contain-
ing the transaction identifier and another containing the respective
table name (shortened) and primary key hashed as a single col-
umn (e.g., for an update to the TPC-C’s Order_line table, we might
have ⟨12, ℎ𝑎𝑠ℎ(𝑂𝐿.4.2.1234)⟩). While hashing reduces the cost of
conflict detection, it can lead to false conflicts, albeit with an incred-
ibly small probability with a good hash function as there are 264

combinations. Instead of inserting the write-set in the respective
cache tables, we first insert the write-set keys into theWrite_Sets
table, which is considerably faster. Now, as the entire write-set is
contained in a single table, we only need to perform the query in
Listing 3 for a single table, ensuring a faster certification.

3.2.5 Multi-column indexes. Next, still in the context of the read
performance, we found that filtering data by multiple primary key
columns was more expensive than filtering by just one. Although
MonetDB supports multi-column indexes, they are not quite op-
timized for multiple, low-cardinality columns. It so happens that
most TPC-C data are partitioned by warehouse and district, which
are repeated numerous times. While a future update might improve
this, for now, we rely on extra columns that contain the concate-
nation of the primary-key columns of their respective tables. This
reduces response time but incurs a larger storage overhead.

4 EVALUATION

We evaluate TiQuE qualitatively, by testing that it correctly en-
forces Snapshot Isolation and that it indeed takes advantage of
different execution plans in different settings. We then evaluate it
quantitatively by measuring its performance when compared to
baseline, OLAP-first MonetDB, general-purpose PostgreSQL, and
state-of-the-art HTAP SingleStore and TiDB.

4.1 Correctness evaluation

We validate the correction of TiQuE’s Snapshot Isolation by using
the Elle transactional consistency checker [2, 33], developed and
used by Jepsen in their database analyses [6]. Elle generates a work-
load with read and write operations on a key-value schema, where
the values are lists that receive successive appends. This type of
workload makes each key contain its entire update history, allowing
Elle the strongest inference rules. We then execute the workload
against TiQuE running over MonetDB, with auto-commit enabled
to not rely on MonetDB’s own isolation. Finally, the transactions’
results (reads and commit/abort outcome) are tagged with the wall
clock time and fed back to Elle, which performs inference analysis.

After several executions of 100k transactions and 8 clients, Elle
always returned {:valid? true}, meaning TiQuE passed the Snap-
shot Isolation consistency checks. Elle did report G2-item anom-
alies [28], also known as write-skews on disjoint read, but these
are expected, as Snapshot Isolation does not preclude them [39]. To
test the checker, if we do not use the transaction’s 𝑠𝑡𝑠 for reading
but instead rely on the most recent one, it returns the anomalies G0,
G1c, G-nonadjacent, and G-single, all not allowed by Snapshot
Isolation. Likewise, if we remove conflict detection and instead
commit all transactions, it also fails.

4.2 Execution plans

A key aspect of TiQuE, that demonstrates its usefulness beyond
simply being easier to develop or deploy, is the possibility of the
query planner optimizing the snapshot computation based on the
context it is used on. For instance, as OLTP workloads often rely
on reads of just one or a few rows, being able to push the filter(s)
used to the source tables reduces the amount of data materialized
and exploits underlying mechanisms such as indexes.

2280

Storage
(𝑘,𝑣)

Cache+Txn
(𝑘,𝑣,𝑑,𝑐)

𝜋∗,0→𝑑,0→𝑐
𝜎𝑐≤𝑠𝑡𝑠

𝜋∗

∪

𝜋∗,𝑟𝑎𝑛𝑘 (...)→𝑟𝑘

𝜎𝑟𝑘=1∧¬𝑑

𝜋𝑘,𝑣

(a) Regular snapshot

Storage
(𝑘,𝑣)

Cache+Txn
(𝑘,𝑣,𝑑,𝑐)

𝜎𝑘=1

𝜋∗,0→𝑑,0→𝑐

𝜎𝑘=1∧𝑐≤𝑠𝑡𝑠

𝜋∗

∪

𝜋∗,𝑟𝑎𝑛𝑘 (...)→𝑟𝑘

𝜎𝑟𝑘=1∧¬𝑑

𝜋𝑘,𝑣

(b) a) + filter 𝑘 = 1

Storage
(𝑘,𝑣)

𝜎𝑘=1

𝜋∗,0→𝑑,0→𝑐

𝜋∗,𝑟𝑎𝑛𝑘 (...)→𝑟𝑘

𝜎𝑟𝑘=1∧¬𝑑

𝜋𝑘,𝑣

(c) b) + empty Cache

Figure 6: Demonstration of how the logical snapshot plan is

optimized based on the query and data involved in MonetDB.

Based on the snapshot of Listing 1 and schema of Figure 3. The Cache join
with Txn is omitted to simplify the plans. 𝑑 is the deleted column, 𝑐 is the
cts column, and 𝑠𝑡𝑠 is the transaction’s start timestamp.

Figure 6a sketches the logical, relational algebra [45] plan based
on the snapshot computation of Listing 1 using the buffered write-
set optimization, meaning the Cache does not store temporary data.
To filter the snapshot by 𝑘 = 1, a naive implementation would
simply apply the selection after the entire snapshot is computed,
leading to the materialization of both tables. Instead, MonetDB
optimizes the query and pushes 𝑘 = 1 directly to both source tables,
as displayed by the plan in Figure 6b. In detail, 𝑘 = 1 is pushed down
before the projection in the Storage and appended to the existing
selection in the Cache. This means that, considering 𝑘 is unique,
the result of the union will end up materializing, at most, two rows,
which also reduces the complexity of the window ranking function.

MonetDB also supports a cost-based optimization model to im-
prove its query planning. This means that it is able to, for example,
completely prune a branch that is expected to not return any data.
This is particularly desirable for TiQuE as it allows to remove the
Cache table from the plan if it does not contain any rows, as illus-
trated in Figure 6c. A future improvement could further remove
the extra (unnecessary) computation done over the Storage table,
resulting in the same performance as the native read in this case.

4.3 Performance

In this section, we compare the transactional and analytical per-
formance of MonetDB with TiQuE against native MonetDB, Post-
greSQL,2 SingleStore,3 and TiDB.4 With native MonetDB, we will
evaluate the effective overhead and performance gain of imple-
menting transactions with the query engine. With PostgreSQL 14,
we will evaluate how TiQuE in an OLAP-first database stacks up
against a traditional row-based, OLTP-first database, in both trans-
actional and analytical workloads. We chose PostgreSQL because
it offers not only fast transactional performance, but is also able
to parallelize scans, aggregations, sorts, and even joins [16]. This
makes it a fairer comparison for analytical workloads compared to

2In PostgreSQL we use Repeatable Read, which is Snapshot Isolation in practice [15].
3SingleStore only supports the Read Committed isolation level [26]
4In TiDB we use Repeatable Read, which is also Snapshot Isolation [25].

using traditional database systems with limited or no parallelism,
such as MySQL 8. Finally, we use SingleStore 8.0.4 and TiDB 6.5.0
to evaluate how TiQuE compares to state-of-the-art HTAP sys-
tems. While TiDB ensures HTAP by keeping two copies of the data,
asynchronously replicating from the row store to the column store,
SingleStore uses a column store as the main storage and in-memory
row storage for recently modified data.

We manually optimized all systems independently for transac-
tional (TPC-C) and analytical (CH-benCHmark) workloads accord-
ing to best practices, such as creating indexes or optimizing system
parameters.5 One particular parameter optimization worth point-
ing out is that we changed TiDB’s default execution mode from
pessimistic to optimistic, as we found that the latter would achieve
higher transactional throughput (around 9%) in low-contention [24].
We also converted, in all systems, the floats to decimals, i.e., from
floating point to fixed precision. The reason is that MonetDB does
not parallelize aggregations with floating points, as computations
in different orders – inherent from parallel executions – can return
different results. In contrast, both TiDB and SingleStore parallelize
numerical computations independently of the underlying precision.

The transactional (Section 4.3.1), analytical (Section 4.3.2), and
long-running tests (Section 4.3.4) use a Google Cloud instance with
32 vCPUs (N1 Series), 32 GB RAM (with swap enabled), and 500
GB SSD. For the HTAP tests (Section 4.3.3) we also consider an
instance with extra memory (128 GB). All tests run over a TPC-C
dataset of 512 warehouses, which ensures the database does not fit
entirely into the memory of the 32 GB RAM instance.

4.3.1 Transactional workloads. We use the TPC-C workload [88]
to evaluate the overall transactional performance, namely, the
py-tpcc implementation.6 We run different numbers of clients
against each system, each with a duration of one minute. Each
client can access any warehouse, executing a transaction as soon
as the previous one finishes. We populate the database once at the
start, after which we execute a warmup run. Figures 7a and 7b show
the obtained throughput and abort rate, respectively.

Comparing first MonetDB with and without TiQuE shows the
advantages of using an efficient transactional manager. In terms
of throughput (Figure 7a), MonetDB with TiQuE reaches close to
1000× than the version without (average of 527×). As row-level
granularity is provided, TiQuE avoids false conflicts, leading to
more useful work being performed. On the other hand, the native
MonetDB’s abort rate is already at 49%with just 2 clients (Figure 7b).

Despite being the main limitation, false conflicts are not the only
one. MonetDB relies on auxiliary structures for fast performance,
such as hashes, that might be recomputed if there are modifications
to the table. AlthoughMonetDB reuses these hashes on a best-effort
basis (meaning a single write should not require its recalculation),
they might need to be recomputed, and the larger the table, the
more expensive the recomputations. This is not an issue for TiQuE,
as it redirects writes to the cache tables which are kept relatively
smaller, and writes to the storage tables are periodic. This is why
TiQuE with a single client ends up beating native MonetDB.7

5All configurations and their justifications are included in the companion artifact.
6https://github.com/apavlo/py-tpcc
7This only happens with relatively large datasets. With a smaller one (e.g., 1 warehouse
instead of 512) native MonetDB’s throughput beats TiQuE’s when using one client.

2281

https://github.com/apavlo/py-tpcc

0

250

500

750

1000

1250

1500

1 2 4 8 16 32

Th
ro

ug
hp

ut
 (t

x/
s)

Clients

PostgreSQL
MonetDB
MDB+TiQuE
SingleStore
TiDB

(a) Throughput

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6
Ab

or
t R

at
e

Clients

PostgreSQL
MonetDB
MDB+TiQuE
SingleStore
TiDB

(b) Abort rate

Figure 7: Performance comparison of TiQuE in a transac-

tional workload (TPC-C).

As for PostgreSQL, its throughput is on average 1.6× higher
than MonetDB with TiQuE (up to 2.7×). One of the main reasons
is that row storage outperforms column storage for simple reads
and writes [48]. We empirically found that MonetDB’s point reads
and writes are more than 300% and 50% slower than PostgreSQL’s,
respectively. However, TiQuE managed to considerably reduce the
difference in throughput between PostgreSQL and MonetDB, so we
see this as truly positive results.

Another positive result is that TiQuE manages to be competi-
tive in transactional workloads with SingleStore and TiDB HTAP
systems, even surpassing them. As these are distributed-first sys-
tems (although using single-node deployments) with emphasis on
scalability, it is expected some performance loss when compared to
TiQuE with a single-node data store such as MonetDB.

The second set of tests evaluates TiQuE under variable con-
tention. Variable contention with the TPC-C workload is done by
restricting the number of warehouses that can be accessed. The
results, plotted in Figure 8, start with all the warehouses available
(512) and exponentially limit the number to just one. The number
of clients is fixed at 32. To keep all data being used, 1% of the trans-
actions are redirected to any warehouse. We evaluate both TiDB
with the optimistic (TiDB-O) and pessimistic (TiDB-P) modes.

The throughput data in Figure 8a shows that contention increase
in TiQuE is indirectly correlated with performance, due to the
higher abort rate (Figure 8b), with the drop in performance be-
coming significant after 16 available warehouses (or after an abort
probability of 1

3). TiQuE and TiDB-Optimistic show similar results,
as both execute transactions optimistically, meaning more work is
wasted with more collisions. TiDB-Pessimistic, on the other hand,
relies on locking, which results in faster performance in high con-
tention. In this mode, TiDB first waits for the lock to be released
and then advances, thus only rollbacking on primary key violations.
Likewise, PostgreSQL also relies on locking for writes, but instead
of waiting and advancing after the lock is released, it waits and
aborts the transaction if the original lock holder succeeds. Single-
Store, which only provides the Read Committed isolation level,
takes longer to be affected by the high collision probability. Na-
tive MonetDB maintains the same performance throughout, as its
conflict detection is column-based.

0

250

500

750

1000

1250

1500

51
2

25
6

12
8 64 32 16 8 4 2 1

Th
ro

ug
hp

ut
 (t

x/
s)

Available Warehouses

PgSQL
MDB
TiQuE
SSDB
TiDB-O
TiDB-P

(a) Throughput

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

51
2

25
6

12
8 64 32 16 8 4 2 1

Ab
or

t R
at

e

Available Warehouses

PgSQL
MDB
TiQuE
SSDB
TiDB-O
TiDB-P

(b) Abort rate

Figure 8: Performance comparison of TiQuE in a workload

with variable contention (TPC-C with 32 clients). The x-axis
dictates the range of warehouses that can be used by 99% of the transactions.

4.3.2 Analytical workloads. We now evaluate the performance of
TiQuE in analytical workloads, namely with CH-benCHmark [47],
which performs queries similar to TPC-H over TPC-C data. We
run each query individually five times, sequentially, averaging the
response time. The database is populated once at the beginning,
and an OLTP run is executed to fill TiQuE’s cache tables. Figure 9a
displays the total average response time and Figure 9b the average
response time for each query.

Starting again by comparing both MonetDB versions, we see
that they display similar response times. Overall, TiQuE on Mon-
etDB increases response time by around 20%. Even though TiQuE’s
snapshot computation requires joining more tables and filtering
by timestamp, MonetDB is able to optimize them well enough.
This shows the viability of TiQuE, which is able to significantly
increase transactional performance with little impact on analytical
workloads, proving our initial thesis.

SingleStore and TiDB, both column stores, also report similar
results to TiQuE and MonetDB. Overall, TiQuE is 8% slower than
TiDB and 16% faster than SingleStore, demonstrating TiQuE is also
competitive with HTAP systems in analytical workloads.

PostgreSQL is, on the other hand, noticeably slower than the
columnar systems, being on average, 6× slower than TiQuE. Al-
though it is also able to exploit parallelism, it will be bounded by
data transfers between disk, memory, and CPU cache. The column
store engines, on the other hand, will retrieve considerably less
data, since they can exploit the fact that most queries will only
need a small subset of a table’s columns at a time. Furthermore,
in MonetDB specifically, the columnar representation is not only
applied to the storage layer but also to the in-memory represen-
tation, by using memory-mapped files. As data is represented by
consecutive C arrays of compressed primitive values, MonetDB
also maximizes data cache locality. This representation is also used
to exploit vectorization features offered by most CPUs, further
improving performance [65].

4.3.3 Hybrid workloads. Figure 1 plots the analytical response time
against the best transactional throughput of each system, according
to the results of Sections 4.3.2 and 4.3.1, respectively. We conclude
that, with both workloads running separately, TiQuE achieves a
balanced tradeoff between transactional throughput and analytical

2282

1210

166 203 236 188

0
100
200
300
400
500
600
700
800
900

1000
Pg

SQ
L

M
D

B

Ti
Q

uE

SS
D

B

Ti
DB

To
ta

l R
es

po
ns

e
Ti

m
e

(s
)

(a) Total time

349 214

0
15
30
45
60
75
90

105
120
135
150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R
es

p
o

n
se

 T
im

e
(s

)

Query

PostgreSQL
MonetDB
MonetDB+TiQuE
SingleStore
TiDB

(b) Time by query

Figure 9: Performance comparison of TiQuE in an analytical workload (CH-benCHmark).

response time, consistent with HTAP systems, while PostgreSQL
and native MonetDB only excel at OLTP or OLAP, respectively.

The next experiments evaluate TiQuE with concurrent OLTP
and OLAP workloads. In theory, TiQuE’s design should make the
transactional throughput behave the same, while the response time
of analytical workloads should slightly increase due to the snapshot
having to join more data. To measure this, we perform two types
of tests. The first one runs 6 fixed OLTP clients against a variable
number of OLAP clients – 0 to 6 – measuring the impact of analyti-
cal load on OLTP (3 minutes for each test). Each analytical client is
fixed to use at most 4 threads, meaning, at most, the system uses 30
of 32 threads (6 OLTP and 24 OLAP), avoiding CPU contention. The
second runs 6 fixed OLAP clients with 0 to 6 OLTP ones, measuring
the impact of transactional load on OLAP (the test ends when the
22 analytical queries have been executed). We use the 128GB RAM
instance for these tests, as this was found to be a limiting factor for
all systems with additional concurrency.

In Figure 10a, we observe that TiQuE’s OLTP throughput suffers
a relatively small decrease. Although the workloads do not contend
for either computation or memory, they still have to share the L3
cache, which is small (45MB) compared to the amounts of data be-
ing processed. Additionally, internal locking in MonetDB to ensure
data consistency also plays a part in the overall performance. Post-
greSQL, on the other hand, takes a hit of 50% in throughput with the
addition of one background analytical worker, descending to around
28% of the original throughput with the 6 OLAP clients. After 2
OLAP clients, PostgreSQL’s OLTP throughput ends up matching
TiQuE’s. Conversely, native MonetDB’s throughput stays close
to zero throughout the test, due to its aforementioned challenges
when dealing with transactional workloads. Both SingleStore and
TiDB behave similarly to each other, slowly decreasing operational
throughput with each new analytical background worker.

The second test (Figure 10b) shows that TiQuE’s OLAP perfor-
mance remains mostly constant with the increasing OLTP load,
with a minor increase in response time. Native MonetDB, although
starting with a faster execution than TiQuE, converges with it after
3 OLTP clients, as frequent direct updates on the base tables start
to impact analytical execution. PostgreSQL’s OLAP response time,
which is significantly higher, slowly increases with the growing
background transactional load. SingleStore and TiDB evolve com-
paratively with TiQuE, with TiDB starting slightly faster, which is
in accordance with the analytical results of Figure 9.

0

100

200

300

400

500

600

0 1 2 3 4 5 6

O
LT

P
Th

ro
ug

hp
ut

 (t
x/

s)

OLAP Clients

PostgreSQL
MonetDB
MDB+TiQuE
SingleStore
TiDB

(a) OLAP on OLTP

0

100

200

300

400

500

600

0 1 2 3 4 5 6O
LA

P
To

ta
l R

es
po

ns
e

Ti
m

e
(s

)

OLTP Clients

PostgreSQL
MonetDB
MDB+TiQuE
SingleStore
TiDB

(b) OLTP on OLAP

Figure 10: Impact of background OLAP load on OLTP and

background OLTP load on OLAP, using 128 GB of memory

(TPC-C and CH-benCHmark). a) and b) run with 6 fixed OLTP and
OLAP clients, respectively.

Both tests in Figure 10 let us conclude that, with sufficient hard-
ware resources, OLTP and OLAP workloads in TiQuE have rela-
tively little impact on each other’s performance. With enough load,
TiQuE ends up surpassing native MonetDB and PostgreSQL in both
workloads, proving to be a good option in HTAP.

To summarize, we execute a test where we scale both workloads
concurrently, using 1, 2, 4, 8, and 16 OLTP and OLAP clients (128
GB RAM). We set the number of analytical threads to 1, effectively
splitting in half the available CPU resources.8 Each number of
clients runs until all 22 OLAP queries have been completed.

The results in Figure 11, which plot the OLTP throughput based
on the total OLAP response time, show that TiQuE is able to scale
both workloads executing concurrently, competitive with HTAP
systems. PostgreSQL, on the other hand, displays an overall faster
transactional throughput but its analytical performance stagnates
and significantly declines after 8 clients. MonetDB exhibits an over-
all good analytical response time but a low transactional through-
put. At the maximum load, TiQuE is 7.8× faster than PostgreSQL at
OLAP, even surpassing native MonetDB’s analytical performance,
while being only 1.16× slower than PostgreSQL at OLTP.

8TiDB with 1 thread aborts analytical query 16 halfway through its execution, due to
a data transfer limit (see https://github.com/pingcap/tiflash/issues/3436).

2283

https://github.com/pingcap/tiflash/issues/3436

0

50

100

150

200

250

300

350

400

0102030405060

O
LT

P
Th

ro
ug

hp
ut

 (t
x/

s)

OLAP Total Response Time (min)

PostgreSQL
MonetDB
MDB+TiQuE
Singlestore
TiDB

Low
Low

High

High

Figure 11: Performance comparison of TiQuE in HTAP (TPC-

C and CH-benCHmark). Each test starts with 1 OLTP and 1 OLAP
clients (Low) and ends with 16 OLTP and 16 OLAP clients (High).

4.3.4 Long-running read-write transactions. The final set of tests
evaluates the performance of long-running, read-write transac-
tions (e.g., data-cleaning) in the current TiQuE implementation,
which executes optimistically. Since the first committer wins, long-
running transactions can successively rollback due to conflicts with
shorter ones. Our theory is that the priority flag provided by TiQuE
(Section 2.3.4) can mitigate this issue. To do so, we built a simple
benchmark that executes simple read-write transactions (half reads,
half writes) with a variable number of clients (each test runs for
30 seconds; transactions are retried if aborted), on a table with
10k rows. Of the 𝑛 clients scheduled, 𝑛 − 1 execute 10 operations,
while 1 executes 100× that. Figure 12a displays the overall through-
put, while Figure 12b displays the average response time of the
long-running transactions. We also use TiDB for comparison, as it
provides both optimistic (TiDB-O) and pessimistic (TiDB-P) modes.

Without the priority mode enabled on the long-running client, a
long-running transaction in TiQuE, just like with TiDB-optimistic,
takes the entire duration of the benchmark to complete with just one
regular client (Figure 12b), as the conflict probability is quite high.
Conversely, TiQuE’s priority mode causes the long-running trans-
actions to abort, at most, one time, behaving similarly to the TiDB
with locking. However, TiDB is faster, as although a transaction
might need to wait, it never needs to be retried. Although improving
long-running transactions, TiQuE’s priority mode causes a decrease
in the overall throughput (Figure 12a), as now short transactions are
the ones being aborted. As for the native MonetDB, long-running
transactions actually have the same success probability as regular
ones in this workload, given the first writer acquires a column lock.
This explains the irregular throughput and response time.

5 RELATEDWORK

Although transactional isolation has traditionally been a core part
of monolithic database management systems [5, 11, 12, 14, 18, 19],
there are multiple proposals to implement it also as a self-contained
layer on top of NoSQL or as part of layered NewSQL systems. A
key driver of innovation is the ability to support transactions in
mainly analytical or hybrid systems.

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32

Th
ro

ug
hp

ut
 (t

x/
s)

Clients

MonetDB
TiQuE
TiQuE-Priority
TiDB-O
TiDB-P

(a) Throughput

0

5

10

15

20

25

30

1 2 4 8 16 32

Lo
ng

-T
x

Re
sp

on
se

 T
im

e
(s

)

Clients

MonetDB
TiQuE
TiQuE-Priority
TiDB-O
TiDB-P

(b) Long-tx response time

Figure 12: Performance comparison of TiQuE in a simple

operational workload with long-running transactions.

Transactional layers for NoSQL systems. Transactional layers
for NoSQL stores extend the existing interface with transactional
demarcation and use different external custom-built components.
Some exploit the ability of the data store to hold multiple versions
of data items. Omid [41, 58] builds on HBase which natively of-
fers only single-row atomicity [4] and provides Snapshot Isolation
using a separate centralized manager for transaction validation.
HBaseSI [112] and the work by V. Padhye et al. [84] use HBase
tables to order transactions on commit. Likewise, Megastore [38]
adds transactions to Bigtable [44]. Others, such as CloudTPS [107]
and pH1 [46], do not require multi-version storage by managing
versions explicitly. In any case, none of the underlying data stores
provide query execution capabilities and, unlike TiQuE, manip-
ulation of transactional information in these systems is done by
custom hard-coded logic which cannot easily be changed or tuned
to particular workloads.

Distributed SQL and NewSQL. Distributed SQL and NewSQL
systems require distributed transaction management instead of or
in addition to a traditional implementation of transactions within
the buffer management layer. They rely on distributed consen-
sus [73, 83] for totally ordering transactions on commit for deter-
ministic certification [3, 13, 17, 22, 35, 49, 66, 94, 94, 100, 104, 108],
assume that different sites are responsible for updating different
data and then use two-phase commit for atomic commitment [29,
43, 49, 95, 100, 108], or resort to locking the entire read/write-
set [77, 102]. PolyphenyDB [105] extends transactional guarantees
to polystores, i.e., systems comprised of different database manage-
ment systems [97], but uses two-phase locking to handle conflicts
and requires all locks at the start. Moreover, it uses table or partition-
level locks [62]. In sharp contrast to all these proposals, TiQuE does
not require in-depth changes to the engine implementation and our
assumptions can also be met by distributed systems. Early work
has shown that a similar approach is useful for polystores [54].

Transactions for analytical processing. There is a body of
work targeting incremental updates with transactional guarantees
to large datasets, kept, for example, in cloud storage providers.
Percolator [86] provides reliable incremental updates to Bigtable
by implementing Snapshot Isolation with a client library and a
timestamp oracle. DeltaLakes [36] aims at providing incremental
updates to Parquet [106] files. Unlike TiQuE, these systems are

2284

adequate only for very large granularity updates. The implementa-
tion strategy of TiQuE, of using tables to store multiple versions
of data, also resembles the technique known as Slowly Changing
Dimensions [70]. This is however aimed at storing historical data
for queries over time. It does not do certification and thus does not
provide general-purpose isolation.

HTAP on separate data. Hybrid processing faces the core chal-
lenge of reconciling a row-based or N-ary Storage Model (NSM)
for transactional performance with a columnar or Decomposition
Storage Model (DSM) for analytics [48]. A common approach is
to support also columnar storage in traditional row-based sys-
tems [7, 74, 82, 90]. However, columnar tables often have fewer
features (e.g., Postgres C-Store [82] does not support updates or
deletes). Partition Attributes Across [30] (PAX) aims at the middle
ground between NSM and DSM by storing all fields of a record on
the same page but co-locating fields of the same column together.

HTAP by full replication. The problem can be circumvented by
using separate OLTP and OLAP systems and replicating data among
them using periodic Extract Transform Load (ETL) jobs [89]. As this
comes with the cost of managing two separate systems and manu-
ally handling replication, some solutions manage this architecture
as a whole. For instance, F1 Lightning [109], SAP HANA ATR [75],
and Databus [50] capture data modifications on an OLTP database
and asynchronously send them to OLAP replicas. TiDB [63] repli-
cates data from OLTP to an OLAP format with asynchronous log
replication in the Raft[83] protocol. BatchDB [80] is also similar,
but only stores one version per row in the OLAP database. Octo-
pusDB [52] takes this to the extreme and considers multiple copies
of the data on several layouts, named storage views, and the query
optimizer chooses the optimal one for a specific query. The main
drawback with these systems is that they require full copies of data
and the OLAP mirrors are often considerably staler in relation to
their OLTP counterparts, affecting real-time analytics. Additionally,
it increases the operational costs of managing multiple database
systems. This is however a testament to the difficulty in modifying
an existing storage engine for HTAP, that TiQuE addresses.

HTAP without full replication. Some proposals aim at dy-
namically managing partial copies in the same database system. A
hybrid architecture for operational reporting [93] assumes that past
data are more often read than updated, storing it in a DSM store,
but also stores recent operational data there in row format, for fast
inserts and real-time analytics. HyPer [67] and H2Tap [34] use mem-
ory copy-on-write to maintain transient OLAP snapshots. Oracle
In-Memory [72] keeps a copy of specific tables or table partitions in
a columnar format in-memory, which must be first materialized ei-
ther when the database starts or when the partition is first queried
(configurable). SingleStore [87], L-Store [92], and NoisePage [78]
store recently modified data in a row format and the remaining in
OLAP-optimized columnar format. Other systems change data lay-
out automatically based on the workload. Data Morphing [59] and
HYRISE [57] automatically organize pages similarly to PAX. Pelo-
ton [37, 85] and H2O [32] also move data between formats based on
the past workload. TiQuE has some similarities with these systems,
mainly in the management of data with different ages in different

structures and the ability to optimize young data for transactional
workloads, although without changing the storage engine.

Advanced transactional techniques. As executing large an-
alytical queries concurrently with short, operational transactions
in multi-versioned systems, independently of the storage model,
increases the volume of versions that must be managed, solutions
such as Diva [69], KVell+ [76], Steam[42], and SIRO[68] improve ob-
solete version purging and reduce the version lookup domain, thus
reducing memory requirements and read complexity. Although our
proof-of-concept relies on the keep everything until the oldest trans-
action approach for simplicity, it can also be adapted to support a
finer-grained garbage collection. Finally, there has been substan-
tial work to overcome some limitations imposed by the optimistic
execution model: To mitigate the amount of work wasted when con-
flicts are frequent, solutions such as batching and reordering [51]
and MRVs [53] reduce the abort probability; and solutions such as
TicToc [111] and Silo [103] have also been proposed to avoid the
impact of serial timestamp assignment on optimistic executions
under extreme loads [110].

6 CONCLUSIONS AND FUTUREWORK

Our key hypothesis underlying TiQuE is that transactional opera-
tions such as reconstructing the snapshot and validating conflicts,
in the context of a hybrid workload, are themselves challenging
data processing operations that benefit from an optimizing query
engine. Our results demonstrate this: First, we show that different
queries and execution plans should be chosen for metadata manip-
ulation for different workloads, in sharp contrast to the traditional
approach of hard-coding them in the buffer management layer.
This allows us, for instance, to easily provide a workaround for
the impact of long-lived updated transactions. Second, we improve
transactional performance in MonetDB precisely by exploiting the
ability to use optimized execution plans for the management of
transactional information itself. This allows us to obtain perfor-
mance results in the same order of magnitude as state-of-the-art
HTAP solutions with a fraction of the development effort.

These results open up interesting future possibilities: First, TiQuE
should be applicable to a wider range of distributed data processing
and NewSQL systems, that have limited or no transactional capa-
bilities. This should provide a path to hybrid processing without
the need for profound re-engineering to accommodate transactions.
Second, the resulting flexibility makes it interesting and feasible
to explore the possibility of supporting a wider range of isolation
criteria, ranging from transactional causal consistency [31, 79], to
even serializability [55], by themselves and in combination in the
same system. On the other hand, this vision would benefit from
improved meta-programming capabilities in database systems, such
as views, rules, triggers, and in general, the ability to intercept and
override significant events.

ACKNOWLEDGMENTS

Special thanks to the anonymous reviewers for their helpful feed-
back. This work is financed by National Funds through the Por-
tuguese funding agency, FCT – Fundação para a Ciência e a Tec-
nologia, within project LA/P/0063/2020.

2285

REFERENCES

[1] 2021. Snapshot Isolation in SQL Server. https://learn.microsoft.com/en-
us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server.

[2] 2022. Elle - Black-box transactional safety checker based on cycle detection.
https://github.com/jepsen-io/elle.

[3] 2022. Galera Cluster. https://galeracluster.com/.
[4] 2022. Hive Transactions. https://hbase.apache.org/acid-semantics.html.
[5] 2022. IBM Db2 Database. https://www.ibm.com/products/db2-database.
[6] 2022. Jepsen - Distributed Systems Safety Research. https://jepsen.io.
[7] 2022. MariaDB ColumnStore. https://mariadb.com/kb/en/mariadb-

columnstore/.
[8] 2022. MonetDB. https://www.monetdb.org/.
[9] 2022. MonetDB Documentation - Optimizer Pipelines. https:

//www.monetdb.org/documentation-Jan2022/admin-guide/performance-
tips/optimizer-pipelines/.

[10] 2022. MonetDB Documentation - User Defined Functions. https:
//www.monetdb.org/documentation-Jan2022/dev-guide/sql-extensions/user-
defined-functions/.

[11] 2022. MySQL. https://www.mysql.com/.
[12] 2022. Oracle Database. https://www.oracle.com/database/.
[13] 2022. Percona XtraDB Cluster. https://www.percona.com/software/mysql-

database/percona-xtradb-cluster.
[14] 2022. PostgreSQL. https://www.postgresql.org/.
[15] 2022. PostgreSQL Documentation – 13.2.2. Repeatable Read Isola-

tion Level. https://www.postgresql.org/docs/14/transaction-iso.html#XACT-
REPEATABLE-READ.

[16] 2022. PostgreSQL Documentation – 15. Parallel Query. https://www.postgresql.
org/docs/14/parallel-query.html.

[17] 2022. Riak Docs - Strong Consistency. https://docs.riak.com/riak/kv/latest/
developing/app-guide/strong-consistency/index.html.

[18] 2022. SQL Server. https://www.microsoft.com/sql-server.
[19] 2022. SQLite. https://www.sqlite.org/.
[20] 2023. Apache HBase 2.2.3 API - Increment. https://hbase.apache.org/2.2/

devapidocs/org/apache/hadoop/hbase/client/Increment.html.
[21] 2023. MongoDB Documentation - Transactions. https://www.mongodb.com/

docs/v6.0/core/transactions/.
[22] 2023. MySQL 8.0 Reference Manual - Chapter 18.1.1.2 Group Replication.

https://dev.mysql.com/doc/refman/8.0/en/group-replication-summary.html.
[23] 2023. MySQL Documentation - 15.7.2.3 Consistent Nonlocking Reads. https:

//dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html.
[24] 2023. PingCAP Docs - TiDB Optimistic Transaction Model. https://docs.pingcap.

com/tidb/v6.5/optimistic-transaction.
[25] 2023. PingCAP Docs - TiDB Transaction Isolation Levels. https://docs.pingcap.

com/tidb/6.5/transaction-isolation-levels.
[26] 2023. SingleStore Docs - Durability. https://docs.singlestore.com/db/v8.0/en/

introduction/faqs/durability.html.
[27] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends® in Databases 5, 3 (2013), 197–280.
https://doi.org/10.1561/1900000024

[28] Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized isolation level
definitions. In Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073). IEEE, 67–78.

[29] Marcos K Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos
Karamanolis. 2007. Sinfonia: a new paradigm for building scalable distributed
systems. ACM SIGOPS Operating Systems Review 41, 6 (2007), 159–174.

[30] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance.. In VLDB, Vol. 1. 169–180.

[31] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. 2016. Cure:
Strong Semantics Meets High Availability and Low Latency. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS). 405–414.
https://doi.org/10.1109/ICDCS.2016.98

[32] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: a
hands-free adaptive store. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 1103–1114.

[33] Peter Alvaro and Kyle Kingsbury. 2020. Elle: Inferring Isolation Anomalies
from Experimental Observations. Proc. VLDB Endow. 14, 3 (2020), 268–280.
https://doi.org/10.5555/3430915.3442427

[34] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Aila-
maki. 2017. The case for heterogeneous HTAP. In 8th Biennial Conference on
Innovative Data Systems Research.

[35] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-monotonic
snapshot isolation: Scalable and strong consistency for geo-replicated transac-
tional systems. In 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems. IEEE, 163–172.

[36] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu,
Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja
Łuszczak, et al. 2020. Delta lake: high-performance ACID table storage over
cloud object stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411–
3424.

[37] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the
archipelago between row-stores and column-stores for hybrid workloads. In
Proceedings of the 2016 International Conference on Management of Data. 583–
598.

[38] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In Proceedings of the Conference on Innovative Data system Research
(CIDR). 223–234. http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

[39] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. 1995. A critique of ANSI SQL isolation levels. ACM SIGMOD
Record 24, 2 (1995), 1–10.

[40] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley Reading.

[41] Edward Bortnikov, Eshcar Hillel, Idit Keidar, Ivan Kelly, Matthieu Morel, Sameer
Paranjpye, Francisco Perez-Sorrosal, and Ohad Shacham. 2017. Omid, Reloaded:
Scalable and {Highly-Available} Transaction Processing. In 15th USENIX Con-
ference on File and Storage Technologies (FAST 17). 167–180.

[42] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
garbage collection for in-memory MVCC systems. Proceedings of the VLDB
Endowment 13, 2 (2019), 128–141.

[43] Prima Chairunnanda, Khuzaima Daudjee, and M Tamer Özsu. 2014. ConfluxDB:
Multi-master replication for partitioned snapshot isolation databases. Proceed-
ings of the VLDB Endowment 7, 11 (2014), 947–958.

[44] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS) 26, 2 (2008), 1–26.

[45] Edgar F Codd. 2002. A relational model of data for large shared data banks. In
Software pioneers. Springer, 263–294.

[46] Fábio André Castanheira Luís Coelho, Francisco Miguel Barros da Cruz, Ri-
cardo Manuel Pereira Vilaça, José Orlando Pereira, and Rui Carlos Mendes de
Oliveira. 2014. pH1: a transactional middleware for NoSQL. In 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems. IEEE, 115–124.

[47] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Ste-
fan Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel
Poess, et al. 2011. The mixed workload CH-benCHmark. In Proceedings of the
Fourth International Workshop on Testing Database Systems. 1–6.

[48] George P Copeland and Setrag N Khoshafian. 1985. A decomposition storage
model. Acm Sigmod Record 14, 4 (1985), 268–279.

[49] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed
database. ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[50] Shirshanka Das, Chavdar Botev, Kapil Surlaker, Bhaskar Ghosh, Balaji Varadara-
jan, Sunil Nagaraj, David Zhang, Lei Gao, Jemiah Westerman, Phanindra Ganti,
et al. 2012. All aboard the Databus! Linkedin’s scalable consistent change data
capture platform. In Proceedings of the third ACM symposium on cloud computing.
1–14.

[51] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Con-
currency Control through Transaction Batching and Operation Reordering.
Proc. VLDB Endow. 12, 2 (oct 2018), 169–182. https://doi.org/10.14778/3282495.
3282502

[52] Jens Dittrich and Alekh Jindal. 2011. Towards a One Size Fits All Database
Architecture.. In CIDR. Citeseer, 195–198.

[53] Nuno Faria and José Pereira. 2023. MRVs: Enforcing Numeric Invariants in
Parallel Updates to Hotspots with Randomized Splitting. Proc. ACM Manag.
Data 1, Article 43 (May 2023). https://doi.org/10.1145/3588723

[54] Nuno Faria, José Pereira, Ana Nunes Alonso, and Ricardo Vilaça. 2022. Towards
Generic Fine-Grained Transaction Isolation in Polystores. InHeterogeneous Data
Management, Polystores, and Analytics for Healthcare. Springer International
Publishing.

[55] Alan Fekete. 2018. Serializable Snapshot Isolation. In Encyclopedia of Data-
base Systems, Ling Liu and M. Tamer Özsu (Eds.). Springer, 3476–3479. https:
//doi.org/10.1007/978-1-4614-8265-9_80774

[56] Jim Gray and Andreas Reuter. 1992. Transaction processing: concepts and tech-
niques. Elsevier.

[57] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux, and Samuel Madden. 2010. HYRISE: a main memory hybrid storage
engine. Proceedings of the VLDB Endowment 4, 2 (2010), 105–116.

[58] Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam
Yabandeh. 2014. Omid: Lock-free transactional support for distributed data
stores. In 2014 IEEE 30th Intl. Conf. on Data Engineering. 676–687. https:

2286

https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://github.com/jepsen-io/elle
https://galeracluster.com/
https://hbase.apache.org/acid-semantics.html
https://www.ibm.com/products/db2-database
https://jepsen.io
https://mariadb.com/kb/en/mariadb-columnstore/
https://mariadb.com/kb/en/mariadb-columnstore/
https://www.monetdb.org/
https://www.monetdb.org/documentation-Jan2022/admin-guide/performance-tips/optimizer-pipelines/
https://www.monetdb.org/documentation-Jan2022/admin-guide/performance-tips/optimizer-pipelines/
https://www.monetdb.org/documentation-Jan2022/admin-guide/performance-tips/optimizer-pipelines/
https://www.monetdb.org/documentation-Jan2022/dev-guide/sql-extensions/user-defined-functions/
https://www.monetdb.org/documentation-Jan2022/dev-guide/sql-extensions/user-defined-functions/
https://www.monetdb.org/documentation-Jan2022/dev-guide/sql-extensions/user-defined-functions/
https://www.mysql.com/
https://www.oracle.com/database/
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.postgresql.org/
https://www.postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ
https://www.postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ
https://www.postgresql.org/docs/14/parallel-query.html
https://www.postgresql.org/docs/14/parallel-query.html
https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html
https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html
https://www.microsoft.com/sql-server
https://www.sqlite.org/
https://hbase.apache.org/2.2/devapidocs/org/apache/hadoop/hbase/client/Increment.html
https://hbase.apache.org/2.2/devapidocs/org/apache/hadoop/hbase/client/Increment.html
https://www.mongodb.com/docs/v6.0/core/transactions/
https://www.mongodb.com/docs/v6.0/core/transactions/
https://dev.mysql.com/doc/refman/8.0/en/group-replication-summary.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://docs.pingcap.com/tidb/v6.5/optimistic-transaction
https://docs.pingcap.com/tidb/v6.5/optimistic-transaction
https://docs.pingcap.com/tidb/6.5/transaction-isolation-levels
https://docs.pingcap.com/tidb/6.5/transaction-isolation-levels
https://docs.singlestore.com/db/v8.0/en/introduction/faqs/durability.html
https://docs.singlestore.com/db/v8.0/en/introduction/faqs/durability.html
https://doi.org/10.1561/1900000024
https://doi.org/10.1109/ICDCS.2016.98
https://doi.org/10.5555/3430915.3442427
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
https://doi.org/10.14778/3282495.3282502
https://doi.org/10.14778/3282495.3282502
https://doi.org/10.1145/3588723
https://doi.org/10.1007/978-1-4614-8265-9_80774
https://doi.org/10.1007/978-1-4614-8265-9_80774
https://doi.org/10.1109/ICDE.2014.6816691

//doi.org/10.1109/ICDE.2014.6816691
[59] Richard A Hankins and Jignesh M Patel. 2003. Data morphing: An adaptive,

cache-conscious storage technique. In Proceedings 2003 VLDB Conference. Else-
vier, 417–428.

[60] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. 2008. OLTP through the Looking Glass, and What We Found There.
In Proceedings of the 2008 ACM SIGMOD Intl. Conf. on Management of Data
(Vancouver, Canada) (SIGMOD ’08). Association for Computing Machinery,
New York, NY, USA, 981–992. https://doi.org/10.1145/1376616.1376713

[61] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Archi-
tecture of a Database System. Found. Trends Databases 1, 2 (Feb. 2007), 141–259.
https://doi.org/10.1561/1900000002

[62] Marc Hennemann andMarc Vogt. 2022. Polypheny-DB Repository - Pull request
408: Refactor Transaction Locking. https://github.com/polypheny/Polypheny-
DB/pull/408.

[63] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[64] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-Free Coordination for Internet-Scale Systems. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference (Boston,
MA) (USENIXATC’10). USENIX Association, USA, 11.

[65] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten. 2012.
MonetDB: Two decades of research in column-oriented database. IEEE Data
Engineering Bulletin (2012).

[66] Bettina Kemme and Gustavo Alonso. 2000. Don’t be lazy, be consistent: Postgres-
R, a new way to implement database replication. In VLDB. Citeseer, 134–143.

[67] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP OLAP
main memory database system based on virtual memory snapshots. In 2011
IEEE 27th Intl. Conf. on Data Engineering. 195–206. https://doi.org/10.1109/
ICDE.2011.5767867

[68] Jongbin Kim, Hyunsoo Cho, Kihwang Kim, Jaeseon Yu, Sooyong Kang, and
Hyungsoo Jung. 2020. Long-lived transactions made less harmful. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data.
495–510.

[69] Jongbin Kim, Jaeseon Yu, Jaechan Ahn, Sooyong Kang, and Hyungsoo Jung.
2022. Diva: Making MVCC Systems HTAP-Friendly. In Proceedings of the 2022
International Conference on Management of Data. 49–64.

[70] Ralph Kimball. 2008. Slowly Changing Dimensions, Part 2. https://www.
kimballgroup.com/2008/09/slowly-changing-dimensions-part-2/.

[71] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[72] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
2015. Oracle database in-memory: A dual format in-memory database. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1253–1258.

[73] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (2001), 51–58.

[74] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-time analytical processing
with SQL server. Proceedings of the VLDB Endowment 8, 12 (2015), 1740–1751.

[75] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun
Cha, and Wook-Shin Han. 2017. Parallel replication across formats in SAP
HANA for scaling out mixed OLTP/OLAP workloads. Proceedings of the VLDB
Endowment 10, 12 (2017), 1598–1609.

[76] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2020.
Kvell+: Snapshot isolation without snapshots. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 425–441.

[77] Justin Levandoski, David Lomet, and Kevin Keliang Zhao. 2011. Deuteronomy:
Transaction support for cloud data. In Conference on innovative data systems
research (CIDR).

[78] Tianyu Li, Matthew Butrovich, Amadou Ngom, Wan Shen Lim, Wes McKinney,
and Andrew Pavlo. 2020. Mainlining Databases: Supporting Fast Transactional
Workloads on Universal Columnar Data File Formats. Proc. VLDB Endow. 14, 4
(dec 2020), 534–546. https://doi.org/10.14778/3436905.3436913

[79] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.
2011. Don’t settle for eventual: Scalable causal consistency for wide-area storage
with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 401–416.

[80] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for
interactive applications. In Proceedings of the 2017 ACM International Conference
on Management of Data. 37–50.

[81] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. 1992. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM

Transactions on Database Systems (TODS) 17, 1 (1992), 94–162.
[82] Hadi Moshayedi. 2014. PostgreSQL Columnar Store for Analytic Workloads.

https://www.citusdata.com/blog/2014/04/03/columnar-store-for-analytics/.
[83] Diego Ongaro and John Ousterhout. 2014. In search of an understandable

consensus algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC
14). 305–319.

[84] Vinit Padhye and Anand Tripathi. 2013. Scalable transaction management
with snapshot isolation for NoSQL data storage systems. IEEE Transactions on
Services Computing 8, 1 (2013), 121–135.

[85] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017.
Self-Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[86] Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using
distributed transactions and notifications. (2010).

[87] Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen,
Evan Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, et al. 2022. Cloud-
Native Transactions and Analytics in SingleStore. In Proceedings of the 2022
International Conference on Management of Data. 2340–2352.

[88] F Raab. 1993. Overview of the TPC benchmark C: a complex OLTP benchmark.
Chapter 3 (1993), 131–267.

[89] Ravishankar Ramamurthy, David J DeWitt, and Qi Su. 2003. A case for fractured
mirrors. The VLDB Journal 12, 2 (2003), 89–101.

[90] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. 2013. DB2 with BLU acceleration: So much more than just
a column store. Proceedings of the VLDB Endowment 6, 11 (2013), 1080–1091.

[91] David Patrick Reed. 1978. Naming and synchronization in a decentralized com-
puter system. Ph.D. Dissertation. Massachusetts Institute of Technology.

[92] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and
Mustafa Canim. 2018. L-Store: A Real-time OLTP and OLAP System. https:
//doi.org/10.5441/002/edbt.2018.65

[93] Jan Schaffner, Anja Bog, Jens Krüger, and Alexander Zeier. 2008. A hybrid row-
column OLTP database architecture for operational reporting. In International
Workshop on Business Intelligence for the Real-Time Enterprise. Springer, 61–74.

[94] Dharma Shukla. 2018. Azure Cosmos DB: Pushing the frontier of globally
distributed databases. https://azure.microsoft.com/pt-pt/blog/azure-cosmos-
db-pushing-the-frontier-of-globally-distributed-databases/.

[95] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. 2011. Transac-
tional storage for geo-replicated systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. 385–400.

[96] Michael Stonebraker. 1987. The Design of the POSTGRES Storage System. In
Proceedings of the 13th Intl. Conf. on Very Large Data Bases (VLDB ’87). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 289–300.

[97] Michael Stonebraker. 2015. The Case for Polystores. ACM SIGMOD Blog. (2015).
https://wp.sigmod.org/?p=1629

[98] Michael Stonebraker and Uĝur Çetintemel. 2018. " One size fits all" an idea
whose time has come and gone. In Making Databases Work: the Pragmatic
Wisdom of Michael Stonebraker. 441–462.

[99] Hironobu Suzuki. 2021. The Internals of PostgreSQL: Chapter 5 Concurrency
Control. Retrieved 2022-10-14 from https://www.interdb.jp/pg/pgsql05.html

[100] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
CockroachDB: The resilient geo-distributed SQL database. In Proceedings of the
2020 ACM SIGMOD International Conference onManagement of Data. 1493–1509.

[101] Dixin Tang, Hao Jiang, and Aaron J. Elmore. 2017. Adaptive Concurrency
Control: Despite the Looking Glass, One Concurrency Control Does Not Fit
All. In 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017. www.cidrdb.org. http://cidrdb.org/
cidr2017/papers/p63-tang-cidr17.pdf

[102] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transactions for parti-
tioned database systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1–12.

[103] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. 18–32.

[104] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052.

[105] Marco Vogt, Nils Hansen, Jan Schönholz, David Lengweiler, Isabel Geissmann,
Sebastian Philipp, Alexander Stiemer, and Heiko" Schuldt. 2021. Polypheny-DB:
Towards Bridging the Gap Between Polystores and HTAP Systems. In Het-
erogeneous Data Management, Polystores, and Analytics for Healthcare, Vijay
"Gadepally, TimothyMattson, Michael Stonebraker, Tim Kraska, FushengWang,
Gang Luo, Jun Kong, and Alevtina Dubovitskaya (Eds.). Springer International
Publishing, Cham, 25–36.

2287

https://doi.org/10.1109/ICDE.2014.6816691
https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1561/1900000002
https://github.com/polypheny/Polypheny-DB/pull/408
https://github.com/polypheny/Polypheny-DB/pull/408
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://www.kimballgroup.com/2008/09/slowly-changing-dimensions-part-2/
https://www.kimballgroup.com/2008/09/slowly-changing-dimensions-part-2/
https://doi.org/10.14778/3436905.3436913
https://www.citusdata.com/blog/2014/04/03/columnar-store-for-analytics/
https://doi.org/10.5441/002/edbt.2018.65
https://doi.org/10.5441/002/edbt.2018.65
https://azure.microsoft.com/pt-pt/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://azure.microsoft.com/pt-pt/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://wp.sigmod.org/?p=1629
https://www.interdb.jp/pg/pgsql05.html
http://cidrdb.org/cidr2017/papers/p63-tang-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p63-tang-cidr17.pdf

[106] Deepak Vohra. 2016. Apache parquet. In Practical Hadoop Ecosystem. Springer,
325–335.

[107] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. 2011. CloudTPS: Scalable
transactions for Web applications in the cloud. IEEE Transactions on Services
Computing 5, 4 (2011), 525–539.

[108] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,
Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-latency transaction pro-
cessing for globally-distributed data. In Proceedings of the 2018 International
Conference on Management of Data. 231–243.

[109] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service.
Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

[110] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Con-
trol with One Thousand Cores. Proc. VLDB Endow. 8, 3 (nov 2014), 209–220.
https://doi.org/10.14778/2735508.2735511

[111] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tic-
Toc: Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016
Intl. Conf. on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 1629–1642.
https://doi.org/10.1145/2882903.2882935

[112] Chen Zhang and Hans De Sterck. 2011. HBaseSI: Multi-row distributed trans-
actions with global strong snapshot isolation on clouds. Scalable Computing:
Practice and Experience 12, 2 (2011), 209–226.

2288

https://doi.org/10.14778/2735508.2735511
https://doi.org/10.1145/2882903.2882935

	Abstract
	1 Introduction
	2 Transactions in the Query Engine
	2.1 Assumptions
	2.2 Schema translation
	2.3 Operation translation
	2.4 Checkpointing and recovery
	2.5 Correctness argument

	3 Implementation
	3.1 Meeting requirements
	3.2 Performance tuning

	4 Evaluation
	4.1 Correctness evaluation
	4.2 Execution plans
	4.3 Performance

	5 Related work
	6 Conclusions and Future work
	Acknowledgments
	References

