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ABSTRACT
Real-world graphs are often dynamic and evolve over time. It is cru-
cial for storing and querying a graph’s evolution in graph databases.
However, existing works either suffer from high storage overhead
or lack efficient temporal query support, or both. In this paper, we
propose AeonG, a new graph database with built-in temporal sup-
port. AeonG is based on a novel temporal graph model. To fit this
model, we design a storage engine and a query engine. Our storage
engine is hybrid, with one current storage to manage the most
recent versions of graph objects, and another historical storage to
manage the previous versions of graph objects. This separation
makes the performance degradation of querying the most recent
graph object versions as slight as possible. To reduce the histori-
cal storage overhead, we propose a novel anchor+delta strategy, in
which we periodically create a complete version (namely anchor)
of a graph object, and maintain every change (namely delta) be-
tween two adjacent anchors of the same object. To boost temporal
query processing, we propose an anchor-based version retrieval
technique in the query engine to skip unnecessary historical ver-
sion traversals. Extensive experiments are conducted on both real
and synthetic datasets. The results show that AeonG achieves up to
5.73× lower storage consumption and 2.57× lower temporal query
latency against state-of-the-art approaches, while introducing only
9.74% performance degradation for supporting temporal features.
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1 INTRODUCTION
Graphs are prevalent to model relationships between real-world
entities. Many graph databases, such as Neo4j [1], ArangoDB [2],
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Figure 1: The Evolution of a Customer Purchase Graph

Dgraph [3], and Memgraph [4], are developed to manage graph
data efficiently. Despite the fact that real-world graphs are often dy-
namic and evolve over time, these databases are typically designed
to manage up-to-date graph data: when a graph changes, the data-
base only stores the current (latest) state of the graph, i.e., the most
recent values of vertices and edges, while discarding any previous
(historical) state. However, time-evolving (temporal) graph data,
which contains both the latest and historical states of a graph, is im-
portant in many applications, such as financial fraud detection [5],
traffic prediction in road networks [6], etc.

Example 1. Figure 1 shows the evolution of a customer purchase
graph, where customers, bank accounts, phones, and transactions
are modeled as entities, and the relationships between entities are
modeled as edges. The phone logs its location during various activ-
ities, such as receiving a message or web browsing. Each customer
purchase invokes a transaction to update the account balance and
record the location where it occurs. Let us assume that at time 𝑡𝑛 ,
a customer named Jack has an account balance of $390, and his
phone’s location falls in Singapore. We store a graph reflecting this
state, as shown in the left portion of Figure 1. Subsequently, at
time 𝑡𝑛+1 (one minute after 𝑡𝑛), Jack invokes a purchase transaction
totaling $300, resulting in a new graph state, as shown in the right
part of Figure 1. This transaction occurs in New York, identical
to the location of Jack’s phone, thus it appears to be legitimate.
However, when comparing the states of 𝑡𝑛+1 and 𝑡𝑛 , we observe
that Jack’s phone location changes from Singapore to New York
within one minute. Considering it is impossible for Jack to travel
such a distance so quickly, this transaction is likely fraudulent. We
would like to emphasize that changes in phone location alone are
not inherently suspicious. However, when such a location shift is
associated with a transaction, it warrants vigilance. As discussed
above, this potentially fraudulent activity can only be identified by
tracking the evolution of the graph structure over time. Therefore,
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Figure 2: Customer Purchase Graph with a Time Dimension

traditional graph databases, which only maintain the latest state at
𝑡𝑛+1, would fail to detect such fraudulent transactions. □

Thus far, various works have been proposed to manage temporal
graph data. Several proposals [7–13] assign each vertex or edge
in the graph with a timestamp property to reflect its lifespan, as
shown in Figure 2. Rather than discarding the previous state when
the graph changes, these approaches maintain both the current
and historical states in a single graph. For example, at time 𝑡𝑛+1,
two vertices of Jack’s phone coexist – one represents the previous
state with a time interval of [𝑡𝑛, 𝑡𝑛+1), and the other denotes the
current state with [𝑡𝑛+1, +∞). Consequently, they can detect fraud-
ulent transactions, as in Example 1, by identifying the irregular
sub-graph structure (highlighted in the red box) that indicates a
transaction proceeded with location inconsistency. However, in
these approaches where timestamps are treated as regular proper-
ties, executing temporal queries (which select data based on given
timestamps) often requires the traversal of the entire graph. As
the graph size inevitably increases due to the addition of historical
states, query efficiency can significantly degrade over time. An-
other line of research [14–23] manages time-evolving graph data
by periodically materializing the snapshots of the entire graph and
logging the deltas between two successive snapshots. Querying
a historical state in these methods requires first identifying the
nearest snapshot based on the timestamp, and then reconstructing
the complete graph state using the snapshot and associated deltas.
Therefore, these methods incur substantial storage overhead due to
the maintenance of complete snapshots, and can lead to sub-optimal
query performance because of the historical state reconstruction.

Our goal is to design a graph database for efficient temporal
graph data management. However, achieving this requires address-
ing three key challenges to minimize storage overhead and facilitate
swift temporal query processing. First, as the volume of histori-
cal graph states continuously escalates, achieving minimal storage
overhead is not straightforward❶. Second, given the considerable
amount of historical states, it is not trivial to process temporal
queries efficiently while upholding data consistency ❷. Lastly, the
database needs native temporal support to enable users to conve-
niently access temporal graph data❸.

In this paper, we propose AeonG, a new graph database that effi-
ciently offers built-in temporal support. By integrating the widely-
accepted static property graph model [24–27] with a time dimen-
sion, we first define a temporal property graphmodel to formalize the
representation and manipulation of temporal graph data. Guided

by this model, we then extend the common graph database architec-
ture to design AeonG. In particular, we enhance the storage engine,
query language, and query engine, with efficient temporal support.
We build a hybrid storage engine❶, constituting the current storage
and historical storage, to store temporal graph data with minimal
storage overhead. This engine maintains multiple versions for each
vertex and edge, with the most recent versions retained in the cur-
rent storage and previous versions in the historical storage. We
integrate time dimensions into the data layout, and develop the
current storage based on the multi-version storage engine used in
various existing graph databases [2–4, 28–30]. We propose a novel
“anchor+delta” strategy to compactly organize historical data in
the historical storage. In particular, we periodically create a com-
plete version (namely anchor) of a graph object and maintain every
change (namely delta) between two consecutive anchors of the
same object to reduce the historical storage overhead. Moreover,
we introduce an asynchronous migration mechanism to transfer
outdated versions from the current storage to the historical storage.
Instead of synchronously migrating previous versions with every
update or deletion of a vertex/edge, we defer the migration until
the database’s periodic garbage collection is invoked [31]. This
mechanism ensures that the migration is non-intrusive, thereby
reducing the performance degradation caused by the maintenance
of temporal data.

We then present a temporal-enhanced query language❸, which
extends Cypher [25], a common-used graph query language, to
conveniently access temporal graph data. Building upon the hybrid
storage engine, we introduce a built-in temporal query engine❷. We
inherit two fundamental operations from existing graph databases,
namely scan and expand, and extend them to enable consistent and
efficient temporal query processing. We propose a unique anchor-
based version retrieval technique to minimize unnecessary histori-
cal version traversals in the scan and expand operators. Specifically,
we directly locate the nearest anchor that aligns with the given
query conditions, and apply the subsequent deltas on the obtained
anchors to reconstruct the desired version, thus minimizing the
historical version traversal overhead.

In summary, we make the following contributions:
• We present AeonG, a new graph database providing efficient

built-in temporal support. Built with a temporal-enhanced query
language, query engine, and storage engine, AeonG regards tem-
poral features as the first citizen, making it simple and intuitive
to manipulate temporal graph data.

• Wepropose a hybrid storage engine, which employs separate stor-
age engines with an “anchor+delta” strategy to reduce storage
overhead for historical data. We further introduce an asynchro-
nous migration strategy to minimize performance degradation
for maintaining temporal graph data.

• We design a temporal query engine, featuring an anchor-based
version retrieval technique, to provide consistent and efficient
temporal query processing with minimal historical version tra-
versal overhead.

• We implement AeonG based on Memgraph [4], a real-world
native graph database. We conduct extensive experiments on
both real and synthetic datasets, and compare AeonG against
two state-of-the-art temporal graph databases [7, 19]. The results
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demonstrate that AeonG achieves up to 5.73× lower storage
consumption and 2.57× lower latency for temporal queries, while
only introducing 9.74% performance degradation for supporting
temporal features.

2 MODELING AND QUERY LANGUAGE
In this section, we formulate the temporal graph model and present
the temporal query language used in AeonG.

2.1 Temporal Property Graph Model
We define the temporal graph model by extending the static prop-
erty graph model [24–27] with a time dimension. In the property
graph model, real-world entities are represented as vertices, and
the relationships between these entities are modeled as edges. Each
vertex or edge has a unique identifier (id for short), possibly several
labels (e.g., customer, phone), and properties (e.g., Name: Jack).

Definition 1 (Property Graph). LetN and E denote sets of vertex
ids and edge ids, respectively. Assume countable sets L, K , andV
of labels, property names, and property values. A property graph is
a tuple 𝐺 = ⟨𝑁, 𝐸, 𝜌, 𝜆, 𝜋⟩ where:
• 𝑁 is a finite subset of N , whose elements are referred to as the

vertices of 𝐺 ;
• 𝐸 is a finite subset of E, whose elements are referred to as the

edges of 𝐺 and 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁 ) is a total function mapping each edge to its

source and destination vertices;
• 𝜆 : (𝑁 ∪𝐸) → 2L is a total function mapping vertices and edges

to finite sets of labels (including the empty set);
• 𝜋 : (𝑁 ∪ 𝐸) × K → V is a finite partial function, mapping a

vertex/edge and a property key to a value.

The property graph model, originally designed for static graphs,
lacks the inherent ability to capture the evolution of graphs over
time. In the context of relational databases, the concept of “Trans-
action Time” [32] is proposed to bring a time dimension to the
relational model. This transaction time is created and maintained
by the database system itself, tracking the lifespan of each data
item within the system. Inspired by the transaction time, we inte-
grate the time dimension into the property graph model to formally
define the temporal property graph model.

Definition 2 (Temporal Property Graph). A temporal property
graph is a tuple 𝐺 = ⟨Ω, 𝑁 , 𝐸, 𝜌, 𝜆, 𝜋, 𝜎, 𝜏⟩ where:
• Ω is a temporal domain, which is a finite set of consecutive

timestamps, that is, Ω = {𝑖 ∈ 𝑇 |𝑎 ≤ 𝑖 ≤ 𝑏} for some 𝑎, 𝑏 ∈ 𝑇
such that 𝑎 ≤ 𝑏. 𝑇 represents the universe of time points;

• 𝑁 , 𝐸, 𝜌 , 𝜆, 𝜋 inherit their definitions from Definition 1;
• 𝜎 : (𝑁 ∪ 𝐸) × Ω → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is a total function that maps

a vertex or an edge and a time period 𝜔 to a Boolean variable,
indicating whether this vertex or edge exists during period 𝜔 ;

• 𝜏 : (𝑁 ∪𝐸) ×K ×Ω →V is a partial function that maps a vertex
or an edge and a property key, and a time period 𝜔 to a value.

Constraints. In our temporal property graph model, we im-
pose two constraints to enforce that the graph at any time point
corresponds to a valid property graph. At any time point 𝑡 : (1)
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Figure 3: A Running Example of Temporal Property Graphs

An edge exists only if both source and destination vertices exist
at 𝑡 . Formally, if 𝑒 ∈ 𝐸, 𝜎 (𝑒, 𝑡) = 𝑡𝑟𝑢𝑒 , and 𝜌 (𝑒) = (𝑣1, 𝑣2), then
𝜎 (𝑣1, 𝑡) = 𝑡𝑟𝑢𝑒 and 𝜎 (𝑣2, 𝑡) = 𝑡𝑟𝑢𝑒 ; (2) A property can only take on
a value during the time period when the corresponding vertex or
edge exists. Formally, if 𝜏 (𝑜, 𝑘, 𝑡) = 𝑣𝑎𝑙 , where 𝑜 ∈ (𝑁 ∪ 𝐸), 𝑘 ∈ K ,
𝑣𝑎𝑙 ∈ V , then 𝜎 (𝑜, 𝑡) = 𝑡𝑟𝑢𝑒 .

In our model, each graph object comprises multiple correspond-
ing versions, including one current/latest version and potentially
several historical versions. Unlike existing works such as T-GQL,
which assigns a time period to each graph object, our model as-
signs the time period to each version of a graph object (vertex or
edge). For example, as depicted in Figure 2, consider updating the
entity “Phone”. In existing models, this update results in retain-
ing two entire “Phone” vertices within the same graph, leading to
two redundant unchanged “Owns” edges. In contrast, we create a
new version of the “Phone” vertex and re-link the “Owns” edge to
this version, with changed attributes stored in the historical ver-
sion. Consequently, our model is less complex but more efficient
by avoiding the creation of redundant vertices and edges. At any
given time 𝑡 , a graph object version with 𝜔 = [𝑠𝑡, 𝑒𝑑) is said to be
legal if 𝑠𝑡 ≤ 𝑡 < 𝑒𝑑 . We classify a graph object version as a current
version if it is legal at the current time, and as a historical version
if it is not legal at the current time.

Graph operations. Our temporal model supports diverse graph
operations as follows. Assume these graph operations are issued
by a transaction committed at time 𝑡1.
• Creating a vertex or an edge: This involves adding a vertex or

edge with a current version having a time period 𝜔 = [𝑡1, +∞).
• Deleting a vertex or an edge whose current version is with 𝜔 =

[𝑠𝑡, +∞): This entails updating 𝜔 to [𝑠𝑡, 𝑡1).
• Updating a vertex or an edge whose current version is with

𝜔 = [𝑠𝑡, +∞): This marks the current version as a historical
version by updating 𝜔 to [𝑠𝑡, 𝑡1) and generates a new current
version with𝜔 = [𝑡1, +∞) representing the up-to-date semantics.
Example 2. According to Definition 2, we present the corre-

sponding temporal property graph of Example 1 in Figure 3. Here,
Ω = [𝑡0, +∞], 𝑁 = [𝑣0, 𝑣1, 𝑣2, 𝑣3], 𝐸 = [𝑒0, 𝑒1, 𝑒2, 𝑒3]. Each vertex
and edge owns a current version and several historical versions
from 𝑡0 to 𝑡𝑛 . For brevity, we omit graph states before 𝑡𝑛 . At 𝑡𝑛 , there
exists three vertices (𝑣0, 𝑣1 and 𝑣2) and two edges (𝑒0 : (𝑣0, 𝑣1)) and
𝑒1 : (𝑣0, 𝑣2)). For instance, 𝑣2 owns a current version 𝑣2.7, which
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has a unique id 2, a label “Phone”, a property with the key-value
pair (IP, Singapore), and a lifespan 𝜔 = [𝑡𝑛,∞). Subsequently, at
𝑡𝑛+1, consider there is a customer purchase transaction. It updates
the properties of 𝑣1 and 𝑣2, resulting in new versions for each
of them. Take 𝑣2 as an example: it marks 𝑣2.7 as a historical ver-
sion and generates a new current version 𝑣2.8. Specifically, 𝜏 maps
𝑣2.8 × 𝐼𝑃 × [𝑡𝑛+1, +∞) to New York and maps 𝑣2.7 × 𝐼𝑃 × [𝑡𝑛, 𝑡𝑛+1) to
Singapore. We regard 𝑣2.7 as legal at 𝑡𝑛 , but not legal at 𝑡𝑛+1. More-
over, this transaction also creates 𝑣3, 𝑒2 and 𝑒3, which have only
the current version with 𝜔 = [𝑡𝑛+1, +∞). All the aforementioned
graph operations adhere to the defined constraints. For instance,
𝑒2 can be successfully created at 𝑡𝑛+1 only after verifying linked
vertices 𝑣3 and 𝑣1 exit at 𝑡𝑛+1 (Constraint 1). □

2.2 Temporal Graph Query Language
AeonG incorporates a temporal-enhanced Cypher [25], which ex-
tends the standard syntax defined in OpenCypher [25] to support
temporal queries. As illustrated in Listing 1, AeonG introduces two
temporal syntax extensions in the MATCH clause (line 3): (1) FOR
𝑇𝑇 AS OF 𝑡 , which retrieves all graph objects legal at time 𝑡 , and (2)
FOR𝑇𝑇 FROM 𝑡1 TO 𝑡2, which locates all graph objects consistently
legal within the time range from 𝑡1 to 𝑡2. The former is referred to
as “time-point” queries, while the latter is known as “time-slice”
queries. Users can apply any time conditions to temporal queries,
spanning a wide time range from the oldest historical records up
to the most recent updates. Further, apart from retrieving temporal
graph data of user interest using temporal queries, AeonG allows
users to submit common (non-temporal) queries and data manipula-
tion operations (creating, updating, and deleting) with the standard
Cypher syntax.

Listing 1: Syntax of Temporal-enhanced Cypher
1 [OPTIONAL] MATCH pattern_tuple
2 [WHERE expr]
3 [FOR TT AS OF expr| FOR TT FROM expr TO expr]

Example 3. Consider the query “What was Jack’s phone IP at
𝑡𝑛”. This query can be answered by issuing the following statement,
where the temporal syntax is underlined: “MATCH (:Customer
name: ‘Jack’)-[r]-(p:Phone) FOR TT AS OF 𝑡𝑛 return p.IP. ”

3 SYSTEM ARCHITECTURE
In this section, we introduce the system architecture of AeonG as
shown in Figure 4. AeonG includes a transaction manager which
enables handling a sequence of graph operations with ACID prop-
erties. We process transactions by employing the Multi-Version
Concurrency Control (MVCC) [33]. MVCC ensures that transac-
tions only see a consistent snapshot of the data that is visible to
them, thus enabling multiple transactions to work concurrently
without interfering with one another [33–38]. Given our primary fo-
cus on temporal data management, we now describe how we utilize
the MVCC mechanism to manage temporal data effectively. AeonG
supports built-in temporal features through two major components:
the storage engine and the query engine.

3.1 Storage Engine
The storage engine of AeonG has two physically isolated storages:
current storage and historical storage. The current storage typically

maintains the current versions of graph objects. In contrast, the
historical storage manages historical versions of graph objects,
which are asynchronously migrated from the current storage.

Current storage. As discussed in Section 2.1, graph involves
under various graph operations. To efficiently record these changes,
AeonG builds its current storage as a multi-version storage, main-
taining multiple versions for each graph object. Each graph object
includes one current version retaining the up-to-date state and is
linked to a list of historical versions preserving the previous states.
When a graph object is updated, instead of directly overwriting the
data, we create a new current version and move the previous one to
the list of historical versions. We further integrate time dimensions
into the data layout and modification paradigm to trace accurate
graph evolution. We will introduce the details in Section 4.1.

Historical storage. AeonG does not store historical versions
in the current storage permanently. Instead, we migrate them to
the historical storage for long-term maintenance. To handle the
potentially large volume of historical data, we properly compress
the historical storage. We organize migrated historical versions in
a key-value format. The key contains the metadata of a historical
version, including vertex/edge id and version’s lifespan 𝜔 , while
the value holds detailed properties of this version. Instead of re-
taining all properties for every version, we organize versions in an
“anchor+delta” manner. We utilize deltas to record relative differ-
ences between subsequent versions, minimizing the storage cost of
ever-growing historical data. In addition, after a series of deltas, we
maintain an anchor to preserve the complete state of a graph object,
facilitating the reconstruction process when executing temporal
queries. We will introduce the details in Section 4.2.

Asynchronous migration. AeonG utilizes an asynchronous
migration approach to transfer historical data from the current
storage to the historical storage. Rather than triggering a migration
immediately following an update, this migration is postponed and
occurs during the garbage collection of MVCC. This design ensures
that transferring ever-growing historical data is lightweight, min-
imizing its overhead on the current storage. We will present our
asynchronous migration in Section 4.2.

Example 4. In the right part of Figure 4, we demonstrate how
AeonG stores the customer purchase graph as presented in Exam-
ple 2. In the current storage, component C records the current
versions at 𝑡𝑛+1. Besides, the historical versions at 𝑡𝑛 (𝑣1.2 and 𝑣2.7
in this case), are stored in component D . Take 𝑣2 as an example.
To capture the change in 𝑣2’s IP from Singapore to New York at
𝑡𝑛+1, AeonG performs two steps. First, it updates 𝑣2 in place to
create a new current version 𝑣2.8. Second, to maintain the previous
state, AeonG generates a historical version 𝑣2.7, which is linked
to 𝑣2.8 in a chain and managed by MVCC. We migrate historical
data in component D to the historical storage (component E )
asynchronously. In the historical storage, the historical versions,
𝑣1.2 and 𝑣2.7, are organized as an anchor (represented as a long
rectangle) and a delta (represented as a short rectangle). □

3.2 Query Engine
The query engine is responsible for handling user-issued queries,
retrieving relevant graph data from the hybrid storage engine. Ad-
hering to the “textbook” separation of components, AeonG consists
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Figure 4: An Overview of AeonG - AeonG consists of a temporal query engine, a hybrid storage engine, and an MVCC-based transaction
manager. We employ an "anchor+delta" strategy to reduce the historical storage overhead, while using an anchor-based version retrieval
technique to ensure efficient temporal query processing.

of a parser, an optimizer, and an executor. While inheriting those
components from existing graph databases, AeonG further extends
them to support temporal queries.

Parser and optimizer. The parser translates queries and gen-
erates the corresponding syntax tree for the query optimizer. To
accommodate the syntax of temporal queries, AeonG extends its
lexical, syntactic, and semantic analyses to recognize time qualifiers
as defined in Section 2.2. Leveraging the resulting syntax tree, the
optimizer generates the execution plan for the executor.

Executor. AeonG builds upon and extends two core fundamen-
tal operations from traditional graph databases: scan and expand.
The scan operator retrieves the required vertex versions for each
query, while the expand operator fetches relevant edge and adja-
cent vertex versions. We enhance these operators to provide the
consistent and efficient processing of temporal queries. To ensure
consistent query results, we obtain current and historical data sep-
arately from two storage engines and then combine the results
together. For current data, we follow the conventional query mech-
anism, which simply executes the plan over the current storage
and captures visible graph object versions under MVCC’s snap-
shot visibility check [33]. However, accessing historical data solely
from the historical storage may yield incomplete results. Due to
asynchronous migration, a portion of data is still in the current
storage. To address this, we introduce a legal check mechanism that
retrieves relevant data from both storages. This mechanism verifies
if a version is legal within the given time condition to extract appro-
priate versions. Note that the snapshot visibility check is required
when retrieving historical versions in the current storage. These
steps ensure that the requested version(s) is from the consistent
snapshot(s), thereby guaranteeing consistency.

To efficiently traverse historical versions from substantial histor-
ical data, we propose an anchor-based version retrieval technique
to minimize unnecessary traversals. For the scan operator, we fetch
relevant vertex versions that satisfy the provided temporal condi-
tion. To reconstruct a desired version, we directly locate the nearest

anchor with a lifespan 𝜔 aligning with the query time constraint.
Subsequently, we traverse subsequent deltas from the obtained an-
chor, applying all fitting deltas. Regarding the expand operator, we
further eliminate unnecessary traversals by directly locating the
corresponding edge and adjacent vertex anchors using acquired
held vertex versions. Further elaboration can be found in Section 5.

Example 5. Figure 4 A depicts a simplified syntax tree for a
given temporal query statement. Based on it, AeonG then utilizes
the executor to fetch query results from the hybrid storage engine.
Figure 4 B illustrates the search footprint of the given query
statement to answer “What were the phone IPs of all customers
at 𝑡𝑛”. We only reconstruct four relevant graph vertices/edges. We
start to scan the vertex 𝑣2, which we are interested in. We skip to
seek its nearest anchor and collect all relevant deltas, to reconstruct
the legal version 𝑣2.7 we want. We then expand 𝑣2.7 to get its linked
edge 𝑒1.2 and adjacency vertex 𝑣0.1 without traversing the entire
version chain of 𝑒1 and 𝑣0. □

4 HYBRID STORAGE ENGINE
In this section, we now elaborate on the design of AeonG ’s hybrid
storage engine.

4.1 Current Storage
Inheriting existing native graph databases [39], AeonG organizes
graph data into three storage components: (i) vertex properties
(VP), (ii) edge properties (EP), and (iii) graph topology, i.e., ver-
tex’s incoming and outgoing edges (VE). Like most native graph
databases [1, 4, 40], we retain the topology within the vertices, en-
abling swift neighborhood traversal for each vertex. However, it is
not trivial to record graph evolution under this design. The graph
could change in not only its semantics, i.e., properties of graph
objects, but also its structure. We have to identify different types of
operations applied on the graph. For example, we should prevent
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Figure 5: Data Layout of Current Storage

the creation of a new vertex version when the vertex’s relevant
graph topology changes but its properties remain unchanged. To
address this problem, we associate the time dimension to each inde-
pendent storage component to separately record semantic changes
and structural changes.

Data layout. As shown in Figure 5, the data store comprises
two components: the Vertex Store, which maintains a list of vertex
objects, and the Edge Store, which stores a list of edge objects. Every
vertex object 𝑣 has a unique graph identifier 𝐺𝑖𝑑 , a VP part, a VE
part, and a pointer to a linked list of historical versions (version
chain). While every edge object 𝑒 has a unique identifier𝐺𝑖𝑑 , an EP
part, and a pointer to a linked list of historical versions. Specifically,
• The VP part stores a set of vertex labels and property value pairs

associated with the current version of 𝑣 , along with a time period
𝜔 indicating 𝑣 ’s current semantic lifespan.
• The VE part keeps track of the current version of 𝑣 ’s incoming

and outgoing edges, with each entry in a list of (edge𝐺𝑖𝑑 , neigh-
bor vertex 𝐺𝑖𝑑) pairs. The VE part also includes 𝜔 to record 𝑣 ’s
current structural lifespan.

• The EP part stores an edge type and property value pairs of the
current version of 𝑒 , along with a time period 𝜔 indicating 𝑒’s
current semantic lifespan.

• Each historical version contains: an action type indicating the
changes made to a VP part, VE part, or EP part, a delta recording
the steps to revert the changes to restore the previous version, a
time period𝜔 capturing the lifespan of the historical version, and
a pointer to the next historical version. All historical versions
generated by the same transaction are clustered in an undo buffer
following the MVCC mechanism.
Modification paradigm. We now discuss how AeonG evolves

the graph to handle various graph operations. Suppose the graph
operation is invoked by a transaction 𝑇𝑖 whose commit time is 𝑡𝑖 .
The modification paradigm on the graph data layout is as follows.
(1) When a vertex is created, we create a vertex object, set its

VP part’s time as 𝜔 = [𝑡𝑖 , +∞), set its VE part’s time as 𝜔 =

[−∞, +∞), and link it in the vertex object lists.
(2) When an edge is created, we create an edge object, set its EP

part’s time as 𝜔 = [𝑡𝑖 , +∞), and link it in the edge object lists.
We also create connections to relevant vertex objects by setting
their VE part’s time to 𝜔 = [𝑡𝑖 , +∞) if their previous VE part’s
time is [−∞, +∞).

(3) When updating/creating/deleting a property value of a vertex
object with 𝜔 = [𝑡 𝑗 , +∞), we first update relevant property
values in the VP part and set its time as 𝜔 = [𝑡𝑖 , +∞). Next,
we create a historical VP version capturing the state of the
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Figure 6: An Example of Current Storage Layout

vertex prior to the modification and set its 𝜔 as [𝑡 𝑗 , 𝑡𝑖 ). This VP
version is then linked to the vertex’s version chain. Updating a
property value of an edge follows the same logic.

(4) When a vertex is deleted, we first delete all property values of
the relevant vertex object, following the (3) paradigm, and then
delete all connected edges, following the (5) paradigm.

(5) When an edge is deleted, we decompose it into the deletion of all
property values and the deletion of connections with relevant
vertices. The former acts on the edge object, following the (3)
paradigm. The latter acts on the source and destination vertex
object. Take the source vertex object with 𝜔 = [𝑡 𝑗 , +∞) as an
example. We first update its VE part to delete this edge from
outgoing edge lists and set its VE part’s time as 𝜔 = [𝑡𝑖 , +∞).
We then create a VE version to record this deleted edge with
𝜔 = [𝑡 𝑗 , 𝑡𝑖 ) and link it to the edge’s version chain.
Example 6. We illustrate the data layout of current storage. As

shown in Figure 6, we reconsider Example 2. To further represent
the structural change, we suppose an event deleting 𝑒2 at 𝑡𝑛+2. We
focus on two vertices 𝑣1 and 𝑣3, and two edges 𝑒0 and 𝑒2 to showcase
the graph evolution. At 𝑡𝑛+1, the transaction 𝑇1, representing a
customer purchase, is committed. It updates the VP part of 𝑣1 and
𝑣2, generates two VP versions linked to them, and creates graph
objects 𝑒2, 𝑒3, and 𝑣3. Figure 6 shows these elements except 𝑒3 and
𝑣2 due to space limitations. At 𝑡𝑛+2, 𝑇2 is committed to delete 𝑒2,
which affects 𝑣1, 𝑣3, and 𝑒2 objects. It first acts on 𝑒2’s EP part to
clear all semantic information and generates an EP version to record
the previous edge state. Then, it acts on the VE part of 𝑣1 and 𝑣3
and generates two VE versions. □

4.2 Historical Storage
In MVCC, historical versions are not retained in the current storage
permanently. Instead, once these versions are no longer needed by
any active transaction, they are safely removed through garbage
collection (GC) to optimize the performance of the current stor-
age. AeonG utilizes this mechanism to transfer those inaccessible
versions to the historical storage for long-term maintenance. For
the sake of communication, historical versions in the current stor-
age are referred to as “unreclaimed”, while those in the historical
storage are referred to as “reclaimed”. In this subsection, we first
present the optimized key-value format used for storing historical
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versions and then outline the process of migrating unreclaimed
versions into the historical storage.

KV format. Reclaimed versions are organized in a key-value
format, where the key represents the metadata of the version and
the value stores the corresponding detailed information. AeonG
groups three types of historical versions (VP, EP, and VE versions)
into their respective segments. In each segment, the key is formed
by combining three elements: the 𝑇𝑦𝑝𝑒 prefix, the graph identifier
𝐺𝑖𝑑 , and 𝜔 of the version. The 𝑇𝑦𝑝𝑒 prefix indicates the type of
version contained in the segment: ‘V’ for VP versions, ‘E’ for EP
versions, and ‘VE’ for VE versions. The 𝐺𝑖𝑑 is a unique identifier
of the graph object linked to the version, while 𝜔 represents the
version’s lifespan. As for the value field, it contains the remaining
semantic information, i.e., the delta of the version recording only
data changes compared to the previous version. By organizing
the data in this way, data sharing the same prefix in the key are
physically clustered together in a SkipList [41], which ensures
different versions of the same entity are automatically sorted based
on their lifespan 𝜔 . As a result, it becomes efficient to retrieve
in chronological order. Figure 7 depicts the reclaimed historical
versions’ KV format of unreclaimed historical versions in Figure 6.

Anchor+delta.We utilize deltas to reduce the storage overhead.
However, retrieving a reclaimed graph object requires assembling
the latest version with all previous deltas, incurring significant re-
construction costs for long retrieval histories. To mitigate this, we
introduce anchors at intervals in the delta data, where an anchor
represents the complete state of a graph object. To differentiate
anchors from deltas in the KV store, we append a one-bit character
suffix to the key’s 𝑇𝑦𝑝𝑒 , where ‘A’ denotes anchors and ‘D’ repre-
sents deltas. Specifically, to reconstruct a certain reclaimed version
𝑜1, we seek its most recent anchor 𝑜2, collect all deltas from 𝑜2 to
𝑜1, and combine them to reconstruct 𝑜1.

We propose an adaptive anchoring approach, which assigns
different anchor intervals 𝑢 for different graph objects. A higher
𝑢 leads to more deltas between successive anchors, potentially
increasing query latency but reducing storage overhead. Therefore,
we assign a larger𝑢 to frequently updated objects to strike a balance
between query latency and storage efficiency. Given a graph object
𝑜 , we use Equation 1 to determine its 𝑢 according to the update
frequency 𝑓 (𝑜), the number of updates conducted on 𝑜 .

𝑢𝑜 =


𝜏1 ∗ 𝑐 𝑓 (𝑜) ≤ 𝜏1 low frequency
𝜏2 ∗ 𝑐 𝜏1 < 𝑓 (𝑜) ≤ 𝜏2 medium frequency
𝜏22/𝜏1 ∗ 𝑐 𝜏2 ≤ 𝑓 (𝑜) high frequency

(1)

This equation categorizes update frequencies into three levels (low,
medium, and high) using two thresholds (𝜏1 and 𝜏2). Each frequency

Algorithm 1: Data migration
1 Function Migrate(𝐶𝑇):

Input: 𝐶𝑇 , committed transaction no longer active;
2 𝑢𝑛𝑑𝑜 ← ∅; //unreclaimed version;
3 𝑘𝑣 ← ∅; //reclaimed version;
4 foreach 𝑢𝑛𝑑𝑜 ∈ 𝐶𝑇 do
5 𝑘𝑣=encode2KV(𝑢𝑛𝑑𝑜);
6 KV_store::put(𝑘𝑣);
7 physically delete undo;

8 End Function

level is assigned a specific anchor interval, calculated heuristically
by multiplying the respective threshold values with a predefined
parameter 𝑐 . Currently, AeonG enables users to set parameters in
Equation 1, such as 𝜏1, during database initialization and runtime.

Data migration. In MVCC, unreclaimed historical versions will
be physically removed from the current storage through an asyn-
chronous GC phase when their relevant commit transactions are
no longer active. AeonG collects those versions and migrates them
to the historical storage for long-term maintenance, as detailed in
Algorithm 1. We use 𝑢𝑛𝑑𝑜 to maintain the unreclaimed version to
be migrated (line 2) and 𝑘𝑣 to store reclaimed data in a key-value
format (line 3). Each unreclaimed version 𝑢𝑛𝑑𝑜 in the𝐶𝑇 is initially
encoded into a key-value pair 𝑘𝑣 (line 5). Subsequently, we store
it in the historical KV store (line 6). Finally, we lock 𝑢𝑛𝑑𝑜 in the
version chain and physically delete it (line 7).

5 TEMPORAL QUERY ENGINE
AeonG inherits and extends scan and expand operators to empower
consistent and efficient temporal query processing.

5.1 Scan Operator
AeonG uses the scan operator to efficiently fetch vertex versions
while ensuring data consistency for both current data and historical
data. We elaborate on it from the aspect of fetching data from each
storage component. When fetching data from the current storage,
it is essential to ensure consistent data capture in the presence
of concurrent transactions. To achieve this, we start by locating
relevant vertex object(s) of interest. For each vertex object, we first
employ the snapshot visibility check [33] to find a visible version of
the given transaction. All versions preceding this visible version in
the version chain are candidate legal versions we may want. Then
we utilize a legal check mechanism, which verifies whether each
candidate version 𝑣 ′ is legal to the given query time condition, as
per the following equation.

𝜔.𝑠𝑡 ≤ 𝐶.𝑡2 ∧ 𝜔.𝑒𝑑 > 𝐶.𝑡1 (2)

Here,𝜔.𝑠𝑡 and𝜔.𝑒𝑑 represent the start and end time of 𝑣 ′’s lifespan,
respectively; 𝐶 represents the time condition of the given query
with begin time 𝑡1 and end time 𝑡2. For a time-point query, 𝑡1 = 𝑡2.

When fetching data from the historical storage, there is no need
to handle transaction conflicts as the historical storage serves read-
only queries that users cannot change the data in the historical
storage. Therefore, we directly employ the legal check mechanism
to get desired versions. To further enhance digging out historical
versions, we employ an anchor-based skip retrieval strategy to
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Algorithm 2: Retrieving vertices
1 Function VertexRead(𝐶):

Input: 𝐶 , temporal condition;
Output: Σ, the result set;

2 𝑣 ← the vertex which we start to scan;
3 while 𝑣 do
4 // fetch from the current storage;
5 foreach 𝑣′ ∈ (𝑣 ∪ 𝑣.𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 ) do
6 if !SnapshotCheck(𝑣′) then continue;
7 if TemporalCheck(𝑣′ .𝜔,𝐶) then
8 Σ← Σ ∪ Reconstruct(𝑣′ ) ;

9 // fetch from the historical storage;
10 FetchFromKV(𝑣.𝑖𝑑,𝐶, Σ);
11 𝑣 ← 𝑣.next();

12 return Σ;

13 Function FetchFromKV(𝑖𝑑,𝐶, Σ):
14 𝑘𝑣𝑎 ← KV_store::seeknext(𝑖𝑑,𝐶);
15 𝑘𝑣𝑑 ← KV_store::seeknext(𝑖𝑑, 𝑘𝑣𝑎 .𝑘𝑒𝑦);
16 while 𝑘𝑣𝑑 ∧ 𝑘𝑣𝑑 .𝜔.𝑠𝑡 ≤ 𝐶.𝑡2 do
17 𝑘𝑣𝑎 ← combine (𝑘𝑣𝑎, 𝑘𝑣𝑑 ) ;
18 if TemporalCheck(𝑘𝑣𝑑 .𝜔,𝐶) then
19 Σ← Σ ∪ 𝑘𝑣𝑎 ;
20 𝑘𝑣𝑑 ← 𝑘𝑣𝑑 .next( ) ;

reconstruct desired versions. To restore a specific legal version
𝑣 ′, we directly seek the most recent anchor 𝑣 in the KV store by
the probe prefix “AV:𝑖𝑑 :𝐶”, where ‘AV’ represents the anchors in
the VP segment, 𝑖𝑑 is the unique id of interest vertex and 𝐶 is the
given query time constraint. We then assemble 𝑣 ′ with all previous
versions from 𝑣 to 𝑣 ′. Thanks to the special design of the key-value
format in the historical storage, we can leverage the probe prefix
to swiftly find the nearest anchor.

Algorithm 2 shows the pseudo-code of fetching vertices from
the hybrid storage engine. We start by scanning from the ver-
tex object 𝑣 , which is either the first vertex of the whole graph
or the vertex pointed by the index (line 2). We first retrieve data
from the current storage (lines 5-8). We check whether 𝑣 and its
historical unreclaimed versions are visible to the current trans-
action (line 6). We also check whether they are legal using the
function TemporalCheck() based on Equation 1 (line 7). Next, we
catch data from the historical storage (line 10) using the function
FetchFromKV(). We first find the most recent anchor 𝑘𝑣𝑎 based on
the probe prefix (line 15). We then seek all previous deltas 𝑘𝑣𝑑 that
satisfy temporal check (line 19) and assemble 𝑘𝑣𝑎 with them to get
desired versions (line 18).

Complexity analysis. The scan operator queries versions of a
vertex 𝑣 in a dataset with a total of 𝑛 vertices. This process consists
of two parts: (1) locating the current version of 𝑣 and (2) querying
the historical versions of 𝑣 . The complexity of locating the current
version depends on the specific retrieval mechanisms selected in
the current storage, such as 𝑙𝑜𝑔(𝑛) for B+-tree index look-up and 𝑛
for non-index lookup, denoted as𝑂 (𝜄 (𝑛)). The complexity of query-
ing the historical versions depends on the chosen approach for
introducing temporal features. In AeonG, we first locate the near-
est anchor. Since we organize historical versions in the key-value

Algorithm 3: Expanding Vertices
1 Function ExpandVertices (𝑣,𝐶):

Input: 𝑣, the graph vertex need to expand;𝐶 , temporal
condition;

Output: Σ, the result set;
2 Σ𝑣𝑒 ← VERead(𝑣,𝐶) //get adjacency lists;
3 foreach (𝑒𝑖𝑑 , 𝑛𝑣𝑖𝑑 ) ∈ Σ𝑣𝑒 do
4 Σ𝑒 ← EdgeRead(𝑒𝑖𝑑 , 𝑓 (𝐶, 𝑣.𝜔 )) ;
5 foreach 𝑒 ∈ Σ𝑒 do
6 Σ𝑛𝑣 ← VertexRead(𝑛𝑣𝑖𝑑 , 𝑓 (𝐶, 𝑒.𝜔 ));
7 foreach 𝑛𝑣 ∈ Σ𝑛𝑣 do
8 Σ← Σ ∪ (𝑒,𝑛𝑣) ;

9 return Σ;

store using SkipList, the complexity of this process is 𝑂 (𝑙𝑜𝑔(𝐴𝑣)),
where 𝐴𝑣 is the average number of anchors for vertices. Then, we
sequentially scan deltas from the anchor until satisfying the query
time condition, with a time complexity of𝑂 (𝑢), where 𝑢 represents
the average length of 𝑢𝑜 defined in Equation 1. In conclusion, the
scan operator has a complexity of 𝑂 (𝜄 (𝑛) + 𝑙𝑜𝑔(𝐴𝑣) + 𝑢).

5.2 Expand Operator
AeonG utilizes the expand operator to fetch linked edge and ad-
jacency vertex versions. The overall design insight of the expand
operator is similar to that of the scan operator, which employs
different retrieval strategies in two separate storage engines. Ad-
ditionally, the expand operator considers the retrieval of graph
structures. We next elaborate on how the expand operator fetches
edge and neighboring vertex versions of a given vertex.

As shown in Algorithm 3, given a vertex 𝑣 , we first use the
function VERead() to access the 𝑣 ’s adjacency list version(s) from
the VE part/segment (line 2), which contains a list of (edge id 𝑒𝑖𝑑 ,
neighbor vertex id 𝑛𝑣𝑖𝑑 ) pairs. The function VERead() shares a
similar logic as the function VertexRead() in Algorithm 2, which
combines current and historical data to get desired versions. We
then fetch legal versions of specific semantic information of edges
and adjacency vertices based on their unique ids (lines 3-8). We first
obtain linked edge versions using the EdgeRead() function, which
follows a similar logic to VertexRead() (line 4). To expedite the
search for the linked edge version, we optimize the skip look-up
strategy for anchor locating to skip more unnecessary versions.
Guided by Constraint 1 defined in Section 2.1, the edge must be
legal for its connected vertices. This implies that the lifespan of
the edge version must intersect with the lifespan of its connected
vertex version. Since we already hold a scanned vertex version 𝑣 ,
we can leverage 𝑣 ’s lifespan 𝜔 to refine the probe time scope 𝐶
based on the following equation.

𝑓 (𝐶,𝜔) = [𝑚𝑎𝑥 (𝐶.𝑡1, 𝜔.𝑠𝑡),𝑚𝑖𝑛(𝐶.𝑡2, 𝜔.𝑒𝑑)] (3)

By implementing this approach, we efficiently bypass more unnec-
essary versions, thereby enhancing the query performance. Subse-
quently, we retrieve the neighbor vertex versions of each holding
edge version based on 𝑛𝑣𝑖𝑑 (lines 5-6) with a similar logical process.
Finally, we obtain the final results (lines 7-8). The illustrative ex-
amples of both the scan and expand operators are detailed in our
extended manuscript [42].
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Complexity analysis. The expand operator retrieves linked
edges and adjacent vertices of a specific vertex version in the fol-
lowing three steps. First, we fetch the adjacency list version. Sim-
ilar to the complexity of the scan operator, the associated com-
plexity is 𝑂 (𝑙𝑜𝑔(𝐴𝑣𝑒 ) + 𝑢), where 𝐴𝑣𝑒 is the total number of an-
chors for adjacency lists, and 𝑢 is the average length of 𝑢𝑜 . Next,
for each pair (𝑒𝑖𝑑 , 𝑛𝑣𝑖𝑑 ) in the adjacency list, we fetch the corre-
sponding edge version. Finally, we locate the neighbor vertex ver-
sion. Similar to the first step, the complexities of these two steps
are 𝑂 (𝑙𝑜𝑔(𝐴𝑒 ) + 𝑢) and 𝑂 (𝑙𝑜𝑔(𝐴𝑣) + 𝑢), where 𝐴𝑣𝑒 and 𝐴𝑣 are
the total number of anchors for edges and vertices, respectively.
In conclusion, the overall complexity of the expand operator is
𝑂 (𝑙𝑜𝑔(𝐴𝑣𝑒 ) +𝑢 +𝐷 × (𝑙𝑜𝑔(𝐴𝑒 ) +𝑢 + 𝑙𝑜𝑔(𝐴𝑣) +𝑢)), where 𝐷 is the
average number of vertex degrees.

6 IMPLEMENTATION
AeonG is built on Memgraph[4] and RocksDB[41]. Memgraph is a
commercial native graph database that supports the property graph
model, Cypher, and MVCC. We utilize and extend Memgraph to
serve as the primary database engine, providing the basic query
engine and current storage engine for AeonG. We then integrate
RocksDB, a popular KV store, into Memgraph as the historical stor-
age to manage historical data. Our proposed approach is generally
applicable to native graph databases that support MVCC.

Query engine. AeonG extends the parser and executor compo-
nents of the query engine inMemgraph to support temporal queries.
AeonG extends the parser to recognize temporal queries defined in
Section 2.2, incorporating the temporal qualifier into Cypher.g4
and enhancing CypherMainVisitor() to recognize temporal qual-
ifier. Furthermore, AeonG enhances the executor by modifying
two fundamental operators: scan and expand operators. In the
ScanAllCursor.Pull() function, besides retrieving current ver-
tices, we introduce a function AddHistoricalVertices() to cap-
ture both unreclaimed and reclaimed historical versions (Algorithm
2). In the ExpandCursor.Pull() function, a similar adaptation is
made with the inclusion of the function AddHistoricalEdges()
for getting historical edges and neighbor vertices (Algorithm 3).

Storage engine. The storage engine of AeonG is hybrid, con-
sisting of a current storage and a historical storage, as detailed in
Section 4. The current storage is derived from Memgraph’s storage,
where the Vertex structure maps to the vertex object, the EdgeRef
structure maps to the edge object, and the Delta structure repre-
sents historical unreclaimed versions. We then associate the time
dimension with those structures to introduce temporal support,
as discussed in Section 4.1. Timestamps are assigned by a global
clock when relevant transactions are committed, with a time gran-
ularity of milliseconds. AeonG integrates RocksDB into Memgraph
as the historical store by starting a RocksDB process when the
Memgraph instance starts. We introduce a function, Migrate(),
within Memgraph’s CollectGarbage() function to transfer unre-
claimed data to a key-value pair and subsequently migrate them
to RocksDB (Algorithm 1). We further implement a distributed
version of AeonG, named AeonG-D, using TiKV [43], an efficient
distributed key-value store, for historical storage by replacing the
interfaces of RocksDB with TiKV. We introduce a system parameter,
retention_period, in AeonG to set the historical data retention

Table 1: Workload Characteristics

T-mgBench T-LDBC T-gMark
Bib WD LSN SP

# of Vertices 10K 3,181K 100K 103K 100K 100K
# of Edges 122K 17,256K 121K 93K 200K 385K
Density 12.17 5.42 1.2 0.90 2 3.85

# of Vertex Labels 1 8 5 24 15 7
# of Edge Labels 1 25 4 82 27 7

# of Graph Operations
for Data Generation 320K 1M 320K 320K 320K 320K

period. For instance, setting retention_period to one month en-
ables the periodic removal of historical data generated one month
ago from the historical storage.

7 EVALUATION
In this section, we first introduce the experimental setup. We then
compare AeonG against two state-of-the-art temporal systems,
Clock-G and T-GQL, and provide in-depth performance analyses
for AeonG, with two metrics: 1) latency of temporal queries/graph
operations; 2) storage overheads of temporal graph data.

7.1 Experimental Setup
AeonG is built on Memgraph 𝑣2.2.0, RocksDB 𝑣6.14.6, and TiKV
𝑣7.1.2 for evaluation. We run the experiments in a cluster of up to
5 nodes. Each node is equipped with 32 Intel(R) Xeon(R) Gold 5220
CPU @ 2.20GHz, 128 GB memory, running CentOS 7.9.

7.1.1 Baseline Systems. We compare AeonG with two baseline
systems that support temporal features:
T-GQL [7]: A state-of-the-art graph database that assigns a time
period to each graph object (vertex or edge) for temporal support.
Since we cannot obtain the source code of T-GQL, for fair compar-
isons, we implement T-GQL based on Memgraph. Note that T-GQL
stores all the vertices and edges in memory.
Clock-G [19]: A state-of-the-art graph storage engine that man-
ages temporal data by periodically creating snapshots of the entire
databases. Since Clock-G is not open-sourced, we implement its
temporal data management approach into our codebase for fair
comparisons. We record both the snapshots and the logs between
successive snapshots in RocksDB. We further introduce a query en-
gine like that used inAeonG to support temporal queries. By default,
Clock-G creates a snapshot after executing 80k graph operations.

7.1.2 Workloads. We conduct the experiments using three temporal-
enhanced workloads, characteristics of which are detailed in Table 1.
We next describe each of these three workloads.
T-mgBench is based on the real-world Pokec dataset [44], which
is used in Memgraph’s mgBench [45] workload. As outlined in
Table 2, T-mgBench includes four temporal queries, by extending
the non-temporal queries in mgBench with temporal dimension.
Specifically, we add “FOR TT AS OF 𝑡” to Q1 and Q3, forming “time-
point” queries, and add “FOR TT FROM 𝑡1 to 𝑡2” to Q2 and Q4,
forming “time-slice” queries.
T-LDBC derives from LDBC [46], a well-known synthetic graph
workload, by incorporating “FOR TT AS OF 𝑡” into the LDBC IS
queries (IS1-IS7). The full queries of T-LDBC are listed in our ex-
tended manuscript [42].
T-gMark is based on gMark[47], a well-known synthetic graph
workload. It consists of four datasets as shown in Tables 1. We
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Table 2: Temporal Queries of T-mgBench
Query Statement
Q1 Match (n: User {id: $id}) FOR TT AS OF 𝑡 RETURN n
Q2 Match (n: User {id: $id}) FOR TT From 𝑡1 to 𝑡2 RETURN n
Q3 Match (n: User {id: $id})-[e]->(m) FOR TT AS OF 𝑡 RETURN n,e,m
Q4 Match (n: User {id: $id})-[e]->(m) FOR TT From 𝑡1 to 𝑡2 RETURN n,e,m

use gMark’s query generation tool to create non-temporal queries,
and then transform them into temporal queries by adding the time
condition “FOR TT AS OF 𝑡”. The query generation follows gMark’s
default configuration, which includes constraints on arity (0-4),
query shape (25% chain, 25% star-chain, 25% cycle, and 25% star),
selectivity (33% constant, 33% linear, and 33% quadratic), probability
recursion (50%), and query size ([1,1], [3,4], [1,3], [2,4]).

To effectively evaluate the efficiency of temporal features in
AeonG and baseline systems, for each workload, we generate addi-
tional historical data before evaluations. Unless otherwise specified,
we first use the data generation tools from the original workload to
create the initial dataset, and then execute graph operations with
a mix of 80% updates, 10% creates, and 10% deletes to generate
historical data. The access distribution of update operations and
queries follows the Zipf [48] distribution to simulate real-world
graph manipulation scenarios.

7.1.3 Default Configuration. By default, the Zipf distribution factor
is set to 1.1. The parameters of the adaptive anchoring approach
defined in Equation 1 are configured as 𝜏1 = 1𝑘 , 𝜏2 = 10𝑘 and
𝑐 = 1%. The retention_period discussed in Section 6 is set to 0,
indicating that all historical data will be retained permanently.

7.2 AeonG vs Baseline Systems
We now compare AeonG with two baseline systems, Clock-G and
T-GQL. As T-GQL is an in-memory database, to ensure fair compar-
isons, we make sure all data is cached in memory for AeonG and
Clock-G by configuring RocksDB’s MemTable size to 640MB.

7.2.1 Experiment on the storage consumption. We first conduct ex-
periments using T-mgBench, and plot the storage consumption of
each system under different numbers of graph operations in Figure
8(a). As observed, AeonG reduces the storage consumption by up
to 2.4× compared to Clock-G and 2.09× compared to T-GQL, with
the increased number of graph operations. The lowest storage con-
sumption ofAeonG can be attributed to our “anchor+delta” strategy,
which compactly stores most historical graph data as deltas, mini-
mizing the storage consumption for maintaining temporal data. In
contrast, T-GQL’s graph model prevents it from storing historical
graph data compactly, while Clock-G periodically creates historical
snapshots of the entire graph. Both systems incur higher storage
overheads than AeonG.

We also run experiments using T-LDBC and T-gMrak to evaluate
the storage consumption of these systems. As shown in Figure 8(c),
AeonG exhibits up to 5.73× and 3.59× lower storage consumption
compared to Clock-G and T-GQL, under T-LDBC. Further, as ob-
served in Figure 8(d), the storage consumption of AeonG is lower
than that of Clock-G and T-GQL by up to a 4.34× and a 2.39×, under
T-gMrak. This trend is consistent with that observed in Figure 8(a),
demonstrating that AeonG still achieves lower storage overhead
when handling large and complex graph workloads.
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Figure 8: Comparisons on Storage Consumption and Graph
Operation Latency

7.2.2 Experiments on the graph operation latency. We then eval-
uate the graph operation latency with varying numbers of graph
operations using T-mgBench. As shown in Figure 8(b), AeonG per-
forms similarly to Clock-G, but significantly outperforms T-GQL
by up to 397.06×. As the number of graph operations grows, both
AeonG and Clock-G exhibit a performance degradation of 5.4×
from 80k to 400k, whereas T-GQL shows a much larger degradation
of 34.95×. The performance difference is mainly due to that T-GQL
does not separate the storage of current and historical data. There-
fore, graph operations, such as updates, require traversing through
a larger number of graph objects (both current and historical data)
to reach the specific graph object for updating. However, AeonG
separate current and historical data, leading to much smaller la-
tency overheads. The similar performance of AeonG and Clock-G
in T-mgBench can be explained as the overhead from snapshot
creation is not significant when handling a relatively small size
graph. Therefore, to further evaluate storage operation latency with
larger graphs, we conducted additional experiments using the T-
LDBC workload. As observed in Figure8(c) , the graph operation
latency of AeonG is lower than Clock-G and T-GQL by up to 2.82×
and 10.11×, respectively. As T-LDBC is more substantial, Clock-G
requires extra CPU and IO resources to periodically create large
historical snapshots, which can negatively affect graph operation
performance due to resource contention. We also report the graph
operation latency under T-gMark in the extended version [1], where
the observations are similar to those reported.

7.2.3 Experiments on temporal query latency. We now analyze
the performance of temporal queries under various configurations.
We first conduct performance evaluations across various temporal
queries in T-mgBench, and plot the query latency on different tem-
poral queries in Figure 9(a). By default, we set the time slice length
for Q2 and Q4 to 100s. We can observe that AeonG reduces the
query latency by 2.57× compared to Clock-G and 37.57× compared
to T-GQL. The superior performance of AeonG can be attributed to
our built-in query engine, which employs an efficient anchor-based
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Figure 9: Comparisons on Temporal Query Latency

version retrieval technique to avoid unnecessary version traver-
sal. In contrast, to access desired historical graph elements, T-GQL
necessitates traversing the entire graph , while Clock-G requires
fetching the corresponding historical snapshot and appending logs
on it, thereby resulting in slower performance.

We then study the latency of temporal query Q1 with varying
the number of graph operations. Figure 9(b) shows that AeonG
outperforms Clock-G by up to 1.43× and achieves an up to 47.18×
improvement compared to T-GQL. This performance gap becomes
increasingly pronounced with a growing number of graph opera-
tions. As discussed, AeonG exhibits better performance due to the
proposed optimized temporal query engine. We further evaluate
the query latency of Q3 across “cold”, “warm”, and “hot” queries.
We categorize these queries based on the vertices they access. For
example, a query accessing “hot” vertices is classified as a “hot”
query. We divide all vertices in the database into “cold”, “warm”,
and “hot” categories according to their access possibility, which
ranges from 0% to 100% based on the Zipf distribution. As shown in
Figure 9(c), AeonG outperforms the next-best system, Clock-G, in
all query categories by up to 2.21×. We can also observe that “hot”
queries, which require accessing more historical data, generally
have lower performance than “warm” and “cold” queries. How-
ever, in AeonG, “hot” queries are only 1.29× slower than “warm”
queries, while in T-GQL and Clock-G, “hot” queries underperform
“warm” queries by up to 2.14× and 3.77×, respectively. As discussed,
the smaller performance gap of AeonG can be attributed to our
anchor-based version retrieval technique, which avoids unneces-
sary version traversal. We also study the latency of temporal query
Q4 with varying time slice length from 1s to 200s. As observed
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in Figure 9(d), AeonG outperforms Clock-G and T-GQL by up to
2.27× and 33.23×, respectively, showing a consistently superior
performance under different time slice lengths.

We additionally evaluate the temporal query performance on
T-LDBC. As depicted in Figure 9(e), AeonG outperforms among all
temporal query types and achieves lower latency by up to 1.37×
and 7× than Clock-G and T-GQL, in alignment with the trends
observed in Figure 9(a). Due to space limitations, we leave the
latency details of IS2 and IS6 in our extended manuscript [42].
Their trends align with Figure 9(e), only but their scales differ.
Furthermore, we conduct experiments using T-gMrak. As depicted
in Figure 9(f), AeonG consistency outperforms in all the datasets
and demonstrates up to 26.16× faster temporal query performance
than Clock-G and 6.56× faster than T-GQL.

7.3 Performance Analysis on AeonG
We now provide an in-depth analysis of AeonG’s performance
under diverse configurations. In the following experiments, we fix
RocksDB’s MemTable size to the default value of 64MB.

7.3.1 The performance of non-temporal queries. We first analyze
the performance of AeonG on non-temporal queries to study the
impact of introducing temporal features in its fundamental sys-
tem, Memgraph. We use various non-temporal queries defined in
three origin unextended workloads: mgBench, LDBC, and gMark.
We run corresponding queries based on the datasets generated by
T-mgBench, T-LDBC, and T-gMark, and plot the average query
latency of each workload in Figure 10. The results indicate that
AeonG experiences an acceptable performance drop of up to 9.74%
compared with Memgraph, a trade-off for its support of temporal
queries. AeonG adopts a design that separates the current database
and asynchronously transfers historical data, ensuring minimal
impact on dominant non-temporal queries.

7.3.2 The impact of historical data migration. We next use the T-
mgBench workload to study the query performance with varying
the GC interval to control the frequency of historical data migration.
We plot the latency of queries across different data types: current,
reclaimed, and unreclaimed data, and graph operation in Figure
11(a). As observed, the query performance for current and unre-
claimed data is relatively similar, both outperforming reclaimed
data queries by up to 25.8%. This difference is attributed to the fact
that querying current and unreclaimed data both need to traverse
the version chain in the current storage, while querying reclaimed
data requires the additional step of reconstructing a historical ver-
sion using anchors and deltas in the historical storage, as detailed
in Section 4. Further, we note that increasing the GC interval from
1s to 1000s leads to a 17.3% decrease in the graph operation latency
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Figure 11: Performance Breakdown Analysis on AeonG

and a 9.5% increase in the query latency. This is expected as less
frequent migrations can reduce contention with graph operation,
thereby enhancing graph operation performance. In contrast, less
frequent migrations result in longer version-chain traversal in the
current storage, negatively impacting query performance.

7.3.3 The analysis on the anchor interval. We evaluate the effec-
tiveness of our adaptive anchoring approach using the T-LDBC
workload. As shown in Figure 11(b), when we assign a fixed anchor
interval 𝑢 to each graph object and vary 𝑢 from 1 to 1000, we ob-
serve that storage consumption of the historical storage decreases
by 2.69× and the temporal query latency increases by 2.15×. In
contrast, our adaptive anchoring approach consistently achieves
near-optimal query performance and storage efficiency against all
fixed anchor interval settings, because of its ability to properly
balance query latency and storage overhead efficiency.

7.3.4 The impact of the historical retention period. We utilize the
T-LDBC workload to evaluate the historical storage overhead and
temporal query latency with varying historical data retention peri-
ods. We simulate one day’s amount of graph evolution in just one
minute, which is done by assuming a daily operation count of 100k
and executing these operations within one minute. Consequently,
we set historical data retention periods at 15, 30, 90, and 180 min-
utes, simulating real-world scenarios of half a month, one month,
one quarter, and half a year, respectively. The results, shown in
Figure 11(c), demonstrate that the storage consumption increases
by 6.02× and query performance decreases by 1.62× as the data
retention period extends from 15 to 180 minutes. This trend is ex-
pected since longer retention period results in more historical data
being maintained, leading to decreased query performance. Based
on this observation, we consider enabling users to set a proper
retention_period to achieve a balance among storage overhead,
historical data duration, and query performance.

7.3.5 The scalability of AeonG-D. We now deploy AeonG-D and
TiKV across 5 nodes by default, with historical data horizontally
partitioned among these nodes. First, we evaluate the impact of
increasing the server count on performance with 10GB data volume

with the T-LDBC workload. The results, shown in the left part of
Figure 11(d), indicate that the temporal query ofAeonG-D decreases
by up to 2.8× when scaling from 1 to 5 servers. The scalability of
AeonG-D can be attributed to the improved parallelism achieved by
adding more servers, where each server can independently process
historical data retrieval requests with its TiKV instance. Second,
we assess temporal query latency using T-LDBC with the data
volume increasing from 2GB to 10GB. As shown in the right part of
Figure 11(d), the latency of AeonG-D increases by up to 1.6×, which
is expected due to the greater cost of fetching graph objects from a
larger database. Similar trends are also reported in [19, 23, 49].

8 RELATEDWORK
Temporal graph datamanagement involves two primary approaches.
One approach integrates temporal features at the application level,
utilizing commercial graph databases by attaching temporal meta-
data [7–13]. Take a state-of-the-art approach T-GQL [7] in this field
as an example. T-GQL adopts a specific representation of temporal
graphs, where conventional vertices are decomposed into Object,
Attribute, Value vertices, and conventional edges remain the same.
Time dimensions are introduced as properties of designed vertices
and edges. However, there may exhibit unpredictable performance
due to underlying engines designed for static graphs. An alterna-
tive line of research focuses on the system level, designing storage
engines to handle growing historical data while enabling efficient
querying. In this regard, two storage approaches, Copy and Log,
are widely used to manage temporal graph data [14–23]. The Copy
approach [14, 15] stores an entire graph state whenever a batch of
updates occurs. Although it simplifies graph querying, it results in
excessive redundancy in the stored graph information. In contrast,
the Log approach [16, 17] records every graph update activity in a
log, offering a more compact solution but requiring costly recon-
struction when executing a temporal graph query. To balance query
performance and space overhead, the Copy+Log approach [18–23]
combines a finite set of snapshots with a list of deltas between them.
However, we argue the Copy+Log approach is suboptimal since it
still requires significant storage overhead to materialize the entire
graph. Moreover, they lack support for a powerful temporal graph
data model or a declarative temporal query language, restricting
user convenience.

9 CONCLUSION
In this paper, we propose AeonG, a new graph database that effi-
ciently offers built-in temporal support. AeonG includes a formally
defined temporal property graph model. Based on this model, we
propose a hybrid storage engine to store temporal data with min-
imal storage consumption. Furthermore, AeonG equips a native
temporal query engine to enable efficient temporal query process-
ing. The results demonstrate that AeonG achieves up to 5.73× lower
storage consumption and 2.57× lower latency for temporal queries
against state-of-the-art approaches, while introducing only 9.74%
performance degradation for supporting temporal features.
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