AutoTQA: Towards Autonomous Tabular Question Answering
through Multi-Agent Large Language Models

Jun-Peng Zhu
East China Normal University
& PingCAP, China
zjp.dase@stu.ecnu.edu.cn

Peng Cai
East China Normal University
pcai@dase.ecnu.edu.cn

Kai Xu
PingCAP, China
xukai@pingcap.com

LiLi Yishen Sun Shuai Zhou
PingCAP, China PingCAP, China PingCAP, China
lili@pingcap.com sunyishen@pingcap.com zhoushuai@pingcap.com
Haihuang Su Liu Tang Qi Liu
PingCAP, China PingCAP, China PingCAP, China
suhaihuang@pingcap.com tl@pingcap.com liugi@pingcap.com

ABSTRACT

With the growing significance of data analysis, several studies aim
to provide precise answers to users’ natural language questions
from tables, a task referred to as tabular question answering (TQA).
The state-of-the-art TQA approaches are limited to handling only
single-table questions. However, real-world TQA problems are in-
herently complex and frequently involve multiple tables, which
poses challenges in directly extending single-table TQA designs to
handle multiple tables, primarily due to the limited extensibility of
the majority of single-table TQA methods.

This paper proposes AutoTQA, a novel Autonomous Tabular
Question Answering framework that employs multi-agent large
Enguage models (LLMs) across multiple tables from various sys-
tems (e.g., TiDB, BigQuery). AutoTQA comprises five agents: the
User, responsible for receiving the user’s natural language inquiry;
the Planner, tasked with creating an execution plan for the user’s in-
quiry; the Engineer, responsible for executing the plan step-by-step;
the Executor, provides various execution environments (e.g., text-to-
SQL) to fulfill specific tasks assigned by the Engineer; and the Critic,
responsible for judging whether to complete the user’s natural lan-
guage inquiry and identifying gaps between the current results and
initial tasks. To facilitate the interaction between different agents,
we have also devised agent scheduling algorithms. Furthermore,
we have developed LinguFlow, an open-source, low-code visual
programming tool, to quickly build and debug LLM-based appli-
cations, and to accelerate the creation of various external tools
and execution environments. We also implemented a series of data
connectors, which allows AutoTQA to access various tables from
multiple systems. Extensive experiments show that AutoTQA de-
livers outstanding performance on four representative datasets.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685816

3920

PVLDB Reference Format:

Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun, Shuai Zhou, Haihuang
Su, Liu Tang, Qi Liu. AutoTQA: Towards Autonomous Tabular Question
Answering through Multi-Agent Large Language Models. PVLDB, 17(12):
3920 - 3933, 2024.

doi:10.14778/3685800.3685816

1 INTRODUCTION

Tabular Question Answering (TQA) [4, 7, 8, 12, 16, 20, 24, 27, 52—
54, 59] is a crucial task in data analysis, focusing on providing
answers from tables in response to a user’s natural language (NL)
inquiry. Data are commonly presented in tabular form in scenarios
such as financial reports and statistical reports. Users often need
expertise to handle and address questions in such scenarios effec-
tively. TQA approaches address these issues without demanding
extensive expertise in natural language processing and data analy-
sis. In a real scenario, however, tables have complex forms, such
as relational database (RDB) tables (i.e., structured tables) and web
tables. Furthermore, TQA tasks can encompass the manipulation of
multiple tables, including operations such as joins, set operations,
and others. The ongoing exploration of a unified TQA framework
applicable to various scenarios remains a prominent research focus
within data analysis and natural language processing.

The state-of-the-art large language models (LLMs) such as Chat-
GPT [25], BLOOM [36] and LLaMA [39] have experienced rapid
development, to achieve general artificial intelligence, showcas-
ing remarkable zero-shot [44] capabilities in a variety of linguistic
applications. However, while these LLMs demonstrate excellence
in general knowledge, their performance within specific domains,
such as data analysis, may yield somewhat erroneous answers and
should not be entirely relied upon due to a lack of domain-specific
training [60]. The emergence of LLMs presents new opportunities
and challenges for the tasks associated with TQA.

Limitations of Prior Art. As far as we know, state-of-the-art
TQA approaches have their limitations:

(1) Lack of effective solutions in multi-table TQA. Current
TQA approaches [8, 16, 24, 52, 54] are typically limited to address-
ing single-table TQA tasks. In this context, users send a natural
language inquiry, and these approaches can only analyze data from

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685816
https://doi.org/10.14778/3685800.3685816

‘What is the year-end bonus for Tom?

Employee
| ID | Name | Email | Depno |
001 Lucy [lucy@com 1 Single-table
002 Tom tom@com 2
Department Salary
| Depno | DepName | | ID | Bonus
1 R&D 001 $2100
2 FINANCE 002 $1569

Figure 1: A Motivating Example for Multiple Tables TQA.

a single table specified by a user to provide answers. Typically, this
process involves employing Python or SQL for data manipulation
on a single table. However, a common scenario arises where, for
example, for convenience of management, the company stores basic
employee information in the Employee table. Simultaneously, the
finance department establishes a Salary table for effective salary
management and security, housing employee IDs and the corre-
sponding salary details. When sending an inquiry such as “What
is the year-end bonus for Tom?”, it is required to perform a table
join operation, joining the Employee and Salary tables using the
employee ID as the join key. As depicted in Figure 1, in this instance,
the Employee table and the Salary table individually (® or @) can-
not answer the user’s inquiry. An operation of join (®) between the
two tables is required. In addition to executing a table join, the task
may require complex analyses, such as set operations. It may even
be necessary to perform multiple complex operations in a specific
order (or steps) on multiple tables. MultiTabQA [27] is a method
that is able to address TQA tasks in multiple tables. Nevertheless,
it requires elaborate pre-training and fine-tuning processes, pos-
ing significant complexity for the PingCAP. The task of multiple
tables TQA has not yet received exhaustive research attention, and
it continues to exhibit the following two limitations.

(2) Lack of adequate exploration of LLM capabilities. The
state-of-the-art ReAcTable [54], uses a combination of Chain of
Thought (CoT) [45] and ReAct [51] paradigm to facilitate responses
to user’s questions. However, relying solely on these two in-context
learning approaches is inadequate to fully explore the capabilities
of LLM. In the context of ReAcTable, the challenge arises when en-
countering an empty answer at an intermediate step, as the method
faces difficulty distinguishing between an incorrect response and
a genuinely empty one. Through extensive experiments, we have
identified numerous factors contributing to the occurrence of empty
answers. Furthermore, it is crucial to note that encoding the data
from the table directly into the ReAcTable prompt [54] is not prac-
tical, especially for large tables in business operations. Another
crucial capability of LLMs is their ability to learn from conversa-
tions. LLMs represent a type of generative artificial intelligence
from conversations, and existing TQA methods utilizing LLMs do
not fully exploit this potential. Providing appropriate guidance to
LLMs is likely to result in more accurate responses and improve
overall efficiency.

(3) Lack of solutions for manipulating multiple tables from
multiple systems. The state-of-the-art TQA approaches [7, 12, 16,

3921

20, 24, 54, 59] face challenges when simultaneously dealing with
structured database tables and semi-structured tables (such as web
tables). These tables could be stored in MySQL, S3 object storage, or
obtained in real time through APIs. These approaches require users
to undergo an intricate preprocessing and extract, transform, and
load (ETL) process, thereby significantly increasing the complexity
of the TQA task. Large-scale ETL processes executed in batches
typically require significant resources. Users of TQA should be
freed from these complexities.

Key Technical Challenges. As mentioned above, we summa-
rize the challenges in the design of the TQA approaches for the
different scenarios:

e The first technical challenge is how to design and imple-
ment a unified TQA framework capable of addressing both
single table and multiple tables TQA tasks.

The second technical challenge is how to maximize the uti-
lization of the LLM’s capabilities to provide answers while
concurrently verifying the correctness of those answers.
The third technical challenge is how to efficiently manage
various tables from multiple systems.

Proposed Approach. To this end, we propose AutoTQA, an
Autonomous Tabular Question Answering framework employing
multi-agent large language models in this paper. To overcome the
first two challenges, we introduce AutoTQA, designed to efficiently
support the TQA tasks of single table and multiple tables. AutoTQA
delves into multi-agent LLMs, involving five distinct roles: User,
Planner, Engineer, Executor, and Critic. These agents collaborate
to respond to user inquiries through conversations. The User for-
mulates the question in natural language, the Planner generates a
detailed execution plan that combines standard operation proce-
dure (SOP) of business operations, the Engineer executes the plan
step-by-step, and the Executor invokes the suitable LLM-based ap-
plications for data processing using Python or SQL. Throughout
the task, the Critic intervenes to evaluate task completion and iden-
tify gaps in the plan and original tasks. Upon detecting gaps, the
Critic instructs the Planner to revise the plan. To precisely sched-
ule different agents to collaborate on tasks, we also propose agent
scheduling algorithms. To address the third challenge, AutoTQA
integrates a series of data connectors utilizing Trino [37, 40] to
streamline access to data from multiple systems within a single
query.

It is essential to note that when the Engineer is tasked with
a specific sub-task, it does not execute the task directly, such as
writing Python or SQL code. The Engineer only needs to describe
the task and then delegate it to Executor. The Executor initializes
with the LLM-based execution environment, adapting to various
requirements (or tasks). AutoTQA decouples the Engineer from
the specific execution process, making it easier to locate problems
and improve accuracy in the LLM-based execution environment.
Rapidly and efficiently building and debugging LLM-based applica-
tions presents challenges. To address this challenge, we developed
and implemented LinguFlow, an open source, low code visual pro-
gramming tool for the development and deployment of LLM-based
applications. Serving as a low-code programming tool, LinguFlow
helps application developers in the rapid construction, debugging,
and deployment of LLM-based applications. Developers need only

a fundamental grasp of LinguFlow blocks to organize business logic
as a message flow using a directed acyclic graph (DAG). In addition,
Linguflow integrates with the embedding service, significantly en-
hancing the performance of LLM-based applications by managing
few-shot examples. This has proven to be highly effective in Ping-
CAP’s practice. LinguFlow has been released as an open source
project [32].

AutoTQA aims to comprehensively explore the capabilities of
LLMs, with a specific focus on TQA tasks, emphasizing their ability
to learn from conversations and conversation programming.

Key Contributions. To summarize, this paper makes the fol-
lowing contributions:

e Our extensive experiments have demonstrated that the cur-
rent TQA approaches fall short of achieving oracle TQA
accuracy in complex and real business scenarios due to:
lack of (1) an effective solution in multi-table TQA, (2) fully
exploring LLM capabilities, and (3) a solution for handling
various tables from multiple systems.

To overcome all the technical challenges, we propose Au-
toTQA, a novel TQA framework based on multi-agent LLMs
that supports both single table and multiple tables question-
answering tasks. Through conversations between different
agents, TQA tasks can be efficiently solved. We also propose
agent scheduling algorithms to coordinate agents to en-
hance the accuracy of collaboration among diverse agents.
Furthermore, we integrated a series of data connectors into
the AutoTQA framework, enabling AutoTQA to streamline
accessing data from multiple systems within a single query.
We have designed and implemented LinguFlow, an open
source, low-code visual programming tool, to rapidly de-
velop, debug, and deploy LLM-based applications.
Extensive experiments demonstrate that AutoTQA achieves
outstanding accuracy across four representative datasets.
AutoTQA has been deployed in the production environment
at PingCAP.

Organization. The rest of the paper is organized as follows.
We provide the preliminaries in Section 2. The overall architecture
of AutoTQA and execution workflow are discussed in Section 3.
The detailed implementation of AutoTQA is presented in Section
4. Experimental evaluation is discussed in Section 5. We review
related work in Section 6 and conclude in Section 7.

2 PRELIMINARIES

2.1 Tabular Question Answering

Tabular Question Answering (TQA) is a significant research area
in natural language processing and data analysis of the database
community. Typically, a data analyst or user explores a series of
tables D = {t1,ty, ..., tn}, where t; represents a table stored in ar-
bitrary storage. Subsequently, the data analyst needs to perform a
series of data transformation operations T = (dt1,dty, . ..,dt,) on
specific tables, where dt; denotes a data transformation operation.
Following each data transformation operation, the data analyst
needs to decide whether to proceed to the next data transformation
operation or whether the current result resolves the user’s inquiry.
If it does, the exploration process is halted. During the data trans-
formation process, data analysts frequently utilize data processing

3922

tools such as Python or SQL to process data, requiring proficiency
in Python or SQL programming.

For example, as illustrated in Figure 1, when aiming to answer
the user’s inquiry “What is the year-end bonus for Tom?”, the data an-
alyst initially identifies that the relevant answers must be extracted
from the Employee and Salary tables. Subsequently, the data analyst
performs a join data transformation operation on these two tables,
specifically, join(Employee, Salary), and then assesses whether the
result can address the question. In more complex TQA scenarios,
additional intricate data transformation operations may be required,
including set operations, nested queries, and regex. Even in complex
TQA tasks, multiple rounds often need to be performed to get the
correct answer. In the present scenario, the user’s question can be
resolved by joining two tables, leading to the termination of the
exploration.

The final output of the TQA task is varied. It can directly present
the result extracted from the table to the user, either as a value
(i.e., a table with a single row and a single column) or a tabular
(i.e., a table with multiple rows and multiple columns). Alterna-
tively, it can extract the answer from the table, comprehend the
result, and deliver it to the user in natural language. There are also
predefined answer formats that enable the data analyst to fill in
specific sections according to a specified format and deliver them
to the user. Specifically, for the industrial dataset used in this paper,
the combination of natural language and specific output formats
enhances the clarity of answers.

2.2 Large Language Models

LLMs. Large language models (LLMs) are sophisticated artificial
intelligence systems trained on vast amounts of textual data to
understand and generate human-like language. Many LLMs [25, 26,
36, 39, 41] are based on deep neural networks. One key element is
the attention mechanism [42], which allows the model to focus on
different parts of the input text when generating the output. The
architecture involves multiple layers of interconnected neurons,
and the training process involves adjusting the weights and biases
of these connections to minimize the difference between the pre-
dicted values and actual outputs. The attention mechanism can be
mathematically [58] expressed as:

KT
Attention(Q, K, V) = softmax (Q \%

dy.

where Q, K, and V represent the input query, key, and value vectors,
respectively. The softmax function normalizes the attention scores,
and dy. is the dimensionality of the key vectors. This mechanism
allows the model to assign different weights to different parts of
the input sequence, enhancing its ability to capture context and
relationships in the data.

LLM prompting. Prompting is a versatile technique where spe-
cific instructions are given to LLMs by adding prompts to the input.
This method allows for customized responses without the need
for retraining the model, and the prompts can be crafted manually
or automatically learned from the data. Common prompting tech-
niques encompass zero-shot prompting [44], few-shot prompting
[2], Chain-of-Thought (CoT) [45], ReAct [51], and others.

AutoTQA Agents Schedulel AutoTQA 1A
Scheduler (3) Agents @ =
e e e e e em mm omm mm we — — — &
il 8 (?5 LinguFlowqI g
= &
Il 5 publish | [Debug | ||
I e
5 LinguFlow Visual User Interface
1 é g ||<—
! 3 Input/Output/Data Processing I >
! HEJ Condition/LLM/Invoke/Tools Blocks ! ED
L S | 4
| @ Data Connector |<—

? @ Data Source * ?
@ o Ang s3 Gv*“

Figure 2: The Architecture of AutoTQA.

GREENPLUM
DATABASE®

LLM agent. LLM agents [19, 47, 50, 57] are applications that per-
form complex tasks by combining LLMs with key modules such as
planning and memory. These modules enhance the agent’s capabili-
ties in terms of task execution and responsiveness. The LLMs serve
as the primary controller or “brain” of the agent, which controls the
flow of operations required to complete a task or respond to user
requests. In summary, LLM agents are applications that integrate
LLMs with strategic components such as planning and memory to
execute complex tasks.

3 THE OVERVIEW OF AUTOTQA

In this section, we first present the overview architecture of Au-
toTQA. Then, the execution workflow of AutoTQA is introduced.

3.1 The Overall Architecture of AutoTQA

The overall architecture of AutoTQA is shown in Figure 2. Next,
we detail the core components of the architecture.

@ Data Source. In AutoTQA, there are no restrictions on the
source of the table data, whether it is stored in distributed databases
like TiDB[13] or Greenplum [22], in a distributed file system like
HDFS [38], or in a spreadsheet form like Google Sheets [10]. In
PingCAP’s practice, specific tables are stored in BigQuery [9] and
TiDB [13], while some real-time data are accessible directly through
APIs. Migrating all data into a unified system, such as TiDB server-
less [31], would require extensive ETL efforts, be time-consuming,
and impractical. The AutoTQA preserves the original location of
all table data and exposes metadata from various table data sources
through data connectors. These data connectors implemented with
Trino abstract the complexity of interacting with multiple systems.

@ Data Connector. The data connector serves as a vital com-
ponent that enables the integration of diverse data sources, acting
as an interlayer between an LLM-based application (or execution
environment) and the data source. These data connectors are pur-
posefully designed to enable seamless interaction with various data
sources, including TiDB, PostgreSQL, local files, Google Sheets,
Apache Thrift, and APIs. Their core function lies in abstracting the

3923

intricacies of interfacing with different data storage systems, sim-
plifying the querying process. By providing a unified interface, data
connectors empower users to effortlessly manipulate and combine
data from disparate sources, fostering enhanced data interoper-
ability and expanding the capabilities of analytics and processing
across heterogeneous environments.

® LinguFlow. AutoTQA requires the ReAct paradigm to inter-
act with external tools (for example, text-to-SQL) based on LLM
to complete tasks assigned by Engineer. Consequently, the rapid
development and debugging of external tools emerge as the pri-
mary research challenge in this paper. Building upon this, we in-
troduce LinguFlow, an open source visual low-code tool designed
to streamline the rapid development, debugging, and deployment
of LLM-based applications. The essence of LinguFlow lies in its
low code architecture, enabling developers to construct business
logic through a message flow based on DAG. In essence, LinguFlow
empowers developers by providing a user-friendly environment
where the focus is on the application’s business logic, reducing the
barriers to entry for LLM-based application development. Within
LinguFlow, we incorporate an embedding service to enhance the
performance of LLM-based applications. This service plays a pivotal
role in addressing the specific needs of LLM-based applications that
benefit from a few-shot prompting techniques to improve accuracy
and correctness. The implementation details are provided in Section
4.2.

@ AutoTQA Agents. The LLM agents play crucial roles in han-
dling specific responsibilities within the context of TQA. This en-
semble comprises five distinct agents, namely User, Planner, En-
gineer, Executor, and Critic. Each agent is assigned a unique role
in the TQA tasks, and their collaboration is crucial for completing
TQA tasks. We refer to them as a digital employee group. Section
4.3 provides more comprehensive details about the specific func-
tions and roles of these agents, providing a detailed insight into
how these components collaboratively contribute to the overall
effectiveness of AutoTQA.

® AutoTQA Agents Scheduler. The effectiveness of the Au-
toTQA in TQA tasks is notably influenced by the scheduling of
different agents for specific TQA tasks. Within agent interactions,
a crucial control mechanism is implemented by setting a maximum
round limit, terminating the interaction when the number of rounds
reaches the specified threshold. To further optimize this process and
achieve efficient interaction between agents, we introduce three
schedulers: the circular rolling-based scheduler, the LLM-based
scheduler based on the agent function description, and the finite-
state machine-based scheduler. Each scheduler brings a unique
approach to task allocation, and their performance variations have
direct implications on both task accuracy and cost efficiency within
the TQA framework. The implementation details are provided in
Section 4.3.

3.2 AutoTQA Execution Workflow

In this section, we illustrate how AutoTQA provides the execution
plan through Planner and Engineer in response to the user’s ques-
tions. AutoTQA interacts with external LLM-based applications
through Executor, while Critic is responsible for evaluating the
complete completion of the task.

Analyze the billing records for user Eugene on January 10, 202

User @

4, and generate a report in accordance with either Output A or B.

Day-over-Day (DoD) analysis of daily bills entails comparing the specified date with the previous day.

1. Identify User ID

Executor

5. Retrieve project billing details for each project ID

n **GAP**: The final report, which should include billing details for the user
and projects with significant changes (if applicable), has not been produced.
Critic ~ **Pending Task**: Generate the final report based on Output B, as the DoD
® change rate exceeds 5%, and include the additional details for projects with

significant changes and reasons for changes as specified in Output B format.

2. Fetch Total Daily Bill "?"’" 1. Calculate Project DoD Contribution Rate
3. Calculate Day-of-Day Change Rate oY 4 2. Analyze Reasons for Changes
Planner 4 Decision Output Format based on Change Rate Planne 3. Fetch Billing Details for user with ID 138742096513
T 5. Fetch Project IDs ZHANO0CT 4, Fetch Projects with Significant Changes
6. Retrieve Project Billing Details @ 5. Fetch Reasons for Changes in Each Project
7. Calculate Project Day-of-Day Contribution Rate 6. Review and Finalize Report
8. Generate Final Report
N 9. Review and Finalize Report 1. Calculate the DoD change and the contribution rate
= 2. Analyze Reasons for Changes
@ginccr 1. Retrieve the user ID, suggested tool invoke: Executor (Text-to-SQL) Engineer 3. Prepare the Billing Details Section
2. Fetch the total daily billing for user with ID 138742096513 (® 4. Prepare the Projects with Significant Changes Section
3. Calculate the DoD change and change rate in daily billing for user S. Prepare the Reasons for Changes in Each Project Section
HD with ID 138742096513 between January 9, 2024, and January 10, 2024. 6. Review and Finalize Report, and output "FINISH"
=1l 4. Retrieve all project IDs associated with user with ID 138742096513 B3 # Critic Review

Critic

Plan to Generate Final Report for user 138742096513 based on Output B

The tasks outlined in the initial message have been fully completed.
The "Planner’ and "Engineer’ have successfully identified the results.
® #Summary the Results
...... Delivers the result to the user
TERMINATE Data Source

ﬁ ” Text-to-SQL Details

i

Ifaily

Evejnt

i

0
Executor Python

Figure 3: An example for the exec

An example is depicted in Figure 3. The execution results of each
step plan are not shown in the figure, and the formats of Output
A and Output B are not provided. Firstly, the User submits the
question: “Analyze the billing records for user Eugene on January
10, 2024” to AutoTQA. Subsequently, the Planner formulates an
initial execution plan based on the user input, determining that this
task comprises nine steps (®). Due to the complexity of PingCAP’s
business operations, to help the Planner better formulate the exe-
cution plan, the User agent incorporates some standard operating
procedures (SOP) from PingCAP’s business. The plan is then allo-
cated to Engineer through the finite state machine-based scheduler
embedded in AutoTQA. The Engineer executes the plan step by
step, refining it by incorporating additional details and specifying
the external applications (i.e., tools) to be utilized. The formulated
query is subsequently handed over to Executor. The Executor in-
vokes the specified tool, carrying out the task allocated by Engineer.
When specific code (SQL or Python) needs to be written or nu-
merical calculations need to be performed, the Engineer assigns
specific tasks to the Executor. The main reason is that AutoTQA
wanted to decouple the functionality of the Engineer agent from
specific external tools, allowing us to debug and enhance each part
individually. In PingCAP practice, we found that many errors were
generated by external tools rather than by the agent’s design itself.
To complete the plan, the Engineer and Executor engage in multiple
rounds of interaction (®@). Simultaneously, the scheduler directs the
Critic to assess the completion status of the plan. If incomplete, the
Critic identifies gaps and pending tasks (®) by understanding the
execution context and the initial task. Subsequently, the Planner is
dispatched to revise the plan, facilitating the accurate completion of
the task of User (®). This iterative process repeats and the scheduler
determines the appropriate agent (®). Finally, the Critic assesses
task completion, summarizes the output for the user, and completes
the entire process (®).

3924

ution workflow of AutoTQA.

The completion of a task frequently involves numerous itera-
tions, with AutoTQA specifying a maximum number of rounds.
This value is chosen carefully in PingCAP’s business as a trade-off
between accuracy and cost. Furthermore, as interaction rounds
increase, longer contexts amplify the likelihood of errors in con-
text comprehension by the agent. In external application invokes,
we leverage text-to-SQL, a crucial component that contributes to
AutoTQA’s accuracy in answering user inquiries. These tools are
developed, debugged, and deployed using LinguFlow. The text-to-
SQL tool interacts with the multiple tables using the data connector
component.

4 IMPLEMENTATION

In this section, we begin with an overview of the data connec-
tor implementation. We then proceed to present the LinguFlow
implementation, followed by a thorough exploration of the imple-
mentations of the agent and scheduler for AutoTQA. The section
concludes with a detailed discussion of the exception handling and
retry mechanism employed by AutoTQA.

4.1 Data Connector

To enable multiple table operations in TQA tasks, the pivotal compo-
nent is the data connector. The primary purpose of a data connector
is to register any external data source with Trino. In our implemen-
tation, to acquire real-time data updates, we directly extract data
through APIs and register it into a unified interface, with Trino
selected as the intermediate unified form. The interface implemen-
tations include (1) ListSchemaNames to register the database list;
(2) ListTables to register the table list of the specified database; (3)
GetTableMetadata to register specific metadata of the table, such as
columns, their types, and index keys; (4) GetSplit to retrieve several
splits meeting query requirements, with splits used for GetRows
to obtain complete row data; (5) GetRows to retrieve all the row

data based on a given split. For tables stored in other systems (or
files), users of TQA tasks need only implement five interfaces to
customize the data connector, greatly reducing the ETL effort. Im-
plementing these five interfaces conceals the disparities among
data sources for TQA tasks, allowing the convenient manipulation
of diverse tables in a single query. In the text-to-SQL application of
Executor, Trino SQL is generated to abstract the intricacies of the
underlying system. In summary, a data connector aims to map all
necessary table metadata into a unified Trino interface, facilitating
simultaneous operations on different tables across multiple systems
within a single query.

4.2 LinguFlow: A Low-Code Tool for Developing
LLM-based Application

The direct users of LinguFlow are developers and application builders
who leverage LLM and associated frameworks for data analysis
and data processing. Previously, they had to navigate both business
logic and understand LLM APIs and frameworks like Langchain
[17]. The DAG is an abstraction of the message flow in LLM-based
applications in LinguFlow. It represents business logic and consists
of nodes and edges.

In LinguFlow, a node in the DAG represents an instantiated
block and is a central element. These nodes serve to decompose
intricate LLM-based applications into reusable blocks, allowing
developers to seamlessly select and organize them according to
business logic. Blocks that adhere to development specifications are
registered in a registry. LLMs application developers can readily
comprehend the input/output and function definitions, facilitating
swift instantiation of these blocks as nodes within the DAG to
implement LLMs applications.

LinguFlow comprises six block types: input/output defining for
LLMs applications, data_process for common data processing oper-
ations like text merging, condition for common condition compar-
isons, LLMs, invoke other applications and components, and tools
(e.g., Google Search). This capability proves valuable in scenarios,
where interaction with external environments is required using Re-
Act paradigm. Applications built with LinguFlow can be deployed
on the cloud with one click using its publishing capability. Addi-
tionally, LinguFlow provides online run and debug functionality,
allowing users to run and debug applications. Ultimately, AutoTQA
can easily refer to cloud-based applications via URLs. The advent
of LinguFlow has greatly improved the efficiency of application
development and deployment, allowing users to focus on TQA tasks
themselves. LinguFlow is extensively used in PingCAP’s practices.

Embedding Service. In LinguFlow, we employ the widely em-
braced technique of in-context learning with few-shot examples
to enhance the accuracy of LLMs for specific question-answering
tasks. This method entails presenting the LLMs with task-related
examples or demonstrations, enabling them to capture context-
specific and enhance performance. To achieve this goal, we develop
a dedicated embedding service that isolates the corpus between dif-
ferent scenarios using namespace. We incorporate new examples or
idempotently update existing data in the corpus through the use of
upsert operation. The query operation enables the retrieval of top-k
related data based on embedding, and delete operation removes
data from the corpus using unique IDs. Our embedding service

3925

add
Wo

Scheduler Critic

=
Tools

Errors/Results

Executo HD

Figure 4: The agents of AutoTQA.

Tools Invoke lnvoke

AutoTQA Critic Agent Prompt Example

Role: Critic

Responsibility:

Your responsibility is to assess if all preceding messages fulfill the user's task.
'You must adhere rigorously to the evaluation process outlined below:
1. **Preliminary Evaluation**: Compare the output messages to verify the completion of tasks
proposed by the user in the initial tasks.
Provide feedback on the evaluation results. Provide your decision using one of the following:
- If all the tasks are completed, go to step 2.
- If negative, provide details on the pending tasks. This pending task is referred to as a GAP.

RLpon this GAP to 'Planne:
mmarize the resu
he 'E anm has px

Generate the final report.

ouxl\ genera llui a report in the prL\mus message, simply reiterate
““““ “*immediately**.
not ompm a 1qm|l rhul you should generate and output the full report
*: If the output message already contains "FINISH", promptly append

TERMINATE".

Figure 5: The prompt example of AutoTQA Critic agent.

supports Pinecone [30] and Qdrant [33] as both a vector database
and a vector search engine. All are available as plugins, making
it easy to add additional support for vector databases. Few-shot
learning is a commonly employed optimization technique that max-
imizes the LLM’s capabilities without necessitating fine-tuning. The
embedding service also provides the flexibility to select few-shot
examples.

4.3 AutoTQA Agent and Scheduler

The agents serve as the central component of AutoTQA, ensuring
accurate responses to user questions. Various agents are assigned
specific tasks based on their functional responsibilities, collaborat-
ing to answer user questions. Figure 4 illustrates the agents and
their interactions. The AutoTQA comprises five agents, each with
distinct roles that interact collaboratively to fulfill the specified task.
Initially, the User receives a task submitted in natural language,
describing the user’s question. Figure 3 illustrates that for particular
tasks, users may require additional specific information (e.g., DoD
analysis in Figure 3) when describing a question. Subsequently,
AutoTQA encapsulates the user’s task and submits it to the Planner.
The Planner is responsible for decomposing tasks into fine-grained
subtasks suitable for execution. The decomposing process may
follow the standard operating procedure (SOP) of the task. The
Engineer receives these fine-grained subtasks and proceeds with
step-by-step implementation. The Engineer refines each subtask, in-
corporates necessary information by conversation context into the

Algorithm 1: AutoTQA Agent Circular Rolling Scheduling.

Algorithm 2: AutoTQA Agent LLM Scheduling.

1 Function RollingScheduling(current_round):
/* Initiates the circular rolling scheduling sequence.

*/
circular_scheduling_queue = {Planner, Engineer,
Executor, Critic};
if !Task.isComplete() and current_round < max_round
then
next_agent =
rolling_scheduling_queue(circular_scheduling_queue);

current_round-++;

return next_agent;

plan, and initiates execution. In cases that involve interaction with
external applications (e.g., text-to-SQL) during execution, the Engi-
neer delegates this interaction to the Executor. Upon completion of
the execution, the Executor returns the results to the Engineer. The
Engineer continues the next steps based on the returned context
content. The occurrence of an error may indicate an incorrect con-
dition for the task assigned to Executor by the Engineer, prompting
modification attempts and subsequent retries. Alternatively, the
scheduler may assign Critic to analyze the cause of the error and
determine if the current result aligns with the expectations of initial
tasks. Figure 4 illustrates that both Executor and Critic have the
potential to be scheduled following the Engineer. Figure 5 presents
a fragment of the prompting for Critic, delineating its particular
responsibilities. In case Critic identifies gaps, it reports them to the
Planner for plan revision. The process iterates repeatedly until the
tasks specified by the user are completed. The scheduler schedules
the agents of AutoTQA based on the defined scheduling algorithm.

In the initial design, we created only three agents: User, Planner,
and Engineer. We simulated a minimal number of digital employ-
ees to perform TQA tasks. Unlike the current design, the Engineer
needed to program directly using programming languages such
as SQL or Python. Additionally, during this process, the Engineer
may perform calculations. We found that this process was very
error-prone and that it was difficult to determine the cause of the
errors. Therefore, we first decouple the Engineer and Executor roles,
making it easier to debug errors that occurred during the process.
This decoupling also allowed AutoTQA to incorporate more exe-
cution environments, which ultimately led to the development of
LinguFlow. In addition, we added a Critic agent to help judge the
completion of tasks. This agent functions as a product manager or
project manager within a project team, bridging the gap between
the current result and the initial task to ensure timely task comple-
tion. This formed a digital employee group with five agents. These
agents can work together to complete tasks and improve accuracy.

Scheduler. The scheduler of AutoTQA is responsible for sched-
uling among different agents. An effective scheduling strategy has
the potential to significantly minimize costs and enhance the accu-
racy of TQA tasks. AutoTQA includes three schedulers: the circular
rolling-based scheduler, the LLM-based scheduler, and the FSM-
based scheduler.

3926

1 Function LLMScheduling(current_round):
if !Task.isComplete() and current_round < max_round

then
/* The LLM automatically selects the most suitable

2

agent based on the function description of each

agent and conversation context. */

next_agent = llm(agent_list,
agent_function_description, conversation_context);

current_round++;

return next_agent;

Circular Rolling-based Scheduler. The Algorithm 1 intro-
duces a circular rolling-based agent scheduler. With a static sched-
uling sequence, the scheduler assigns agents to perform their respec-
tive tasks in the given order. In Algorithm 1, a dedicated scheduling
queue is generated (line 2). Excluding the User agent is crucial for
the scheduler, given its responsibility for submitting user-specified
questions. Hence, it remains ineligible for rescheduling until the
ongoing task is complete. Subsequently, if the current task remains
incomplete and that the round has not surpassed the maximum
limit, the next_agent is chosen from the scheduling queue using
a circular rolling mechanism (lines 3-5). Scheduling based on cir-
cular rolling does not align with our definition of each agent’s
responsibilities in numerous scenarios. Our experiments demon-
strate that this scheduling algorithm cannot achieve the correct
result within the number of rounds specified max_round in Section
5. This scheduling algorithm reveals that AutoTQA cannot rely on
a static sequence to achieve correct agent scheduling.

LLM-based scheduler. The Algorithm 2 presents a scheduling
strategy based on the description of agent functions. It is a dynamic
scheduling algorithm that selects the agent to be scheduled based
on the conversation context and agent function descriptions (line
3). LLM-based schedulers may, to some extent, generate scheduling
sequences that are not in line with expectations. This is primar-
ily due to a misunderstanding of the conversation context. The
longer the conversation context, the higher the likelihood of sched-
uling errors. The insight from this scheduling algorithm is that
AutoTQA requires the implementation of a dynamic agent loop in
the scheduling process. On the other hand, while studying schedul-
ing algorithms, we found that the scheduling relationships of agents
can be naturally described by finite-state machines. This inspires
us to implement the finite state machine-based (i.e., FSM-based)
scheduling algorithm.

FSM-based Scheduler. The Algorithm 3 presents an agent
scheduling approach based on a finite state machine (FSM). Each
agent is treated as a state in the finite state machine. When a condi-
tion is satisfied, it triggers an entry action in FSM. Upon completion
of the action, AutoTQA switches from one agent to another. Here,
the responsibilities of each agent serve as transition conditions
(or events). When the current task requires an agent with specific
responsibilities, the scheduler is activated to schedule the agent and
facilitate the state transition. This algorithm allowed us to decouple
the agent scheduling information from the agent function design.

Algorithm 3: AutoTQA Agent Finite State Machine Sched-
uling.

1 Function FSMScheduling(Agent prev_agent,
current_round):

if !Task.isComplete() and current_round < max_round
then

if prev_agent == User’ then

next_agent = ‘Planner’;

current_round++;
if prev_agent == Planner’ then
next_agent = ‘Engineer’;
B current_round++;

if prev_agent == ‘Engineer’ then

10 next_agent = ‘Executor’ | ‘Critic’;

1 current_round++;

if prev_agent == Executor’ then
next_agent = ‘Engineer’;

12
13

14 current_round++;

if prev_agent == ‘Critic’ then
next_agent = ‘Planner’;

15
16

17 current_round++;

18 return next_agent;

The FSM-based scheduling algorithm reduces the cost of inferring
the next_agent based on the conversation context. Based on the
agent function designed by AutoTQA, establish predecessor and
successor agent relationships, and define their transitions. This
guarantees an efficient and accurate scheduling process. In this
algorithm, AutoTQA does not give a fixed scheduling sequence
but adapts it dynamically through interactions. If the current task
remains incomplete and the maximum round limit is not surpassed,
the scheduler determines the most suitable agent (next_agent) based
on the current agent (prev_agent) and conversation context (lines
2-17).

The main distinction between LLM-based scheduling and FSM-
based scheduler lies in the fact that FSM-based explicitly illustrates
the scheduling relationships, whereas LLM-based scheduling relies
on the LLM’s comprehension of each agent’s function descriptions
and conversation context. In an LLM-based scheduler, there might
be scheduling sequences that do not align with expectations. We
believe that agent scheduling remains an important research topic
in the design of more complex agent scenarios.

4.4 Discussion

Exception handling and retry mechanism. When the Engineer
submits the SQL or Python programming tasks to the Executor,
the Executor initializes the corresponding code execution environ-
ment. Specifically, SQL operations are distributed to the underlying
system through the unified data connector interface. Within this
process, two situations require special handling: (1) The Executor

3927

returns an error, which requires the next iteration to continue pro-
cessing via the retry mechanism. This is likely attributed to issues
such as the faulty recall table or column. (2) The Executor returns
an empty value. An empty value does not necessarily indicate an
empty result and might signify a conditional error. In the industrial
dataset of PingCAP, case sensitivity often results in empty values
being returned. We collect similar error information and provide
it to the Engineer as common knowledge. The Engineer often re-
fines the results through the retry mechanism. Throughout the
experiments, this mechanism effectively improved the accuracy of
industrial datasets at PingCAP.

5 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the design of AutoTQA
using four representative benchmarks. In particular, we mainly
focus on the following research questions (RQs):

e RQ1: How does the accuracy of AutoTQA compare to meth-
ods specifically designed for single table TQA tasks?

e RQ2: How does the accuracy of AutoTQA on multiple tables
TQA tasks focused on the industrial dataset?

e RQ3: How do the various agent scheduling algorithms
implemented by AutoTQA affect the accuracy of the TQA
tasks?

e RQ4: What is the impact of the embedding service (few-
shot prompting) on accuracy?

In the following, we answer RQ1 in Section 5.2, RQ2 in Section
5.3, RQ3 in Section 5.4 and RQ4 in Section 5.5.

5.1 Experimental Setup

5.1.1 LLMs. The prompt-based LLMs employed in our experi-
ment include (1) GPT-4-0613 (referred to as GPT-4); (2) GPT-4-
1106-preview (referred to as GPT-4-turbo); (3) GPT-3.5-turbo-16k
(referred to as GPT-3.5-turbo). The temperature parameter is uni-
versally set to 0 to prioritize reproduction across all models. The
maximum number of rounds (i.e., max_round) was configured to
50 in our experiment for AutoTQA. By default, AutoTQA utilizes
the FSM-based agent scheduler.

5.1.2 Datasets. In our experimental setup, we utilize four datasets,
including three public datasets: WikiTQ [29], FeTaQA [24], TabFact
[46], and an industrial dataset obtained from PingCAP’s business
operations.

o WIiKiTQ: WiKiTQ serves as a representative dataset for
TQA tasks on a single table, comprising 18,496 complex
questions related to Wikipedia tables. The WiKiTQ dataset
includes complex questions necessitating multi-step rea-
soning and involving various data operations, such as com-
parison, aggregation, and arithmetic computation.
FeTaQA: The data is sourced from Wikipedia. Typically,
the answer takes the form of a free-form response. The
dataset contains 9, 329 question-answer pairs.

TabFact: TabFact is a large-scale dataset of manually anno-
tated statements related to Wikipedia tables. Their relations
are classified as “true” or “false”. TabFact is a dataset specif-
ically created to evaluate language inference in structured
data, which encompasses a combination of reasoning skills

in both symbolic and linguistic domains. We use the small
test data set to evaluate all methods, which includes 1, 998
question-answer pairs [6, 54].

Industrial Dataset: This industrial dataset comprises
billing data from TiDB Cloud, PingCAP’s database as a
service (DBaaS) offering. It encompasses aggregated and
detailed billing data, database event data, and operational
status data from real-world scenarios. This dataset facil-
itates the detection of significant changes in a tenant’s
billing, enables drill-down analysis to identify the largest
contributing unit to the change, and helps confirm whether
the billing change resulted from a database operation or
an abnormal SQL query. The dataset exceeds 300 GiB in
size. Real-time data is acquired through the API and seam-
lessly integrated into the AutoTQA via the data connector.
Substantial amounts of question-answering pairs data have
been accumulated. The complexity of industrial dataset far
exceeds that of the other datasets discussed in this paper.
On average, each question in this dataset references 4 tables.

We carefully annotated 5 few-shot examples for the industrial
dataset of PingCAP to evaluate AutoTQA and its variants.

5.1.3 Evaluation Metrics. We evaluate AutoTQA using the follow-
ing metrics: (1) For WikiTQ, the official metric is denotation ac-
curacy; (2) For FeTaQA, we employ the ROUGE-1, ROUGE-2, and
ROUGE-L metrics; (3) For TabFact, the evaluation metric is string
matching [54]; (4) For the Industrial Dataset, the standard metric
is result accuracy. These generated results have been thoroughly
reviewed by senior engineers at PingCAP. In this paper, we collec-
tively refer to these metrics as accuracy.

5.1.4 Baseline Methods. We compare the implementation of Au-
toTQA with the following methods:

o Codex [4]. The Codex generates the final answer directly
through the use of in-context learning.

Binder [8]. The Binder is a neural-symbolic framework
free from training that maps the task input to a program.
It allows binding a unified API of LLM functionalities to
a programming language (e.g., SQL, Python) to extend its
grammar coverage, and thus tackle more diverse questions.
It is a model based on LLMs and uses openAl Codex (code-
davinci-002) as the default LLM.

Dater [52]. Dater addresses TQA tasks by decomposition
of tables. Dater suggests that tables might be too large for
LLMs to argue about. It is also an LLM-based approach,
utilizing GPT-3 Codex (code-davinci-002) as the language
model.

ReAcTable [54]. ReAcTable uses LLM to decompose the
problem into multiple steps and generate code-based logical
operations to process tabular data as required. The gener-
ated code is then executed by external code executors using
the ReAct paradigm, and the resulting intermediate table
is fed back into the LLMs to support subsequent reasoning
steps. It uses Codex (code-davinci-002) as the default LLM.
ReAcTable (GPT-3.5-turbo). It is a variation of ReAcTable
and employs GPT-3.5-turbo as the default base LLM model.
The voting mechanism was not used.

3928

Table 1: Performance of Baselines on WikiTQ Dataset.

Method Accuracy
Codex 47.6%
Binder 61.9%
Dater 65.9%
ReAcTable 68.0%
ReAcTable (GPT-3.5-turbo) 52.4%
ReAcTable (GPT-4) 67.3%
ReAcTable (GPT-4-turbo) 66.1%
AutoTQA (GPT-3.5-turbo) 66.0%
AutoTQA (GPT-4) 75.3%
AutoTQA (GPT-4-turbo) 73.2%

Table 2: Performance of Baselines on FeTaQA Dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L
Codex 0.62 0.40 0.52
Dater 0.66 0.45 0.56
ReAcTable 0.71 0.46 0.61
AutoTQA (GPT-3.5-turbo) 0.71 0.44 0.60
AutoTQA (GPT-4) 0.75 0.51 0.64
AutoTQA (GPT-4-turbo) 0.77 0.53 0.67

ReAcTable (GPT-4). This is a variant of ReAcTable that
utilizes GPT-4 as its default base LLM model. The voting
mechanism was not utilized.

ReAcTable (GPT-4-turbo). It is a variation of ReAcTable
that uses GPT-4-turbo as its default base LLM model. The
voting mechanism was not utilized.

AutoTQA (GPT-3.5-turbo). We introduce the AutoTQA
method, employing the GPT-3.5-turbo model. Specifically,
our choice is GPT-3.5-turbo-16k, taking into account the
token limit of 16, 385 for this model.

AutoTQA (GPT-4). We present the AutoTQA method, uti-
lizing the GPT-4 model. Specifically, we opt for GPT-4-0613,
considering the token limit of 8, 192 applicable to this model.
AutoTQA (GPT-4-turbo). We present the AutoTQA method,
utilizing the GPT-4-turbo model. Specifically, we opt for the
GPT-4-1106-preview, considering the token limit of 128, 000
for this model.

Due to variations in benchmark performance, we report the
benchmark-specific best-performing baselines. Specifically, we ex-
clusively report LLM-based approaches since, as indicated in [52,
54], these approaches have achieved state-of-the-art performance.

5.2 Single Table Evaluation (RQ1)

In this section, we evaluate the performance of various methods for
TQA tasks of a single table across WiKiTQ, FeTaQA, and TabFact
benchmark datasets. The results are presented in Tables 1, 2, and 3,
respectively. It is important to note that AutoTQA using different
base models all utilize FSM-based scheduler. The impact of different
scheduling algorithms on accuracy is discussed in Section 5.4.

Table 3: Performance of Baselines on TabFact Dataset.

Method Accuracy
Codex 72.6%
Binder 85.1%
Dater 85.6%
ReAcTable 86.1%
ReAcTable (GPT-3.5-turbo) 73.1%
ReAcTable (GPT-4) 83.4%
ReAcTable (GPT-4-turbo) 85.0%
AutoTQA (GPT-3.5-turbo) 79.4%
AutoTQA (GPT-4) 87.4%
AutoTQA (GPT-4-turbo) 88.7%

In Table 1, when AutoTQA uses GPT-3.5-turbo as the default
model, the performance is slightly worse than that of ReAcTable,
with a performance gap of 2%. However, when AutoTQA uses GPT-
4-turbo as the base model, the performance improves by 5.2% com-
pared to ReAcTable, and when GPT-4 is used as the base model,
the performance improves by 7.3%. This observation suggests that
opting for GPT-4 or GPT-4-turbo as the default LLM improves
overall performance than GPT-3.5-turbo. This is due to (1) the
superior inference performance of GPT-4 and GPT-4-turbo, and
(2) the enhanced design of AutoTQA’s agent, such as scheduling
and exception-handling and retry mechanisms, which further im-
prove accuracy. The full exploration of cooperative abilities among
different agents is facilitated when equipped with GPT-4 or GPT-4-
turbo models, given their inherently strong reasoning capabilities
from conversation context. Furthermore, there exists a slight per-
formance discrepancy between AutoTQA (GPT-4) and AutoTQA
(GPT-4-turbo).

In Table 2, we observe that the performance of ReAcTable is
similar to that of AutoTQA (GPT-3.5-turbo). AutoTQA thoroughly
explores the conversational capabilities inherent in LLMs and their
proficiency in acquiring reasoning skills from diverse conversa-
tional contexts. Both AutoTQA (GPT-4) and AutoTQA (GPT-4-turbo)
outperform ReAcTable. The rationales align closely with those for
using the results of the WiKiTQ dataset.

The data presented in Table 1 and Table 2 indicates that AutoTQA
can introduce a dynamic agent loop during problem-solving by
agent scheduling, agent function and retry, leading to enhanced
accuracy in results. This also underscores the superior conversation
and conversation programming capabilities of AutoTQA (GPT-4)
and AutoTQA (GPT-4-turbo).

In Table 3, AutoTQA (GPT-3.5-turbo) exhibits a performance
6.7% worse than ReAcTable, and its performance is also inferior to
Binder and Dater. AutoTQA (GPT-3.5-turbo) struggles when faced
with “true” or “false” questions, occasionally providing neutral
answers. However, AutoTQA (GPT-4) and AutoTQA (GPT-4-turbo)
outperform other methods. This highlights that combining the
robust GPT-4-turbo model with the agent-based design of AutoTQA
results in superior performance.

The utilization of GPT-3.5-turbo, GPT-4, and GPT-4-turbo mod-
els in ReAcTable is demonstrated in Tables 1 and 3. Nevertheless,
ReAcTable fails to achieve state-of-the-art performance. In contrast,
AutoTQA demonstrates superior performance on these datasets.

3929

Table 4: Performance of Baselines on Industrial Dataset.

Method Accuracy
AutoTQA (GPT-3.5-turbo) 45.0%
AutoTQA (GPT-4) 85.0%
AutoTQA (GPT-4-turbo) 80.0%

S = =
o o i

o

Normalized Price
>

e
=

e
[

RTQA (GPT-4-turbo) AutoTQA (GPT-4)
Figure 6: Normalized Average Price of Each TQA Task on
Industrial Dataset.

This can be attributed to (1) AutoTQA formulates execution plans
using the Planner, allowing for iterative updates. AutoTQA evalu-
ates the completion of the plan by considering conversation context
and identifying gaps, providing an advantage over ReAcTable. In
error handling, AutoTQA may employ the Critic to assess errors
and their causes from the conversation context; (2) AutoTQA’s
unique agent design and scheduling mechanism make better use of
LLM'’s ability to reason and learn from conversation contexts. The
design of AutoTQA maximizes the contextual learning capabilities
of LLMs.

Finding 1. AutoTQA attains superior performance compared to other
LLM-based approaches by leveraging the potent GPT-4 and GPT-4-
turbo models. This is primarily due to the agent design (e.g., agent
scheduling and retry mechanisms) of AutoTQA, which fully utilizes
the LLM's ability to reason and learn from conversation contexts.
Meanwhile, it also can harness powerful external applications.

5.3 Multiple Tables Evaluation (RQ2)

In this section, we evaluate the accuracy of the AutoTQA multiple
tables TQA using the industrial dataset at PingCAP. Since Binder,
Dater, and ReAcTable cannot be directly applied to multiple ta-
bles TQA tasks, our evaluation focuses solely on AutoTQA under
different LLMs.

In Table 4, we present the experimental results on the indus-
trial dataset collected by PingCAP. In this paper, we acquire the
necessary data through the APIs, enabling real-time data injection
through the data connectors developed by PingCAP. In Table 4, it
is evident that the performance of AutoTQA (GPT-3.5-turbo) is 40%
lower than that of AutoTQA (GPT-4). The performance difference
can be explained by (1) the intricate structure and substantial vol-
ume of data in the industrial data set collected by PingCAP, together
with the complex SOP for this task. The resulting complexity leads
Planner to generate a highly complex plan, and AutoTQA (GPT-
3.5-turbo) is more prone to errors in handling such complexity; (2)
the superior reasoning ability of GPT-4 compared to GPT-3.5-turbo

enhances performance in tackling complex plans; (3) the unique
design of agents in AutoTQA, such as agent scheduling, further
enhances accuracy. In the industrial dataset, where each question
involves operations across multiple tables that encompass intricate
joins, regularization, and others. Similarly, AutoTQA (GPT-4-turbo)
shows only a performance decline of 5.0% compared to AutoTQA
(GPT-4).

Finding 2. In real-world scenarios with demanding multi-table TQA
tasks, AutoTQA demonstrates notable performance. This underscores
AutoTQA's ability to achieve optimal performance across diverse
TQA scenarios.

In the industrial dataset, we also provide the average normalized
cost associated with each task. More precisely, the processing cost
of AutoTQA (GPT-4) for a given task is 1.28X higher than that of
AutoTQA (GPT-4-turbo) as shown in Figure 6. In industrial busi-
ness operations, PingCAP considers the cost per task a key factor
when selecting distinct base LLMs. Therefore, we prioritize the cost-
effective choice of GPT-4-turbo as the base model of AutoTQA, as
its accuracy is merely 5.0% inferior to that of AutoTQA (GPT-4). The
senior engineers consider the accuracy of AutoTQA (GPT-4-turbo)
in addressing TQA problems to be acceptable at PingCAP.

Finding 3. When handling intricate commercial TQA tasks, AutoTQA
configured with the GPT-4-turbo base model can achieve accuracy
levels that satisfy engineers. And it also offers a more cost-effective
solution for businesses.

5.4 The Effect of Scheduling Algorithms on
Accuracy (RQ3)

In this section, we utilize the industrial dataset to demonstrate that
agent scheduling algorithms significantly impact accuracy. The
performance effects of various scheduling algorithms in terms of
accuracy are presented in Table 5.

In Table 5, AutoTQA (GPT-4) and AutoTQA (GPT-4-turbo), when
configured with the circular rolling-based agent scheduling algo-
rithm, do not provide correct answers to user questions within
the max_round constraint. The circular rolling-based scheduling
algorithm specifies a scheduling sequence. The erroneous genera-
tion of this scheduling sequence leads to incorrect messages being
received by next_agent from the conversation contexts, resulting in
misguided decisions by these agents. The subsequent agent captures
these errors, amplifying the impact.

The performance comparison between LLM-based and FSM-
based scheduling in Table 5 indicates only a difference of 5%. In prac-
tical business, AutoTQA is more likely to leverage both scheduling
algorithms at PingCAP business operations. The LLM-based sched-
uling method involves the scheduler generating dynamic sched-
uling sequences based on each agent’s function descriptions and
conversation contexts. In contrast, FSM-based scheduling aligns
more closely with the definition of different agent function descrip-
tions. The primary reason for the lower accuracy of LLM-based
scheduling compared to FSM-based scheduling is that, in some

3930

cases, the LLM-based scheduler schedule sequence is based on the
function description of different agents, which may deviate from
the user’s intention. Consequently, errors arise in the agent’s assess-
ment of specific steps, and these inaccuracies propagate throughout
the conversation contexts.

Finding 4. AutoTQA employs multi-agent LLMs, and their
performance is contingent on the agent scheduling algorithm. Notably,
the circular rolling-based scheduler exhibits the poorest
performance. The FSM-based scheduling algorithm achieves the best
performance.

Subsequently, we evaluate the number of rounds needed by Au-
toTQA with the LLM-based scheduler and the FSM-based scheduler
to complete each task in the industrial dataset. The average rounds
are presented in Figure 7. In the LLM-based scheduler, the number
of rounds is 1.6x that of the FSM-based scheduler for the same
question answering tasks. In conclusion, AutoTQA employing the
FSM-based scheduler exhibits faster convergence.

Finding 5. AutoTQA employs the FSM-based scheduler to
orchestrate agents, resulting in a reduction of scheduling rounds.
This facilitates faster convergence, thereby significantly enhancing
the user experience.

5.5 The Effect of Embedding Service on
Accuracy (RQ4)

In this section, we evaluate the effect of the embedding service
on enhancing the accuracy of AutoTQA (GPT-4-turbo). Due to the
cost-effective attributes of GPT-4-turbo, our main focus in PingCAP
business operations is to improve AutoTQA (GPT-4-turbo) accuracy.
The experimental results are presented in Table 6.

AutoTQA (GPT-4-turbo) exhibited a substantial accuracy im-
provement with an increase in the number of few-shot examples
from 0 to 5. This observation implies that few-shot examples sig-
nificantly impact accuracy. We observe that with an increase in the
number of few-shot examples, the increment in accuracy perfor-
mance initially rises and subsequently declines. In our experiment
with a substantial 300 GiB of industrial data, a mere 5 few-shot
examples proved sufficient to boost the performance to 80.0%. This
highlights the impact of few-shot examples on the performance
of AutoTQA (GPT-4-turbo). Selecting the most effective few-shot
examples to improve accuracy is very challenging. On the one hand,
more few-shot examples are not necessarily better; on the other
hand, different few-shot examples significantly impact accuracy.

Finding 6. The performance of AutoTQA in terms of accuracy
depends on a few-shot examples. By moderately increasing the
number of examples, AutoTQA performance can be improved.

6 RELATED WORKS

TQA. There are several state-of-the-art methods available for tack-
ling single-table TQA tasks, broadly classified into approaches based

Table 5: Performance of AutoTQA on Industrial Dataset using Different Scheduling Algorithms.

Method Scheduler Accuracy
Circular Rolling-based N/A
AutoTQA (GPT-4) LLM-based 80.0%
FSM-based 85.0%
Circular Rolling-based N/A
AutoTQA (GPT-4-turbo) LLM-based 75.0%
FSM-based 80.0%

IS
<

3

S 30-

=

=}

&

1 “

I+

S

2

N “
0" FSM-based LLM-based

Figure 7: Average Rounds on the Industrial Dataset.

Table 6: Performance of Embedding Service on Industrial
Dataset for AutoTQA (GPT-4-turbo).

Few-shot Accuracy
0-shot 60.0%
1-shot 63.5%
2-shot 69.0%
3-shot 77.5%
4-shot 79.0%
5-shot 80.0%

on fine-tuning and those based on LLMs. (1) Fine-tuning Ap-
proaches. Table-BERT [6] employs a rule-based method to convert
tabular data into natural language sentences. TaPas [20] improves
the BERT architecture by integrating the capability to encode ta-
bles as part of its input. TAPEX [20] is designed to emulate the
SQL executor within the BART model. SaMoE [55] incorporates
the mixture-of-experts (MoE) paradigm into table-based fact veri-
fication. PASTA [11] introduces six types of sentence-table cloze
tasks, pre-training on a synthesized corpus of 1.2 million items from
WikiTables. TaCube [56] adopts a precomputation-based approach
aimed at enhancing the performance of PLM in numerical reasoning.
OmniTab [15] proposes an all-encompassing pre-training method
that leverages both natural and synthetic data to bolster models
with proficiencies in handling both types of data. MultiTabQA [27]
is a multi-table TQA method that uses a single table TQA model
tapex-base as the base model. (2) LLM-based Approaches. Binder
[8] generates programs in programming languages and extends
their capabilities to address common sense problems. Dater [52]
tackles the TQA tasks through table decomposition. ReAcTable [54]
uses LLMs to break down problems into multiple steps tailored to
process tabular data as needed.

3931

LLM agents. The work presented in [49] provides a survey of
agents based on LLM. Voyager [43] is the LLM-powered embodied
lifelong learning agent in Minecraft that continuously explores
the world. Generative Agents [28] create credible simulations of
human behavior, dynamically adapting to changing experiences
and environments. BOLAA [21] orchestrates a multi-agent strategy,
which enhances the action interaction ability of agents. AutoGen
[47] serves as a generic framework for building diverse applications
of various complexities and LLM capacities. AgentVerse [5] is a
multi-agent framework that can effectively orchestrate a collabora-
tive group of agents. ChatDev [34, 35] offers an easy-to-use, highly
customizable, and extendable framework, which is based on LLMs
and serves as an ideal scenario for studying collective intelligence.
CAMEL [19] is a novel cooperative agent framework that allows
communicative agents to collaborate autonomously. D-Bot [58] is
an LLM-based database diagnosis system that can automatically
acquire knowledge from diagnostic documents.

LLM-based visual programming tools. Low-code LLM [3] is
a novel human-LLM interaction framework. LangFlow [18] is a
dynamic graph where each node is an executable unit. Rivet [14] is
a low code prompt chain that focuses on building complex flows.
PromptFlow [23] is designed to streamline the end-to-end develop-
ment cycle of LLM-based applications. PromptChainer [48] is an
interactive interface for visually programming chains. ChainForge
[1] is a visual toolkit for prompt engineering.

7 CONCLUSION

In this paper, we introduce AutoTQA, an autonomous tabular ques-
tion answering framework that leverages multi-agent large lan-
guage models. It comprises five agents collaborating to accomplish
user-specified tasks. We also propose agent scheduling algorithms
to orchestrate agents. Moreover, the utilization of the ReAct para-
digm enables AutoTQA to interact with external applications. We
introduce LinguFlow, an open source visual tool that facilitates swift
development, debugging, and deployment of LLM-based applica-
tions. Extensive experiments demonstrate that AutoTQA achieves
outstanding accuracy across four representative datasets. AutoTQA
has been deployed in the production environment at PingCAP.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful comments
and feedback. This work was supported in part by the National
Natural Science Foundation of China under Grant No. U22B2020,
and in part by PingCAP. Peng Cai and Kai Xu are the corresponding
authors of this paper.

REFERENCES

(1]

(2]

3

=

[10

(1]

[12

[13]

[14]

[16]

[17]
[18]

[19]

[20]

[21

[22

[23

[24]

[25]

[26]

Tan Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and Elena
Glassman. 2023. ChainForge: A Visual Toolkit for Prompt Engineering and LLM
Hypothesis Testing. arXiv preprint arXiv:2309.09128 (2023).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NIPS 33 (2020),
1877-1901.

Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge,
Chenfei Wu, Wang You, Ting Song, Yan Xia, et al. 2023. Low-code LLM: Visual
Programming over LLMs. arXiv preprint arXiv:2304.08103 (2023).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min
Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. 2023. Agentverse:
Facilitating multi-agent collaboration and exploring emergent behaviors. In
ICLR.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang,
Shiyang Li, Xiyou Zhou, and William Yang Wang. 2019. Tabfact: A large-scale
dataset for table-based fact verification. arXiv preprint arXiv:1909.02164 (2019).
Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han,
Jian-Guang Lou, and Dongmei Zhang. 2022. HiTab: A Hierarchical Table Dataset
for Question Answering and Natural Language Generation. In ACL. 1094-1110.
Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu,
Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. 2022.
Binding language models in symbolic languages. arXiv preprint arXiv:2210.02875
(2022).

Pavan Edara and Mosha Pasumansky. 2021. Big metadata: when metadata is big
data. PVLDB 14, 12 (2021), 3083-3095.

Google. 2023. Goole Sheets. Retrieved in Novermber, 2023 from https://www.
google.com/sheets/about/.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du.
2022. PASTA: table-operations aware fact verification via sentence-table cloze
pre-training. arXiv preprint arXiv:2211.02816 (2022).

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno,
and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via Pre-
training. In ACL. 4320-4333.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. PVLDB 13, 12 (2020), 3072-3084.

Ironclad. 2023. Rivet. Retrieved in Novermber, 2023 from https://rivet.ironcladapp.
com/.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen. 2022.
OmniTab: Pretraining with natural and synthetic data for few-shot table-based
question answering. arXiv preprint arXiv:2207.03637 (2022).

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qingcai Chen. 2022. A survey
on table question answering: recent advances. In China Conference on Knowledge
Graph and Semantic Computing. Springer, 174-186.

LangChain. 2023. LangChain. Retrieved in Novermber, 2023 from https://www.
langchain.com/.

LangFlow. 2023. LangFlow. Retrieved in Novermber, 2023 from https://github.
com/logspace-ai/langflow.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. 2024. Camel: Communicative agents for" mind" exploration of large
language model society. NIPS 36 (2024).

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and
Jian-Guang Lou. 2021. TAPEX: Table Pre-training via Learning a Neural SQL
Executor. In ICLR.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh
Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al.
2023. Bolaa: Benchmarking and orchestrating llm-augmented autonomous agents.
arXiv preprint arXiv:2308.05960 (2023).

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al.
2021. Greenplum: a hybrid database for transactional and analytical workloads.
In SIGMOD. 2530-2542.

Microsoft. 2023. PromptFlow. Retrieved in Novermber, 2023 from https://github.
com/microsoft/promptflow.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui
Zhang, Wojciech Kryscinski, Hailey Schoelkopf, Riley Kong, Xiangru Tang, et al.
2022. FeTaQA: Free-form table question answering. ACL 10 (2022), 35-49.
OpenAl 2022. Introducing ChatGPT. Retrieved in August, 2023 from https:
//openai.com/blog/chatgpt.

OpenAl 2023. GPT-4. Retrieved in Novermber, 2023 from https://openai.com/
research/gpt-4.

3932

[27

N
=S

[44

[45]

[46

[47

(48

[49

[50]

[51

[53

[54

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and Maarten de Rijke. 2023.
MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering.
arXiv preprint arXiv:2305.12820 (2023).

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2023. Generative agents: Interactive simulacra
of human behavior. In UIST. 1-22.

Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on
semi-structured tables. arXiv preprint arXiv:1508.00305 (2015).

Pinecone. 2023. Pinecone. Retrieved in June, 2023 from https://www.pinecone.
io/.

PingCAP. 2023. TiDB Serverless. Retrieved in January, 2023 from https://www.
pingcap.com/tidb-serverless/.

PingCAP. 2024. LinguFlow. Retrieved in March, 2024 from https://github.com/
pingcap/LinguFlow.

Qdrant. 2024. Qdrant. Retrieved in January, 2024 from https://qdrant.tech/.
Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize Chen, Yusheng Su, Yufan
Dang, Jiahao Li, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.
Communicative Agents for Software Development. arXiv:2307.07924 [cs.SE]
Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Weize Chen, Cheng Yang, Zhiyuan
Liu, and Maosong Sun. 2023. Experiential Co-Learning of Software-Developing
Agents. arXiv:2312.17025 [cs.CL]

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, Francois Yvon, Matthias
Gallé, et al. 2022. Bloom: A 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100 (2022).

Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on everything. In ICDE. IEEE, 1802-1813.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In MSST. Ieee, 1-10.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

trinodb. 2023. Trino. Retrieved in October, 2023 from https://trino.io/.
Immanuel Trummer. 2023. Can Large Language Models Predict Data Correlations
from Column Names? PVLDB 16, 13 (2023), 4310-4323.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).
Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. 2023. Voyager: An open-ended embodied
agent with large language models. arXiv preprint arXiv:2305.16291 (2023).
Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models
are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. NIPS 35 (2022), 24824-24837.

Jianshu Chen Yunkai Zhang Hong Wang Shiyang Li Xiyou Zhou Wenhu Chen,
Hongmin Wang and William Yang Wang. 2020. TabFact : A Large-scale Dataset
for Table-based Fact Verification. In ICLR. Addis Ababa, Ethiopia.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. Autogen: Enabling
next-gen llm applications via multi-agent conversation framework. arXiv preprint
arXiv:2308.08155 (2023).

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. Promptchainer: Chaining large language
model prompts through visual programming. In CHI. 1-10.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming
Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 2023. The rise and potential
of large language model based agents: A survey. arXiv preprint arXiv:2309.07864
(2023).

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu,
Toh Jing Hua, Junning Zhao, Qian Liu, Che Liu, et al. 2023. Openagents: An open
platform for language agents in the wild. arXiv preprint arXiv:2310.10634 (2023).
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022).

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023.
Large language models are versatile decomposers: Decompose evidence and
questions for table-based reasoning. arXiv preprint arXiv:2301.13808 (2023).
Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang
Che. 2024. A Survey of Table Reasoning with Large Language Models. arXiv
preprint arXiv:2402.08259 (2024).

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep,
and Jignesh M Patel. 2024. ReAcTable: Enhancing ReAct for Table Question
Answering, PVLDB 17(8) (2024), 1981-1994.

https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
https://rivet.ironcladapp.com/
https://rivet.ironcladapp.com/
https://www.langchain.com/
https://www.langchain.com/
https://github.com/logspace-ai/langflow
https://github.com/logspace-ai/langflow
https://github.com/microsoft/promptflow
https://github.com/microsoft/promptflow
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://www.pinecone.io/
https://www.pinecone.io/
https://www.pingcap.com/tidb-serverless/
https://www.pingcap.com/tidb-serverless/
https://github.com/pingcap/LinguFlow
https://github.com/pingcap/LinguFlow
https://qdrant.tech/
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2312.17025
https://trino.io/

[55]

[56]

[57]

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-
most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng, Shi Han, and Dong-
mei Zhang. 2022. Tacube: Pre-computing data cubes for answering numerical-
reasoning questions over tabular data. arXiv preprint arXiv:2205.12682 (2022).
Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang,
Shi Qiu, Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. 2023. Agents:
An open-source framework for autonomous language agents. arXiv preprint
arXiv:2309.07870 (2023).

3933

[58] Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming

[59

[60

]

Wau, Jiesi Liu, Ruohang Feng, and Guoyang Zeng. 2023. D-bot: Database diagnosis
system using large language models. arXiv preprint arXiv:2312.01454 (2023).
Fengbin Zhu, Wengqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang,
Jiancheng Lv, Fuli Feng, and Tat-Seng Chua. 2021. TAT-QA: A Question Answer-
ing Benchmark on a Hybrid of Tabular and Textual Content in Finance. In ACL.
3277-3287.

Jun-Peng Zhu, Peng Cai, Boyan Niu, Zheming Ni, Kai Xu, Jiajun Huang, Jianwei
Wan, Shengbo Ma, Bing Wang, Donghui Zhang, et al. 2024. Chat2Query: A
Zero-Shot Automatic Exploratory Data Analysis System with Large Language
Models. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 5429-5432.

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Tabular Question Answering
	2.2 Large Language Models

	3 The Overview of AutoTQA
	3.1 The Overall Architecture of AutoTQA
	3.2 AutoTQA Execution Workflow

	4 Implementation
	4.1 Data Connector
	4.2 LinguFlow: A Low-Code Tool for Developing LLM-based Application
	4.3 AutoTQA Agent and Scheduler
	4.4 Discussion

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Single Table Evaluation (RQ1)
	5.3 Multiple Tables Evaluation (RQ2)
	5.4 The Effect of Scheduling Algorithms on Accuracy (RQ3)
	5.5 The Effect of Embedding Service on Accuracy (RQ4)

	6 Related Works
	7 Conclusion
	References

