Enabling Window-Based Monotonic Graph Analytics with
Reusable Transitional Results for Pattern-Consistent Queries

Zheng Chen Feng Zhang

Yang Chen Xiaokun Fang

Renmin University of China Renmin University of China Renmin University of China Renmin University of China

chenzheng123@ruc.edu.cn fengzhang@ruc.edu.cn

Xiaowei Zhu
Ant Group

Guanyu Feng
Tsinghua University

chenyang_inf22@ruc.edu.cn

fgy18@mails.tsinghua.edu.cn robert.zxw@antgroup.com

ABSTRACT

Evolving graphs consisting of slices are large and constantly chang-
ing. For example, in Alipay, the graph generates hundreds of mil-
lions of new transaction records every day. Analyzing the graph
within a temporary window is time-consuming due to the heavy
merging of slices. Fortunately, we have discovered that most queries
exhibit consistent patterns and possess monotonic properties. As
a result, transitional results can be computed within slice gener-
ation for reuse. Accordingly, we develop MergeGraph enabling
window-based monotonic graph analytics with reusable transi-
tional results for pattern-consistent queries. MergeGraph has three
advantages over previous works. First, it is the first system specifi-
cally tailored for window-based monotonic graph analytics with
pattern-consistent queries. Second, it effectively utilizes transitional
results from different slices concurrently. Third, MergeGraph boasts
a high degree of expressiveness, supporting a broad spectrum of
monotonic graph queries. Experimental results demonstrate that
MergeGraph delivers significant performance benefits. In evalu-
ating four typical graph applications, MergeGraph achieves an
average speedup of 11.30X compared to state-of-the-art methods.

PVLDB Reference Format:

Zheng Chen, Feng Zhang, Yang Chen, Xiaokun Fang, Guanyu Feng,
Xiaowei Zhu, Wenguang Chen, and Xiaoyong Du. Enabling Window-Based
Monotonic Graph Analytics with Reusable Transitional Results for
Pattern-Consistent Queries. PVLDB, 17(11): 3003 - 3016, 2024.
doi:10.14778/3681954.3681979

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ZhengChenCS/MergeGraph_AE_VLDB24.git.

1 INTRODUCTION

Graph analytics is a fundamental application of graph databases
and warehouses [5, 6, 8, 12, 15, 18-22, 24-26, 29, 35, 38-40, 42, 44—
50, 53, 58, 60, 63, 64, 69, 72, 75-77, 79, 83, 85-87, 89, 90, 92, 93, 95,

Feng Zhang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
do0i:10.14778/3681954.3681979

3003

fangxiaokun@ruc.edu.cn

Wenguang Chen
Tsinghua University
cwg@tsinghua.edu.cn

<«— Graph query in a Temporal window —— E@
Q [ts, ts]

Data warehouse Administrator
1 1
1 1

Slice
(Gex)

Xiaoyong Du
Renmin University of China
duyong@ruc.edu.cn

Slice
(Ges)

Slice
(Ges)

Slice
(Gea)

Slice
(Ge3)

Slice
(Ge2)

Figure 1: An example of a window-based monotonic graph
analytics in Alipay.

97, 101, 102]. In the real world, graphs are constantly evolving, of-
ten comprised of slices. For example, Alipay generates 680 million
new transaction records daily [1]. It is common for commercial
companies to conduct their queries on an evolving graph within
a specific time window. Monotonic algorithms form a significant
category within graph algorithms, characterized by their output
R, which changes in a single direction—either monotonically in-
creasing or decreasing—as the graph evolves. Window-based mono-
tonic graph analytics not only holds great significance in graph
theory [4, 23, 34], but also plays a foundational role in numerous
online analytics operations, such as fraud detection [36, 91] and
preference recommendation [31, 96]. However, executing graph
analytics within a temporary window can be time-consuming due
to the intensive slice merges required. Consequently, there is an ur-
gent need to expedite window-based monotonic graph analytics. To
address this problem, this paper introduces an efficient approach for
window-based monotonic graph analytics, which involves reusing
transitional results for slices within the window.

We use Figure 1 to demonstrate the significance of window-
based monotonic graph analytics. Alipay [3], Ant Group’s financial
product that serves more than 1 billion users, periodically stores
data generated within a certain period (such as a day) in a data
warehouse, and queries typically target a slice window. A graph is
a set of vertices and edges, with edges connecting the vertices. Data
from each period forms a slice, referred to as a subgraph in a graph
data warehouse. For example, in a financial graph where users are
vertices and transactions among them are edges, managers query
the number of connected components within a graph composed of
transaction records from the last month. Window-based monotonic
graph analytics experience high latency due to the significant over-
head involved in constructing the corresponding graph for each


https://doi.org/10.14778/3681954.3681979
https://github.com/ZhengChenCS/MergeGraph_AE_VLDB24.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681979
https://www.acm.org/publications/policies/artifact-review-and-badging-current

uncertain window range and then performing monotonic analytics.
Therefore, accelerating window-based monotonic graph analytics
is of great importance for its practical use and the service quality
of the data warehouse.

In the literature, there are two categories of mainstream graph
processing systems to address such types of queries, but neither
of them can efficiently handle window graph queries. First, static
graph systems [14, 27, 28, 52, 55, 68, 70, 74, 82, 84, 88] require the
construction of a separate graph for each query, resulting in signif-
icant latency. For example, we evaluate the query of BFS based on
32 subgraphs from the StackOverflow dataset. The cost of merging
the graph structure accounts for 72.66% of the total time, making
this query highly inefficient. Second, evolving/streaming graph
systems [4, 13, 17, 37, 56, 57, 61, 66, 71, 73, 81] avoid re-computing
the entire graph by pre-storing existing results and performing
incremental computations when updates arrive. However, when
the scale of a subgraph update exceeds the capabilities of streaming
graph systems, their performance suffers. For instance, when in-
serting an update of a similar scale to a subgraph, its performance
is 8.74X lower compared to recomputing on a static graph. Addi-
tionally, evolving graph systems operate based on the pattern of
updates starting from an initial slice. In this pattern, the initial and
updated portions are not treated equally, and the results of the
updated portion are not fully leveraged.

Based on real-world graph query workloads and the above anal-
ysis, we observe three key insights and opportunities. First, in a
data warehouse, data import and subsequent analytics typically do
not occur simultaneously. This separation presents an opportunity
to precompute the imported slices during periods when the system
has idle resources. Second, the workloads consistently demonstrate
a regular pattern, which involves querying graphs composed of
different time windows in a fixed, regular manner. This pattern
allows us to reuse intermediate results across queries targeting
various windows. Third, the graph constructed for a specific query
window is temporary and does not require persistent storage. As
a result, we can avoid the high costs associated with constructing
the query graph.

To capitalize on these key opportunities, we propose Merge-
Graph, a graph analytics system specifically designed for window-
based monotonic graph analytics. First, to leverage the asynchro-
nous opportunities between data import and analysis, we develop
an offline-online design, which precomputes results within each
slice at the time of data import, ensuring they are readily avail-
able for immediate use during the online phase. Second, to cap-
italize on the local results contained in each slice, we propose a
merge-continue-compute model. It merges transitional results from
individual subgraphs to obtain an intermediate result, which is
then used to compute the final results, effectively leveraging the
transitional results from different subgraphs to avoid redundant
computations. Third, to avoid constructing graphs for each query
window, we present a computing solution based on discrete sub-
graphs. We initially construct a discrete graph storage solution
that incorporates only indexing for global access. Subsequently, we
introduce locality optimizations and parallelism optimizations to
enhance the performance of graph computations.

We compare MergeGraph against two state-of-the-art solutions
(Ligra [74], Grazelle [9], CoroGraph [98] for static graph processing

3004

system, and KickStarter [81], RisGraph [23] for evolving/streaming
graph processing system) on four monotonic algorithms: breadth-
first search (BFS), single-source shortest path (SSSP), single-source
widest path (SSWP), and weakly connected component (WCC). The
experimental results on seven datasets demonstrate that Merge-
Graph achieves an average speedup of 11.30X compared to the
best baseline. Specifically, our merge model achieves an average
redundant computation savings of 12.49%-94.69% across different
window sizes. The graph computing engine based on discrete graph
storage achieves an average speedup of 6.71X-25.64X.

To the best of our knowledge, this is the first work specifically
dedicated to efficient window-based monotonic graph analytics.
We summarize our contributions as follows.

o We propose a merge-continue-compute model that equally com-
bines the transitional results from individual subgraphs and
performs necessary computations based on the merged result,
maximizing the utilization of existing results and avoiding re-
dundant computations across different queries.

e We develop a graph computing framework specifically designed
for discrete graph storage, which includes a unified access in-
terface and a computation engine, effectively eliminating the
high overhead caused by merging graph structures for window-
based graph analytics tasks.

o We conduct extensive experiments to demonstrate that Merge-
Graph significantly outperforms the state-of-the-art graph com-
puting frameworks in handling window graph queries.

2 BACKGROUND AND PRELIMINARIES

2.1 Window-Based Monotonic Graph Analytics
for Pattern-Consistent Query

This paper focuses on window-based monotonic graph analytics,

which has been widely used in business operations of commer-

cial companies [2]. This section introduces and formally defines

window-based monotonic graph analytics for pattern-consistent

queries. All symbols used in this paper are listed in Table 1.

Table 1: Symbol and meanings.

Symbols Meaning

Gi The i-th subgraph in a window query.

\% The set of vertex.

E; The edge set of the i-th graph.

Q,0Q([i,j]) The graph query for the window from i to j.

Gu The collection of subgraphs within a window.

Ey The set of edges in all subgraphs within a window.
R, Ry The transitional query result for vertices.

Graph, data slice, and subgraph. We define a graph as G =
(V,E), where V represents the set of vertices, and E represents the
set of edges that connect these vertices. In a modern data warehouse,
data producers import data into the warehouse at regular intervals,
such as once a day. Each day’s data constitutes a data slice. In this
context, the i-th data slice comprises a graph G; = (V, E;), where
V denotes the vertices and E; denotes the edges connecting these
vertices. We refer to such a graph in a data slice as a subgraph.



Window-based query. We perform graph query Q on a col-
lection of data slices within a window. Given a slice window from
i to j, we return the query result of Q([i, j]) on the graph Gy =
(Gi U Gi+1 U ... U Gj). We define the collection of all subgraphs
within a window as Gy = (V, Ey), where we assume that subgraphs
share all vertices V, and Ey represents the set of all edges among
these subgraphs.

Monotonic algorithm. Monotonic algorithms are a significant
category within graph algorithms [81], characterized by their out-
put R, which always changes in a single direction - either monotoni-
cally increasing or decreasing — as the graph evolves. This principle
is widely applied in evolving/streaming graph systems [23, 81].
For instance, when identifying the largest connected component
in a graph, the size of the component can only remain constant
or increase with the addition of more edges. It will not decrease
because adding edges either connects more vertices or maintains
the current size of the largest connected component. The assump-
tion of monotonicity ensures that when merging subgraphs, their
results consistently evolve in a predictable direction, allowing us
to leverage intermediate results.

Pattern-consistent query. We have noticed that numerous
daily queries within the data warehouse demonstrate pattern-consistent
characteristics, where the identical query is executed on different
windows. For instance, this could involve querying the number of
connected components in a graph during various time intervals.
Despite the changes in window ranges, the query content itself
remains unchanged.

2.2 Iterative Monotonic Graph Analytics

Many graph computing systems [4, 23, 56, 57, 73, 81] support mono-
tonic graph analytics by employing iterative graph computation. In
these systems, given a graph G = (V, E), computation begins with
one or a group of vertices. It iteratively activates its neighbors based
on user-defined functions until the current set of active vertices be-
comes empty or reaches a user-defined convergence condition. Mod-
ern graph computing systems mostly adopt a vertex-centric pro-
gramming model due to its higher scalability [4, 23, 56, 57, 73, 81].

Algorithm 1: Iterative monotonic graph analytics

Input: Graph G, initial frontier U, update function F,
condition function C
Output: Graph query result R
1 Create an result array R of size |G.V|;
2 Frontier <« U;
3 while Frontier is not empty do

4 vertexSubset output(|G.V]);

5 for src in Frontier do

6 adj_list « G.getNeighbors[src];

7 for dst in adj_list do

8 F(src,dst, R);

9 if C(dst) then output.active(dst) ;
10 Frontier < output;

11 return R;

3005

Window size: HEE2 [C4 (18 116 HEE32

80 15
S
760 a
9 210
C
o [0}
8 40 ]
o}
9] w0 5
320
0 0

BFS SSSP SSWP WCC

(a) Occupancy of merging graph
strucutres in static graph
systems (Ligra).

BFS SSSP SSWP WCC

(b) Comparison of static graph
system and evloving graph
system (Ligra over RisGraph).

Figure 2: Performance of existing systems.

Graph processing workflow. Algorithm 1 illustrates the graph
processing workflow. The input consists of a graph G, an initial
frontier U, an update function F, and a condition function C. First,
we create a result array R of size G.V to store the results for each
vertex (Line 1). Then, we assign the initial frontier U to the current
Frontier (Line 2). After that, starting from the initial frontier, we
process all activated vertices in the current frontier (Lines 5-9). For
each activated vertex, we scan its neighbors (Line 7), apply the
update function F (Line 8) and activate the neighbors if it satisfies
the condition function C (Line 9). Finally, we update the Frontier
to be a vertex subset of vertices activated in this round and repeat
this process until the current Frontier becomes empty.

3 MOTIVATION

In this section, we first systematically review the limitations of exist-
ing solutions in handling window-based monotonic graph analytics,
and then highlight our motivation for a new line of research.

Why static graph systems do not apply? In static graph
systems, the initial step involves combining individual subgraphs
within a specified window range to create a complete graph Gy
for querying. Subsequently, a graph query Q is executed on Gy.
However, the use of static graph analysis systems necessitates the
reconstruction of the entire graph for each query, resulting in sig-
nificant inefficiency and resource consumption. Moreover, these
systems are unable to reuse existing results, leading to redundant
computations. We evaluate the performance of Ligra [74], the state-
of-the-art static graph system, in handling window-based graph
queries on StackOverflow dataset with window sizes ranging from
2 to 32. The experiment results are shown in Figure 2 (a). Although
Ligra achieves excellent performance in querying static graphs, the
cost of graph construction accounts for 34.30%-85.62% of the total
query execution time. This renders our efforts to optimize graph
systems futile.

Why evolving/streaming graph systems do not apply? Evolv-
ing/streaming graph systems adopt the idea of incremental compu-
tation, where they start with an initial result maintained from the
state of a graph. As the graph updates, they use incremental com-
putation methods to update the results of graph queries, avoiding
the need for a full recomputation of the entire graph. For a window
query Q([i, j]), we consider the portion [i, k], where i < k < j, as



the initial part and pre-store the computed results for this portion.
Then, we treat the slice portion [k + 1, j] as the update part of the
graph and incrementally compute the final result.

Although evolving/streaming graph systems can leverage the
benefits of incremental computation, they do not align well with
our query workload. Several graph systems [4, 23, 56, 57, 73, 81]
have observed that when the scale of updates surpasses a certain
threshold, their performance becomes inferior to recomputing the
entire graph. A key contributing factor is the significant overhead
associated with inserting updated graph structures into the initial
graph in this scenario. In our workload, we treat one or more slices
as a single update, and the scale of this update exceeds the bene-
fit threshold of the streaming graph system, resulting in inferior
performance compared to static graph systems. For instance, Fig-
ure 2 (b) demonstrates the performance of updating one subgraph
over another subgraph using the state-of-the-art evolving graph
system, RisGraph [23]. The results on the StackOverflow dataset
indicate that RisGraph’s performance is 4.38-16.24 times slower
than Ligra.

Motivation for a new line of research. In summary, existing
works primarily focus on static and streaming monotonic graph
queries, but often neglect the complexities of window-based graph
queries that involve multiple slices. This oversight is particularly
evident in the substantial computational costs associated with con-
structing windowed graphs. Such costs can significantly impede
the performance of executing windowed graph queries.

To elaborate further, existing works have primarily concentrated
on the performance aspects of graph analytics. However, they often
overlook the fact that graph analytics workloads in modern data
warehouses entail more than merely executing graph computations
on a prepared graph. We observe that constructing window-based
graphs is the bottleneck in the entire analysis process, implying that
merely optimizing graph computation is insufficient to enhance
the overall system performance. Therefore, in practical application
scenarios of Alipay, we do not rely on existing algorithms and sys-
tems due to their limitations. Instead, we develop a novel approach
of a window-based monotonic graph analytics solution, which is
critical for improving end-to-end system performance. This paper
represents the first systematic effort to focus on the comprehensive
performance of windowed monotonic graph analytics, encompass-
ing both graph construction and computation.

4 MERGEGRAPH SYSTEM

We propose a system for window-based monotonic graph analytics,
called MergeGraph, which enables the reuse of transitional results
and direct computation on the discrete graph storage of each slice.

4.1 Overview

We show the overview of MergeGraph in Figure 3. To utilize the
opportunities and address the challenges mentioned in Section 3,
MergeGraph adopts an offline-online hybrid architecture to achieve
efficient window-based graph queries.

Architecture. MergeGraph consists of two main modules: the
offline module and the online module. The offline module includes
the graph storage within each slice and a computation component

Slice Slice Slice Slice Slice Slice
(Ger) (Ge2) (Ge3) (Gea) (Ges) (Ges)
1 , 1
Offline . ' Online

1

1

1

1

& 3 |
1

Producer Graph structure Transitional result 1
1

1

Q ([tT tel)

Figure 3: MergeGraph overview.

to obtain the reusable transitional results. The online module com-
prises a graph analytic engine based on the transitional results and
the discrete graph structure.

Algorithm 2: MergeGraph workflow.

Input: Subgraph of each slice {Gy, Go, ..., G }, Monotonic
graph query Q, query window [start, end]
Output: Query result R for the window W
// 0ffline phase
1 Gyoral < set of the graph structure of each slice
2 Ryoral < set of the local result of each slice
fori < 1tondo
Giotar-import(G;);
Ri < Q(Gi);
Rtotal~imp0rt(Ri)§
// Online phase
7 Gu « Gyopqrlstart, end]

oW

5

=Y

> Load graph for the window
8 Ry < Ryprqrlstart, end] > Load local result for the window
Rinter, frontier « init(Ry)

10 R « compute(Rinter, frontier, Gy)

©

11 return R

Workflow. Algorithm 2 demonstrates the overall workflow.
MergeGraph is structured into two phases: an offline phase and
an online phase. In the offline phase, we store the local results of
the graph structure for all data slices (Lines 1 and 2). Specifically,
whenever a slice is imported into the data warehouse, we first im-
port its graph structure (Line 4), then generate the corresponding
local results (Line 5), and save them (Line 6). Note that this step is
completed offline during data import, ensuring that it does not af-
fect response time during the online phase. In the online phase, we
first retrieve all subgraphs and their associated local results within
the window (Lines 7 and 8). Then, based on the results from each
slice, we initialize an intermediate result that is closer to the final
outcome along with a new frontier (Line 9). Finally, we iteratively
compute the final results using this intermediate result, the frontier,
and the graph structure within the window (Line 10). During this
process, for a specific slice, any window query that includes it can
leverage its transitional result R, enabling the reuse of transitional
results.



Transitional Result Ry

Intermediate
Result

Transitional Result R Initialize API Compute API H Final Result |

Global Graph
Access

Figure 4: Online window-based graph analytics workflow.

Transitional Result Ry,

Discrete Graph Storage
e

Processing pattern. The processing pattern of MergeGraph
for computing monotonic algorithm queries is as follows. In the
offline phase, we generate and save corresponding local results
for monotonic algorithms, which can be derived through a com-
mon iterative graph computation step, as detailed in Section 2.2.
In the online phase, it consists of 1) an initialization stage and 2) a
computation stage. In the initialization stage of the online phase,
we first merge the results saved during the offline phase. In this
part, we use a unified initialization API to generate an intermediate
result and a frontier for subsequent computations. For monotonic
algorithms, we choose the intermediate result from all slices that
are closest to the final result as the initial result for the online
phase (Section 4.2). For example, for the single-source shortest path,
we select the shortest distance for each vertex from all slices, while
the single-source widest path does the opposite. In the computation
stage of the online phase, we continue the computation based on
these generated intermediate results, utilizing a graph computation
engine designed for discrete storage. We can categorize different
monotonic algorithms as iterative graph computations, for which
we have developed access patterns for graph structures based on
discrete storage (Section 4.3). The development of the computing en-
gine includes a series of optimizations, including intra-node access
optimization and parallelism optimization (Section 4.4).

Novelties. To our knowledge, MergeGraph is the first work
focusing on window-based monotonic graph analytics for pattern-
consistent queries. We summarize the novelties of MergeGraph
as follows. First, MergeGraph introduces an offline-online hybrid
framework to leverage precomputed results from individual slices,
aiming to enhance performance. Second, MergeGraph proposes a
merging model based on reusable transitional results from each
slice, which minimizes redundant computations in window-based
queries. Third, MergeGraph supports graph analytics on the discrete
subgraph structures within each slice, avoiding the high cost of
merging graph structures.

4.2 Storage and Utilization of Transitional
Result

The core of MergeGraph lies in the storage and utilization of tran-
sitional results. By precomputing the transitional result for each
slice during the offline phase, we can summarize these results and
continue computation based on them, achieving significant compu-
tation savings.

Transitional result storage. In MergeGraph, we store the Com-
pressed Sparse Row (CSR) structure of the subgraphs for each slice.
This structure is widely used for efficient graph storage due to its
excellent analytical performance. During the import of each slice,

3007

we utilize the iterative monotonic graph analytics mentioned in
Section 2.2 to obtain the results for each vertex within each slice.
All these results are stored in the form of arrays.

Transitional result utilization. Figure 4 illustrates the work-
flow of online window-based graph analytics, which consists of
two main stages: the initialization stage and the graph computation
stage. For a window-based query consisting of W slices, we first gen-
erate an intermediate result and a frontier based on the transitional
results of each subgraph. Then, we start from this frontier and
intermediate result and iteratively compute the final result. During
the graph computation process, we provide a global graph access
abstraction on top of discrete subgraphs to support the analysis of
the global graph.

Observation. MergeGraph focuses on monotonic algorithms,
which approximates the final result from the initial value. For such
algorithms, the intermediate results are always closer to the final
result than the initial result. Also, for an entire graph composed of
multiple subgraphs, the results computed on each of its subgraphs
are always closer to the final result compared to the initial result.
For example, in the case of the shortest path, the shortest distance
of a vertex within a subgraph is always smaller than the initial
value and greater than the final result obtained on the entire graph.

Initialization design. Based on the aforementioned observa-
tions, we first generate the intermediate result for each vertex that
is closest to the final result from the transitional results of each
slice. Then, we activate the vertices that may affect the final result
and add them to the frontier, which supports subsequent computa-
tions. Specifically, for a given vertex v, if its results are inconsistent
across different subgraphs, it indicates that its values need to be
propagated in other subgraphs, and thus we activate it.

Algorithm 3: Initialization function

Input: Transitional result of each slice [Ry, Ry, ..., Ry ]

Output: Intermediate result Rinzer [V], Frontier set F{[W]
1 for eachv € V do

‘ Rinter[v] < BestValue(Ry[v],Rz[v], ..., Rw [0]);
F «—{0,0,..,0};
for eachv € V do

fori < 0to W do
if Rinter[v] # Ri[v] then
‘ F[i].insert(v);

8 return Ripser, F[W];

2

@

4
5
6
7

Algorithm design. We show our algorithm design of the initial-
ization function in Algorithm 3. The inputs are transitional results
of each slice. For a query with a window size of W, the algorithm
takes the transitional results corresponding to each slice as the
input. First, we derive the intermediate results for each vertex from
the transitional results of each slice, selecting the value closest to
the final result (Lines 1-2). Then, we generate W frontier struc-
ture (Line 3). For any given vertex v, we examine the transitional
results from all the slices. If the result R;[v] is inconsistent with the
best result across all slices, we add v to the corresponding frontier
F[i] (Lines 4-7). Finally, the algorithm returns the intermediate
results for each vertex across all slices and its corresponding fron-
tier (Line ).



. Malicious Root O Suspicious User O Normal User

Riz[0 ][ 1 ]o0] [1]2]
Rz:| 0 |00 |00 |0 I—> Frontier
Rs:[0]2]oo o0 [o[z[i]=] =

Transitional Result Intermediate Result

Final Result

Global Graph

Figure 5: Example of detecting suspicious users whose dis-
tance from known malicious users is less than 2 in Merge-
Graph.

Complexity analysis. The time complexity of executing the
monotonic algorithm is O(V+E;), where V is the number of vertices,
and E; is the number of edges in slice i. We store the transitional
result for each vertex whose space complexity is O(V). The com-
plexity of initializing the intermediate results is O(V x W), where
W represents the window size.

Example. In Alipay within Ant Group, identifying suspicious
users in transaction records is a critical business operation that
informs our decisions regarding the termination of specific transac-
tions. As shown in Figure 5, we use the shortest distance algorithm
to detect suspicious users. Regularly, Ant Group’s data warehouse
collects daily transaction records. We employ the shortest distance
algorithm to identify users who are within a predefined distance
from a known malicious user over a recent timeframe.

In the context of Figure 5, assuming a malicious user is identified
as 0, we detect suspicious users within a slice window from day
1 to day 3, provided they are within a distance of 2 from user 0.
Across the three subgraphs for these days, the local results for the
vertices are as follows: {0, 0, 1, 00}, {0, 00, 00, 00}, and {0, 2, 00, co}.
After initialization, the intermediate result is {0, 2, 1, c0}. Given the
inconsistency in local results for vertices 1 and 2 across the sub-
graphs, we add them to the frontier. We then proceed from the
intermediate result and the frontier to perform Single Source Short-
est Path (SSSP) on the global graph composed of these subgraphs
until the computation concludes. Consequently, users 1, 2, and 3 are
identified as suspicious, as each falls within the specified distance
from user 0 within this time window.

4.3 Pattern-Consistent Query Computation

After obtaining the intermediate results for vertices and the frontier
corresponding to each slice, we continue to perform monotonic
graph analytics based on discrete graph storage to obtain the final
result.

General design. We have shown our design to generate a fron-
tier for each slice in Section 4.2, where each vertex in the frontier
indicates that we need to propagate its intermediate result within
the corresponding slice. We perform one iterative graph compu-
tation based on the frontier of each slice. Then, we aggregate the
generated frontiers from each slice to obtain a new unique frontier.

3008

sequential
|
[ lmeral [ 71 [-[ 7] | [ -0
G, G, G, parallel
(a) Data layout. (b) Access pattern.

Figure 6: Data layout and access pattern for discrete storage.

Starting from this frontier, we perform iterative monotonic graph
analysis on the graph composed of all the slices until the program
converges. During this process, we provide a global access interface
to enable direct iterative graph analysis based on the discrete graph
structure between different slices.

Global graph access pattern. In MergeGraph, the graph struc-
tures of individual subgraphs are discretely stored. We utilize an
adjacency list to store the outgoing and incoming edges of vertices,
a commonly used format in existing graph computing systems [74].
This structure stores the neighbors of each vertex in a contiguous
memory segment, with each vertex referencing the starting location
of its neighbor list through a pointer. A fundamental proposition of
this paper is to circumvent the substantial overhead associated with
graph merging by directly executing graph computing on multiple
discretely stored graphs. To facilitate this approach, we support
a global access pattern that enables seamless access to the graph
structure across different subgraphs.

Figure 6 (a) illustrates our data layout. Assuming that each sub-
graph is stored in different locations, we use a double-layered
pointer structure to organize the neighbors of vertices. The first
layer of pointers assists in locating the first neighbor of a ver-
tex within its initial subgraph, while the second layer of pointers
records the starting positions of the vertex’s neighbors across all
subgraphs. Furthermore, we maintain the local degree of each vertex
in all subgraphs and its global degree in the whole graph, equivalent
to the sum of degrees across all subgraphs.

The graph access patterns in MergeGraph are primarily divided
into two patterns: sequential access and parallel access, as shown in
Figure 6 (b). In the sequential access pattern, since only one thread
handles all neighbors of a vertex, we only need to provide an ab-
straction from the first neighbor to the last neighbor. We visit all the
neighbors of a vertex one by one within each subgraph. During this
process, we only need to perform pointer jumps when the neighbor
reaches the boundary of a subgraph. In the parallel access pattern,
different threads access all neighbors of a vertex. Each thread only
retrieves the neighbor at position i of the vertex. Therefore, we
first use binary search to determine in which subgraph the i — th
neighbors are located. Then, we calculate the corresponding offset
within the subgraph and return the neighbor ID.

Complexity analysis. MergeGraph does not change the time
complexity of the monotonic graph algorithm during execution,
which remains O(Ey). The space overhead of MergeGraph for stor-
ing the graph includes the edges in each subgraph, and the double-
layer pointers point to each vertex. Therefore, the space complexity



Figure 7: Intra-node access optimization.

of MergeGraph is O(Ey + W X V), where Ey is the total number of
edges in all subgraphs, V is the number of vertices, and W is the
number of subgraphs. In the sequential access pattern, the aver-
age time complexity to access a neighbor is O(1). In the parallel
access pattern, the average time complexity to access a neighbor
is O(logW), where W is the number of subgraphs. Although the
parallel access pattern requires higher access complexity and in-
struction numbers, it can improve program parallelism. We propose
an adaptive selection strategy to choose between these two access
patterns.

Correctness proof. We rigorously prove the correctness of
MergeGraph. First, we define correctness as the consistency of our
algorithm’s results with those obtained directly from the original
graph composed of windows. For monotonic algorithms, this result
is a value related to a user-specified vertex. Second, we employ the
dependency tree model, as proposed in the work [81]. In this model,
monotonic algorithms designate a single vertex as the root, with
each vertex having at most one parent. Consequently, the result at
each vertex is influenced by one of its in-neighbors, ensuring that
changes from the root to any vertex on the graph follow a single,
unique path. Third, consider a vertex v in the graph, and let the
path from root to v in the dependency tree be {root, us, uy, ...,v}. If
the value of v has converged following the initialization phase, then
its result is inherently accurate. If not, and assuming convergence
from root to uy, our model activates u; and updates iteratively up
to v, thereby confirming the correctness of our approach.

4.4 Optimizing Graph Computation with
Discrete Storage

MergeGraph adopts a vertex-centric programming model to per-
form graph computations. Previous works [74, 99, 100] have pro-
posed a series of optimizations, including parallel schemes and
traversal directions, among others. The discrete storage of graph
structures brings new challenges, such as the impact on locality and
the choice of parallel patterns. This part discusses our optimization
for the graph computing engine based on discrete graph storage.

Intra-node access optimization. To optimize the access to all
neighbors within a vertex, we take into consideration the impact
of no-contiguous memory location on performance. We observe
that accessing the neighbors of a vertex in non-contiguous memory
locations increases the number of cache loads, ultimately leading to
decreased performance. This is because the operating system loads
data from a contiguous space in memory based on the cache-line
size. When vertex neighbors are stored in different locations, it
disrupts the locality of memory access, further hampering perfor-
mance.

Figure 7 illustrates an example where vertex v has three neigh-
bors in different subgraphs. Accessing them would require at least

3009

three cache loads if they are stored separately. However, if we store
them together, only one cache line load is needed. In graphs that
satisfy the power-law property, these low-degree vertices dominate
the graph and significantly impact system performance. Therefore,
there is a trade-off between access locality and merging cost. We
selectively merge the neighbors of vertices with small degrees and
store them in a contiguous memory space to improve performance.

Parallelism optimization. MergeGraph adopts vertex-level
parallelism, where each thread processes a different vertex. Addi-
tionally, when a vertex has a high degree (greater than 1024), we
parallelize the processing of all its neighbors. In a discrete storage
architecture, we develop subgraph-level parallelism, which allows
for the parallel processing of vertex neighbors within individual sub-
graphs. However, this approach can lead to load imbalances among
threads, as the degree of the same vertex can vary significantly
across different subgraphs. To tackle this problem, we introduce an
edge-level parallelism strategy that distributes an equal number of
vertex neighbors to each thread. Although this method introduces
additional overhead due to the need to identify the storage loca-
tions of the neighbors to be processed, it effectively addresses the
load imbalance problem. We dynamically select between subgraph-
level and edge-level parallelism based on the distribution of vertex
degrees across subgraphs.

5 IMPLEMENTATION

We develop MergeGraph using C++ and use OpenMP to support
multi-core parallelism on CPUs. This section shows the implemen-
tation details.

Discrete graph storage. We store the graph structure in each
data slice in an adjacency list format. To meet the requirements of
the computation engine, we also maintain the transposed version of
the graph. In MergeGraph, we assume that all the graph data from
the slices involved in the window-based query has been loaded into
memory. We ensure that all slices share the same vertex ID space.
In scenarios where this condition is unmet, we align the vertex IDs
to achieve consistent access.

Graph computing engine. We develop the graph computing
engine based on the discrete graph storage. During the compu-
tation stage of the online phase, we adopt APIs similar to those
of Ligra [74] to ensure a smooth transition and user-friendly ex-
perience with our system. Also, by leveraging Ligra’s design for
higher-level graph computations, we naturally benefit from its ex-
isting optimization techniques. Note that Ligra’s optimizations do
not include the optimizations mentioned in Section 4.4. The opti-
mization techniques mentioned in Section 4.4 aim to address the
performance degradation caused by discrete storage, a consider-
ation that falls outside the scope of Ligra’s design. Consequently,
these optimizations are not native to Ligra, as Ligra’s graph storage
mechanism employs a contiguous storage model for the neighbors
of each vertex.

Programming API. We provide a user-friendly programming
API for MergeGraph, as shown in Table 2. In the initialization
phase, we use the init_val interface to generate the intermedi-
ate result based on the local results from each subgraph. Then,
we use need_upd to determine whether to add a vertex to the



Table 2: MergeGraph’s API.

init_val(trans_result[n]) — init_value
need_upd(trans_result[n]) —  is_needed
edgeMap(frontier, result, graph, F, C) — frontier
vertexMap(frontier, F)

get_out_neighbor(vid, eid) —  vertex_id
get_in_neighbor(vid, eid) —  vertex_id
get_out_degree(vid) — degree

get_in_degree(vid) — degree

get_local_out_neighbors(vid, gid) — adj_list
get_local_in_neighbors(vid, gid) — adj_list

frontier. In the graph computation phase, we adopt a program-
ming interface similar to Ligra [74], including the edgeMap and
vertexMap interface. The edgeMap interface applies a user-defined
edge function to all neighbors of each vertex in the frontier and
adds the neighbors that satisfy the condition function to the re-
turned frontier. The vertexMap interface applies a user-defined
function to each vertex in the frontier. To support graph compu-
tations on discrete subgraphs, we provide a global graph access
API, as shown on the bottom of Table 2. In addition to provid-
ing a global access API that allows access to a vertex’s neighbors
across all subgraphs (get_out_neighbor/get_in_neighbor), we
also offer an API that returns the adjacency list within a single sub-
graph(get_local_out_neighbors/get_local_in_neighbors).

6 EVALUATION

6.1 Experimental Setup

Methodology. We compare two types of state-of-the-art solutions:
static graph systems and evolving/streaming graph systems, as
shown below.
o Static graph systems. We compare MergeGraph against three
leading static graph processing systems. (1) Ligra [74]: A light-

weight graph processing framework optimized for shared-memory

parallel/multicore machines. Ligra excels in many tasks and
continues to be actively maintained, demonstrating its robust-
ness and efficiency. (2) Grazelle [30]: A hybrid graph process-
ing framework designed for single-machine, combining high-
performance push-based and pull-based methods. (3) Coro-
Graph [98]: A state-of-the-art graph computing system effec-
tively balances cache efficiency and work efficiency.
Evolving/streaming graph systems. We assess MergeGraph
against two cutting-edge evolving/streaming graph systems. (1)
RisGraph [23]: A real-time streaming system specially designed
for evolving graphs, which supports per-update analysis to
handle dynamic graph changes effectively. (2) KickStarter [81]:
This system introduces a dependency-tree model that facilitates
efficient incremental computation for monotonic algorithms,
enhancing performance in dynamic graph environments.
Benchmarks. We employ four widely used graph applications.
These applications include Breadth-First Search (BFS), Single-Source
Shortest Path (SSSP), Single-Source Widest Path (SSWP), and Weakly
Connected Components (WCC). Notably, these benchmarks have

3010

been used in numerous prior studies [23, 81]. We compare four
algorithms across MergeGraph, Ligra, RisGraph, and KickStarter.
Grazelle supports only BFS and WCC, while CoroGraph provides
SSSP and WCC.

Table 3: Datasets used in the experiments.

Graph Dataset Abbr.  Vertices Edges  Type
HepPh[67] HP 28.1K 4.60M  Collab.
WikiTalk[43] WwT 1.14M  7.83M Int.
Flickr[67] FC 230M  33.1M  Social.
StackOverflow[43] SO 2.60M  63.5M Int.
BitCoin[67] BC 24.6M 123M Txn.
LinkBench([7] LB 128M 560M  Social.
EnWiki[10, 11] EW  77M  132B  Int.

Datasets. We assess the performance of MergeGraph using
seven distinct graphs outlined in Table 3. Except for the LinkBench
dataset, which is generated from the graph database benchmark [7],
the remaining graphs are accessible through the Stanford Network
Analysis Project (SNAP) [43], Webgraph [11], and Network Data
Repository [67]. EnWiki(EW) is a compilation of the English seg-
ment of Wikipedia spanning from 2013 to 2023. In EW, the nodes
represent Wikipedia pages, and the edges represent the citations
and links between the pages. All datasets, except for EW, which is
divided based on the year, are segmented into 2/4/8/16/32 subgraphs
according to the timestamp on the edge.

Query generation. We generate the queries and slices according
to real-world datasets and workloads. First, we collect datasets
containing timestamps from the real world. Second, we divide them
into different slices based on the timestamps. Third, we execute
time window queries on these slices. Regarding the queries, we
select four widely used monotonic algorithms, similar to those
described in KickStater [81], RisGraph [23], et al. When using the
WCC algorithm, we convert the graph into an undirected format.
For BFS, SSSP, and SSWP, we randomly select starting points for
the queries. To ensure the accuracy of our results and eliminate the
influence of randomness, we average the times from three runs for
each algorithm to represent its performance.

Platforms. We evaluate MergeGraph on a Ubuntu 20.04 server.
The server is equipped with an Intel Core i9-10900X CPU with 20
threads and 256 GB of main memory.

6.2 End-to-End Performance

We evaluate the performance of MergeGraph on four different al-
gorithms. On average, MergeGraph achieves speedups of 11.30X,
7.32X%, and 6.17X compared to Ligra, Grazelle, and CoroGraph, re-
spectively. Furthermore, MergeGraph achieves a 45.24X speedup
compared to RisGraph and 25.93x compared to KickStarter. Kick-
Starter and RisGraph perform poorly in our experiments because
they are unable to handle such large-scale updates. In contrast,
static graph systems can directly merge the graph structure of
different subgraphs.

Figure 8 depicts the detailed speedup of MergeGraph in compar-
ison to static graph systems. Our observations are as follows. First,
Figure 8 (a) demonstrates the performance speedup ratio achieved
using the BFS algorithm. Compared to the baseline, we achieve



[ Grazelle

[ CoroGraph

[ MergeGraph

Datasets
(a) BFsS.

Datasets
(b) SSSP.
S 10t
i
L dndNnsal allisals N0
1000 | N e J .
IS SR TSNy ESAYY QS ANYITETEAYYITSPETSOROS
%%%%%;;;E'EEEEEE%%Sgg%S%ggBBEEEE&é
Datasets
(c) SSWP.
o 102
210t
100
N Y ® g o4 9 ¥ % 9 o 8 ¥ ® @ 84 o F % 9 o4 § Y O 9 o4 o ¥ @ © o g
TEE L2555 Y EE YR E8ggEE B o333 g 2
Datasets
(d) wee.
Figure 8: Performance speedup. For the x-axis, X-Y represents dataset X with a window size of Y.
i i — WCC attains the highest overall speedup. This is attributed to the
t t N e
n eroe ompute WCC algorithm’s characteristics, in contrast to the other three
100 100 single-source algorithms, to effectively leverage the local results
I 8o 80 (connected components of vertices) from various subgraphs.
> 60 60 Time breakdown. Figure 9 illustrates the time occupancy of
g different program parts during the execution of MergeGraph and
S 40 40 . . . . )
5 Ligra with a window size of 32. In Ligra, the average percentage of
© 20 20 time spent on merging graph structure is as high as 79.9%, while
0 P WT F& 50 BC LB BW O HP WT FC S0 BC L8 EW only. 20.1%. of the tlme is (.1edlcated tf) comPutatlon. This indicates
Datasets Datasets the inefficiency of Ligra in addressing this type of workload. In
(a) MergeGraph. (b) Ligra. contrast, MergeGraph primarily focuses on the computational as-

Figure 9: Time breakdown (window size is 16).

an average speedup of 3.80x. Additionally, Figures 8 (b), (c), and
(d) show the performance speedup ratios of MergeGraph for the
SSSP, SSWP, and WCC algorithms, with respective speedup ratios
of 4.56%, 5.10%, and 38.94X. These significant speedups across all
benchmarks demonstrate the effectiveness of our approach. Second,
the performance speedup gradually diminishes as the window size
increases. This decline can be attributed to the decreased potential
for computational savings as the window size expands, coupled
with the heightened cost of accessing different subgraphs. Con-
sequently, beyond a certain range of window sizes, our method
may no longer surpass Ligra. Third, among the four algorithms,

3011

pect, with a significant portion of time allocated to the computation
phase. On average, the initialization phase constitutes 39.4% of the
total time, while the computation phase represents 60.6% of the
overall time. The different time allocations highlight the advantages
of our approach compared to Ligra. In Section 6.3, we analyze the
performance advantages of MergeGraph in different parts.
Memory consumption. We compare the memory consump-
tion of MergeGraph with other baselines on StackOverflow (SO),
as detailed in Table 4. On average, MergeGraph not only stores the
graph structures within each slice but also retains reusable transi-
tional results, which are dependent on the number of subgraphs
within the window. These reusable transitional results constitute
only 0.87%-3.36% of the total memory consumption across differ-
ent window sizes. In contrast, static graph systems require storage



Table 4: Peak memory with different window size (GB). (WS
is the abbreviation for window size, dataset is SO)

Method
ws ours Ligra Grazelle Corograph Merge subgraph
2 3.20 6.28 7.66 7.81 5.52
4 4.27 6.75 7.44 7.59 5.30
8 6.74 7.82 8.02 8.17 5.88
16 11.96  10.16 10.16 10.36 8.07
32 | 2152 13.85 14.53 14.68 12.39

Table 5: Comparison of active edges in MergeGraph. (WS is
the abbreviation for window size, dataset is WT)

WS BFS SSSP SSWP WCC
MG Ligra MG Ligra MG Ligra MG Ligra
2 1.75M 5.03M 2.22M 0.91M
4 2.13M 9.07M 4.48M 1.81M
8 2.23M  7.65M | 10.2M 14.1M | 8.01M 13.8M | 3.84M 34.0M
16 | 2.25M 12.3M 8.11M 7.76M
32 | 2.26M 13.9M 8.60M 14.5M

for the merged graph structure. On average, merging subgraphs
occupies 82.09%, 76.26%, and 75.07% of the total system memory in
Ligra, Grazelle, and CoroGraph, respectively. Thus, while Merge-
Graph incurs certain costs to store indices between subgraphs, it
achieves lower or comparable memory consumption compared to
other methods. Overall, MergeGraph requires 94.69%, 89.81%, and
115.01% of the memory consumption compared to Ligra, Grazelle,
and CoroGraph, respectively, to perform window-based monotonic
analytics.

6.3 Benefit Breakdown

Computation savings. We compare the total number of active
edges during the computation phase between MergeGraph and
Ligra on the WikiTalk (WT) dataset, as shown in Table 5. On av-
erage, MergeGraph achieves savings of 80.64% / 67.45% / 57.14% /
50.31% / 41.59% in the total number of active edges for window sizes
of 2/4/8/16/32. This demonstrates the effectiveness of our merge
model. As the window size increases, the number of active edges
in our approach gradually increases, while the reusable results de-
crease. It can be anticipated that as the window becomes larger,
our method eventually ceases to provide benefits. Among these
four algorithms, the WCC exhibits the most significant savings,
amounting to 97.31% / 94.69% / 88.70% / 77.15% / 57.45%. This is
because WCC computes possible connected components in all sub-
graphs, maximizing the utilization of local results. Similarly, this
also explains why WCC achieves the best end-to-end performance
in Section 6.2.

Graph computing engine with discrete storage. We evaluate
the benefits and overhead of our computing engine, as shown in
Figure 10. To eliminate the performance impact of computation
savings, we perform the same computation tasks as Ligra in this
part, with the only difference being the graph storage. We set up
two baselines for comparisons. In the first baseline, Ligra com-
putes directly on the complete graph, and we only measure the
computation time. The second baseline includes the computation

3012

_. ——Ligra merge + compute —®—Ligra compute MergeGraph
w
£103 3
° 10
£
=
c
e
g 102 L‘/.’___././. :;/././‘/.
w 2 4 8 16 32 2 4 8 16 32
Window size Window size
(a) BFS. (b) SSSP.
Figure 10: Performance of computing engine.
Ligra —=— MergeGraph —&— Speedup

w w

] 3.5 1] 4 1.4
£, - 2
5 0% 5 3
g g 92 128
o 250 3 )
% %

w1 2 4 8 16 20 w1 2 4 8 16 20

Number of threads
(b) Subgraph num = 16.

Number of threads
(a) Subgraph num = 2.

Figure 11: Performance across different numbers of threads.

time and the time required to merge the structures of individual
subgraphs. Due to factors such as impaired locality during graph
access, the first baseline is the theoretical performance upper limit
of our computing engine. On average, MergeGraph is slower than
Ligra when considering only computation time, with a difference
of 2.49%-72.36% on BFS and 0.35%-61.41% on SSSP. As the window
size increases, MergeGraph’s runtime grows. However, our method
still outperforms Ligra regarding computation and merging time,
as the cost of merging graph structures also rises. On overage, our
method speeds up the 2.22x on BFS and 1.74X on SSSP.
Performance across different numbers of threads. We eval-
uate the performance of MergeGraph and Ligra across different
numbers of threads, as shown in Figure 11. We measure the perfor-
mance of SSSP algorithm on the SO dataset with subgraph counts
of 2 and 16. The results demonstrate a speedup of 2.23%-3.59x and
1.09x-1.39% across thread counts ranging from 1 to 20. In both
settings, MergeGraph and Ligra exhibit similar trends. MergeGraph
and Ligra demonstrate similar parallelism because they process
the same graph data, and the degree distribution of vertices is
consistent, providing comparable opportunities for parallelization.
As the number of threads increases, both MergeGraph and Ligra
demonstrate a decrease in execution time, indicating their strong
parallelism capabilities. The speedup of MergeGraph, compared to
Ligra, initially increases with an increase in the number of threads
and then decreases. The reason for the increase in speedup in cases
with relatively fewer threads is that, for Ligra’s approach, the main
overhead lies in merging graph structures. Increasing the number of
threads does not significantly improve this aspect compared to the
performance gains achieved in the graph computation part. After
reaching the inflection point, MergeGraph has a lower computa-
tional workload compared to Ligra, which results in insufficient
utilization of idle threads. As a result, the speedup decreases.



inter-subgraph parallelism —s—edge-level parallelism

0 @

v 0.2 004

£ £

5§01 502

- -

3 3

O O

o} o}

x x

w 2 4 8 16 32 w 2 4 8 16 32

Window size Window size
(a) BFS. (b) SSSP.

Figure 12: Performance of different parallel strategies.

Intra-node access optimization. We merge the neighbors
of all vertices within each slice whose total degree is less than
cacheline_size/sizeof (vertex) (which is 8 in our configuration)
into a new contiguous storage area. The results show that we
achieve a performance improvement of 18.73% by merging the
neighbors of vertices with small degrees. The merge cost accounts
for only 32.54% of the total time.

Parallelism optimization. We evaluate the benefits brought by
different parallel strategies. Figure 12 illustrates the performance
of BFS and SSSP algorithms on the WT dataset under different
parallel strategies. The subgraph-level parallel strategy and edge-
level parallel strategy have their respective advantages in different
scenarios, highlighting the necessity of dynamically selecting the
strategy. For both algorithms, when the window size is small, the
subgraph-level parallel strategy performs better. The edge-level
parallel strategy outperforms when the window size is large. This
is because when the window size is large, the degree distribution
among different slices becomes more uneven, allowing the edge-
level parallelism to leverage its benefits fully. Overall, the paral-
lelism optimization brings a performance of 72.65% compared to
only performing inter-subgraph parallelism and 77.73% compared
to edge-level parallelism.

6.4 Detailed Analysis

Different initial proportions in stream graph system. In the
streaming graph system, the proportion of initial data significantly
impacts performance. We evaluate the performance of BFS algo-
rithm of Kickstarter and RisGraph under different initial data pro-
portions on the Enwiki dataset, which has 10 subgraphs, as shown
in Figure 13. We evaluate the performance with initial parts ranging
from 1 subgraph to 9 subgraphs. As the proportion of initial parts
increases, the execution time of RisGraph gradually decreases by
3.90x. However, even in the case of 9 subgraphs, that is, when the
initial proportion is about 90%, the performance of RisGraph is still
25.41% slower than MergeGraph. Kickstarter outperforms RisGraph
in large batch updates, whereas RisGraph emphasizes the perfor-
mance of individual updates. On average, our method is 14.68% to
25.94x faster than Kickstarter, demonstrating the superiority of our
approach in handling window queries.

Performance under different data skews. We explore the per-
formance of different subgraphs with varying skewness in a single
window query, as shown in Figure 14. Taking the SO dataset with
8 subgraphs as an example, we first set the maximum proportion
of different subgraphs in all subgraphs and then randomly divide

3013

—s—RisGraph MergeGraph BFS —#—SSSP —4—SSWP——WCC

—a—KickStarter - — s s
5 £20.3
= o —
2 -\.*H\,\-\-\- £
£ A/ﬁ\‘/‘/"’\./ﬁ\ 202
=] 1 c
=10 &
o 5
E 20.1
(9]
%100 i}
w

123456 789
Imported subgraph num

20% 40% 60% 80%
Proportion of the largest subgraph

Figure 13: Performance of
different initial proportions
for streaming graph system.

Figure 14: Performance of
MergeGraph under different
data skews.

the size of the remaining subgraphs. Under different data skewness,
the performance of MergeGraph does not change significantly. The
average difference between maximum and minimum performance
on four algorithms is only 5.60%. This indicates that our method
has high adaptability in different scenarios.

Performance for very wide time windows. Large window
ranges can lead to decreased performance because the proportion
from which we can directly benefit from intermediate results di-
minishes, and accessing too many discrete subgraphs increases the
overhead. To tackle this problem, we employ a recursive divide-
and-conquer strategy. For a large window range of length W, we
recursively partition the window into several sub-windows, con-
tinuing this process until the window size meets our operational
requirements. Subsequently, we merge the results of each window
layer by layer to produce the final result. Experiments show that
for large-range queries (on the order of one year), our approach
significantly outperforms the baseline, with an average speed im-
provement ranging between 1.54X and 31.93X.

Space overhead for storing transitional results. Consistent
pattern in our paper refers to the practice of querying different
windows using the same pattern. In such cases, we store the local
results of the query for each slice. For scenarios involving numerous
patterns, we save the local results of each query in each slice, which
may result in a certain space overhead. However, these results are
typically stored according to vertices, meaning their space complex-
ity is O(V), where V is the number of vertices, which is generally
much smaller than the number of edges in graph structures. In all
datasets, storing local results on average accounts for only 5.48% of
the total storage of the slices. Therefore, this cost is still considered
acceptable.

6.5 Discussion

Offline precompute overhead. We precompute the transitional
results within each slice during the data import phase, which incurs
a certain level of system overhead. However, we only compute
the transitional result once during data import, which does not
affect the latency of online queries. Moreover, we can reuse the
transitional result in subsequent window-based queries, effectively
amortizing this cost over multiple queries.

Application scope. This work focuses on supporting window-
based monotonic graph analytics in a data warehouse. We derive
performance gains primarily from two key aspects: First, We save
on computation by directly merging results from different data



slices, effectively reducing the need for repeated computations. Sec-
ond, we minimize the overhead associated with merging graph
structures, thereby streamlining the overall process. We cannot
consistently guarantee computation savings for standard graph
tasks that do not exhibit monotonic changes with subgraph merg-
ing. However, even for these standard tasks, we can still capitalize
on the benefits of performing computations directly on the dis-
crete graph storage architecture. This approach reduces the costs
associated with merging graph structures, thus improving overall
performance. We evaluate MergeGraph with the PageRank algo-
rithm, showing that it speeds up by 1.62-1.93x compared to the
state-of-the-art baseline. This demonstrates that MergeGraph can
also deliver performance improvement on general tasks.

Assumption of sharing vertices. This paper assumes that all
slices share the same vertex space, which facilitates the accurate
retrieval of local results and neighbors for the same vertex across
different slices. In practice, this assumption may not always hold,
and typically, a mapping from the actual vertex identifier to a com-
pact vertex ID is employed to align the vertex spaces of different
slices. Implementing this vertex ID mapping efficiently is another
crucial task [62]. However, such work is orthogonal to our research
and does not impact the optimizations we have developed.

Furture work. Although our approach successfully avoids the
overhead of merging graph structures, it remains unclear how to
combine the local results of individual slices to achieve accurate
outcomes while saving computation for non-monotonic graph tasks.
Furthermore, this paper assumes that the subgraph in each slice is
stored using a standard graph format (i.e., adjacency list). In real
world, they might exist in various forms, such as tables or key-
value pairs. Extracting graph data from different data stores and
integrating it with the work presented in this paper represents a
promising direction for future research.

7 RELATED WORK

Static graph system. Static graph systems [14, 16, 27, 28, 52, 55, 68,
70, 74, 82, 84, 88] are specialized for computation on unchanging
graph data. Some systems [27, 28, 52] are designed for parallel and
distributed computing, while others [68, 74, 82] target specific stor-
age and computation architectures. For example, PowerGraph [27]
introduces a sequential greedy heuristic approach to distributed
graph placement and representation that exploits the structure of
power-law graphs. Ligra [74] is a framework for implementing
graph traversal algorithms on shared-memory machines, which
implements graph traversal algorithms that operate on subsets of
vertices by mapping edges and vertices. Static graphs do not incur
data reconstruction overhead, which allows static graph systems
to achieve high efficiency through optimized data structures and
algorithms. However, they are best suited for scenarios where the
graph’s structure remains constant, as they are not tailored for
evolving graphs.

Evolving & streaming graph system. In contrast to static
graph systems, evolving and streaming graph systems analyze
dynamic graph data. Evolving graph systems [23, 32, 33, 41, 54,
59, 65, 78, 80] store snapshots of different versions of the graph.
They share analysis results among these snapshots to reduce re-
dundant computations and enhance the locality of the analysis

3014

process. RisGraph [23] achieves impressive query speed to sup-
port fast addition and deletion of edges by designing a new data
structure and using space for time. Tegra [34] provides support
for performing ad-hoc queries on arbitrary time windows of the
graph by introducing an in-memory intermediate state representa-
tion and compacting snapshots for arbitrary retrieval. Streaming
graph systems [4, 13, 17, 37, 56, 57, 61, 66, 71, 73, 81] maintain a
single version of the graph and the results of corresponding queries,
which are incrementally updated when a batch of updates is ap-
plied. The focus of these works is on incremental computation, i.e.,
how to update query results efficiently while ensuring correctness.
KickStarter[81], GraphBolt[57], and GraphFly[13] use techniques
based on tracking dependencies and propagating impact to support
efficient queries in the presence of deleted edges. CommonGraph [4]
improves the efficiency of querying by converting deletions to ad-
ditions, enabling shared additions among snapshots, and breaking
sequential dependencies in the streaming approach.

General data warehouse. A general data warehouse is a cen-
tralized repository that integrates data from various sources and
provides a unified view for data analysis and decision-making. It
typically supports data storage, processing, and query capabili-
ties for structured, semi-structured, and unstructured data [26, 51,
60, 83, 94]. General data warehouses are designed to handle large
volumes of data, provide efficient data retrieval and analysis, and
support complex queries and transformations. They are widely used
in industry and academia for business intelligence, reporting, and
advanced analytics tasks [5, 15, 25, 58, 75, 86]. However, applying
general data warehouses to graph data and graph computations is
still an emerging area of research. In this paper, we explore a class
of important graph-based query workloads in data warehouses,
specifically focusing on window-based monotonic graph analytics
for pattern-consistent queries.

8 CONCLUSION

This paper introduces MergeGraph, an efficient window-based
monotonic graph analytics system that minimizes computational
costs during online analytics by reusing transitional results from
each slice within the window. We began by carefully examining the
limitations of existing systems in handling such workloads and then
identified optimization opportunities based on real-world scenarios.
Subsequently, we presented a merge-continue-compute framework
to reduce computational overhead and a graph computation frame-
work based on discrete storage to mitigate the high cost of graph
merging. Our experimental results demonstrate that we achieve an
average speedup of 11.30X across various monotonic algorithms
compared to the state-of-the-art solutions.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation
of China (No. 62322213 and 62172419) and Beijing Nova Program
(No. 20230484397 and 20220484137). This work is also supported
by Ant Group Research Fund. Z. Chen, F. Zhang, Y. Chen, X. Fang,
and X. Du are with the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE), and the School of Information,
Renmin University of China. Feng Zhang is the corresponding
author of this paper.



REFERENCES

(1]

3

8

[9]

[10

[11

[12

(13]

(14

[16

(17

[24]

[25

[26

2020. China’s 2020 Digital Payment Industry — WeChat Pay vs Ali-
pay. https://thirdbridge.com/chinas-2020-digital-payment-industry-wechat-
pay-vs-alipay/

2021. Top 5 enterprise graph analytics use cases. https://www.techtarget.com/
searchbusinessanalytics/feature/Top-5-enterprise-graph-analytics-use-cases
2023. Alipay. https://www.alipay.com/

Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael B. Abu-Ghazaleh, and Rajiv
Gupta. 2023. CommonGraph: Graph Analytics on Evolving Data. In ASPLOS
(2). ACM, 133-145.

Anténio Lorvao Antunes, Elsa Cardoso, and José Barateiro. 2022. Incorporation
of Ontologies in Data Warehouse/Business Intelligence Systems - A Systematic
Literature Review. Int. J. Inf. Manag. Data Insights 2, 2 (2022), 100131.

Naheed Anjum Arafat, Arijit Khan, Arpit Kumar Rai, and Bishwamittra Ghosh.
2023. Neighborhood-based Hypergraph Core Decomposition. Proc. VLDB
Endow. 16, 9 (2023), 2061-2074.

Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: a database benchmark based on the Facebook
social graph. In SIGMOD Conference. ACM, 1185-1196.

Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-Based
Similarity Search for Scalable Data Science. Proc. VLDB Endow. 16, 6 (2023),
1548-1559.

Maciej Besta, Michal Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To push or to pull: On reducing communication and synchroniza-
tion in graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. 93-104.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: A MultiResolution Coordinate-Free Ordering for Compress-
ing Social Networks. In Proceedings of the 20th international conference on World
Wide Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587-596.

Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595-601.

Lijun Chang, Mouyi Xu, and Darren Strash. 2022. Efficient Maximum k-Plex
Computation over Large Sparse Graphs. Proc. VLDB Endow. 16, 2 (2022), 127—
139.

Dan Chen, Chuangyi Gui, Yi Zhang, Hai Jin, Long Zheng, Yu Huang, and Xiaofei
Liao. 2022. GraphFly: Efficient Asynchronous Streaming Graphs Processing via
Dependency-Flow. In SC. IEEE, 45:1-45:14.

Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. 2018. PowerLyra: Differentiated Graph Computation and Partitioning
on Skewed Graphs. ACM Trans. Parallel Comput. 5, 3 (2018), 13:1-13:39.
Zhida Chen, Gao Cong, and Walid G. Aref. 2020. STAR: A Distributed Stream
Warehouse System for Spatial Data. In SIGMOD Conference. ACM, 2761-2764.
Zheng Chen, Feng Zhang, JiaWei Guan, Jidong Zhai, Xipeng Shen, Huanchen
Zhang, Wentong Shu, and Xiaoyong Du. 2023. Compressgraph: Efficient par-
allel graph analytics with rule-based compression. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1-31.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph:
taking the pulse of a fast-changing and connected world. In EuroSys. ACM,
85-98.

Qianggiang Dai, Rong-Hua Li, Meihao Liao, Hongzhi Chen, and Guoren Wang.
2022. Fast Maximal Clique Enumeration on Uncertain Graphs: A Pivot-based
Approach. In SIGMOD Conference. ACM, 2034-2047.

Yizhou Dai, Miao Qiao, and Lijun Chang. 2022. Anchored Densest Subgraph.
In SIGMOD Conference. ACM, 1200-1213.

Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2022. A Hierarchical Contrac-
tion Scheme for Querying Big Graphs. In SIGMOD Conference. ACM, 1726-1740.
Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou.
2021. Incrementalizing Graph Algorithms. In SIGMOD Conference. ACM, 459—
471.

Muhammad Farhan, Qing Wang, and Henning Koehler. 2022. BatchHL: An-
swering Distance Queries on Batch-Dynamic Networks at Scale. In SIGMOD
Conference. ACM, 2020-2033.

Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for
Evolving Graphs to Support Sub-millisecond Per-update Analysis at Millions
Ops/s. In SIGMOD Conference. ACM, 513-527.

Sen Gao, Hongchao Qin, Rong-Hua Li, and Bingsheng He. 2023. Parallel Colorful
h-star Core Maintenance in Dynamic Graphs. Proc. VLDB Endow. 16, 10 (2023),
2538-2550.

Georgia Garani, Andrey V. Chernov, Ilias K. Savvas, and Maria Butakova. 2019.
A Data Warehouse Approach for Business Intelligence. In WETICE. IEEE, 70-75.
Kamran Ghane. 2020. Big Data Pipeline with ML-Based and Crowd Sourced

Dynamically Created and Maintained Columnar Data Warehouse for Structured
and Unstructured Big Data. In ICICT. IEEE, 60-67.

3015

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36

[37]

[38]

[39]

[40]

[41]

[42

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52

[53]

[54]

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computation on Natu-
ral Graphs. In OSDI. USENIX Association, 17-30.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In OSDI. USENIX Association, 599-613.

Xiangyang Gou and Lei Zou. 2021. Sliding Window-based Approximate Triangle
Counting over Streaming Graphs with Duplicate Edges. In SIGMOD Conference.
ACM, 645-657.

Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making pull-based
graph processing performant. ACM SIGPLAN Notices 53, 1 (2018), 246—-260.
Wei Guo, Chang Meng, Enming Yuan, Zhicheng He, Huifeng Guo, Yingxue
Zhang, Bo Chen, Yaochen Hu, Ruiming Tang, Xiu Li, and Rui Zhang. 2023.
Compressed Interaction Graph based Framework for Multi-behavior Recom-
mendation. In WWW. ACM, 960-970.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: a
graph engine for temporal graph analysis. In EuroSys. ACM, 1:1-1:14.

Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016.
Time-evolving graph processing at scale. In GRADES. ACM, 5.

Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In NSDL
USENIX Association, 337-355.

Xun Jian, Zhiyuan Li, and Lei Chen. 2023. SUFF: Accelerating Subgraph Match-
ing with Historical Data. Proc. VLDB Endow. 16, 7 (2023), 1699-1711.

Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, and Johan Kok Zhi
Kang. 2022. Spade: A Real-Time Fraud Detection Framework on Evolving
Graphs. Proc. VLDB Endow. 16, 3 (2022), 461-469.

Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2021.
Tripoline: generalized incremental graph processing via graph triangle inequal-
ity. In EuroSys. ACM, 17-32.

Zhiguo Jiang, Hanhua Chen, and Hai Jin. 2023. Auxo: A Scalable and Efficient
Graph Stream Summarization Structure. Proc. VLDB Endow. 16, 6 (2023), 1386
1398.

Junghoon Kim, Sigiang Luo, Gao Cong, and Wenyuan Yu. 2022. DMCS : Density
Modularity based Community Search. In SIGMOD Conference. ACM, 889-903.
Seongyun Ko, Taesung Lee, Kijae Hong, Wonseok Lee, In Seo, Jiwon Seo, and
Wook-Shin Han. 2021. iTurboGraph: Scaling and Automating Incremental
Graph Analytics. In SIGMOD Conference. ACM, 977-990.

Pradeep Kumar and H. Howie Huang. 2020. GraphOne: A Data Store for Real-
time Analytics on Evolving Graphs. ACM Trans. Storage 15, 4 (2020), 29:1-29:40.
Janet Layne, Justin Carpenter, Edoardo Serra, and Francesco Gullo. 2023. Tem-
poral SIR-GN: Efficient and Effective Structural Representation Learning for
Temporal Graphs. Proc. VLDB Endow. 16, 9 (2023), 2075-2089.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

Faming Li, Zhaonian Zou, Jianzhong Li, Xiaochun Yang, and Bin Wang. 2022.
Evolving subgraph matching on temporal graphs. Knowl. Based Syst. 258 (2022),
109961.

Faming Li, Zhaonian Zou, Xianmin Liu, Jianzhong Li, Xiaochun Yang, and Bin
Wang. 2023. Detecting maximum k-durable structures on temporal graphs.
Knowl. Based Syst. 271 (2023), 110561.

Jia Li, Wenyue Zhao, Nikos Ntarmos, Yang Cao, and Peter Buneman. 2023.
MITra: A Framework for Multi-Instance Graph Traversal. Proc. VLDB Endow.
16, 10 (2023), 2551-2564.

Wentao Li, Miao Qiao, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin. 2022.
On Scalable Computation of Graph Eccentricities. In SSIGMOD Conference. ACM,
904-916.

Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When
Temporal Graph Neural Networks Meet Temporal Personalized PageRank. Proc.
VLDB Endow. 16, 6 (2023), 1332-1345.

Meihao Liao, Rong-Hua Li, Qianggiang Dai, and Guoren Wang. 2022. Efficient
Personalized PageRank Computation: A Spanning Forests Sampling Based
Approach. In SIGMOD Conference. ACM, 2048-2061.

Dandan Liu and Zhaonian Zou. 2023. gCore: Exploring Cross-layer Cohesive-
ness in Multi-layer Graphs. Proc. VLDB Endow. 16, 11 (2023), 3201-3213.
Jiesong Liu, Feng Zhang, Lv Lu, Chang Qi, Xiaoguang Guo, Dong Deng, Guo-
liang Li, Huanchen Zhang, Jidong Zhai, Hechen Zhang, et al. 2024. G-Learned
Index: Enabling Efficient Learned Index on GPU. IEEE Transactions on Parallel
and Distributed Systems (2024).

Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. 2014. GraphLab: A New Framework For Parallel
Machine Learning. CoRR abs/1408.2041 (2014).

Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, and Xiaolin
Han. 2022. A Convex-Programming Approach for Efficient Directed Densest
Subgraph Discovery. In SIGMOD Conference. ACM, 845-859.

Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo L. Seltzer. 2015.
LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In ICDE.


https://thirdbridge.com/chinas-2020-digital-payment-industry-wechat-pay-vs-alipay/
https://thirdbridge.com/chinas-2020-digital-payment-industry-wechat-pay-vs-alipay/
https://www.techtarget.com/searchbusinessanalytics/feature/Top-5-enterprise-graph-analytics-use-cases
https://www.techtarget.com/searchbusinessanalytics/feature/Top-5-enterprise-graph-analytics-use-cases
https://www.alipay.com/
http://snap.stanford.edu/data

[55]

[56

[57]

(58

[60

(61

(62]

o
&

(64

[65

[69

[70

[71

3
&,

IEEE Computer Society, 363-374.

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for
large-scale graph processing. In SIGMOD Conference. ACM, 135-146.

Mugilan Mariappan, Joanna Che, and Keval Vora. 2021. DZiG: sparsity-aware
incremental processing of streaming graphs. In EuroSys. ACM, 83-98.
Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven
Synchronous Processing of Streaming Graphs. In EuroSys. ACM, 25:1-25:16.
Anthony Martins, Pedro Martins, Filipe Caldeira, and Filipe Sa. 2020. An Evalu-
ation of How Big-Data and Data Warehouses Improve Business Intelligence
Decision Making. In WorldCIST (1) (Advances in Intelligent Systems and Com-
puting), Vol. 1159. Springer, 609-619.

Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vi-
jayan Prabhakaran, Enhong Chen, and Wenguang Chen. 2015. ImmortalGraph:
A System for Storage and Analysis of Temporal Graphs. ACM Trans. Storage
11, 3 (2015), 14:1-14:34.

Mukesh K. Mohania. 2001. Building web warehouse for semi-structured data.
Data Knowl. Eng. 39, 2 (2001), 101-103.

Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. 2013. Naiad: a timely dataflow system. In SOSP.
ACM, 439-455.

Zhenxuan Pan, Tao Wu, Qingwen Zhao, Qiang Zhou, Zhiwei Peng, Jiefeng Li,
Qi Zhang, Guanyu Feng, and Xiaowei Zhu. 2023. GeaFlow: A Graph Extended
and Accelerated Dataflow System. Proceedings of the ACM on Management of
Data 1, 2 (2023), 1-27.

Serafeim Papadias, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl.
2022. Space-Efficient Random Walks on Streaming Graphs. Proc. VLDB Endow.
16, 2 (2022), 356-368.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong
Cheng. 2023. Computing Graph Edit Distance via Neural Graph Matching. Proc.
VLDB Endow. 16, 8 (2023), 1817-1829.

Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou,
and Maya Haradasan. 2012. Managing Large Graphs on Multi-Cores with Graph
Awareness. In USENIX Annual Technical Conference. USENIX Association, 41—
52.

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large
Dynamic Graphs. Proc. VLDB Endow. 11, 12 (2018), 1876-1888.

Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In AAAL AAAI Press, 4292-4293.
https://networkrepository.com

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. 2015. Chaos: scale-out graph processing from secondary storage.
In SOSP. ACM, 410-424.

Siddhartha Sahu and Semih Salihoglu. 2021. Graphsurge: Graph Analytics on
View Collections Using Differential Computation. In SIGMOD Conference. ACM,
1518-1530.

Semih Salihoglu and Jennifer Widom. 2013. GPS: a graph processing system. In
SSDBM. ACM, 22:1-22:12.

Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jef-
frey S. Young, Matthew Wolf, and Karsten Schwan. 2016. GraphIn: An Online
High Performance Incremental Graph Processing Framework. In Euro-Par (Lec-
ture Notes in Computer Science), Vol. 9833. Springer, 319-333.

Amirhesam Shahvarani and Hans-Arno Jacobsen. 2021. Distributed Stream
KNN Join. In SIGMOD Conference. ACM, 1597-1609.

Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A System
For Real-Time Iterative Analysis Over Evolving Data. In SIGMOD Conference.
ACM, 417-430.

Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In PPoPP. ACM, 135-146.

Dominik Slezak, Jakub Wroblewski, Victoria Eastwood, and Piotr Synak. 2008.
Brighthouse: an analytic data warehouse for ad-hoc queries. Proc. VLDB Endow.
1, 2 (2008), 1337-1345.

Yahui Sun, Shuai Ma, and Bin Cui. 2022. Hunting Temporal Bumps in Graphs
with Dynamic Vertex Properties. In SIGMOD Conference. ACM, 874-888.
David Tench, Evan West, Victor Zhang, Michael A. Bender, Abiyaz Chowdhury,
J. Ahmed Dellas, Martin Farach-Colton, Tyler Seip, and Kenny Zhang. 2022.
GraphZeppelin: Storage-Friendly Sketching for Connected Components on
Dynamic Graph Streams. In SIGMOD Conference. ACM, 325-339.

Manuel Then, Timo Kersten, Stephan Giinnemann, Alfons Kemper, and Thomas
Neumann. 2017. Automatic Algorithm Transformation for Efficient Multi-
Snapshot Analytics on Temporal Graphs. Proc. VLDB Endow. 10, 8 (2017),

3016

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[o1]

[92]

[93

[94

[95]

[96]

[97]

[98

[99]

[100

[101

[102]

877-888.

Anxin Tian, Alexander Zhou, Yue Wang, and Lei Chen. 2023. Maximal D-truss
Search in Dynamic Directed Graphs. Proc. VLDB Endow. 16, 9 (2023), 2199-2211.
Keval Vora, Rajiv Gupta, and Guoqing Xu. 2016. Synergistic Analysis of Evolving

Graphs. ACM Trans. Archit. Code Optim. 13, 4 (2016), 32:1-32:27.
Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate

Computations on Streaming Graphs via Trimmed Approximations. In ASPLOS.
ACM, 237-251.

Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You Need: A
Generic I/O Optimization for Disk-based Graph Processing. In USENIX Annual
Technical Conference. USENIX Association, 507-522.

Jingting Wang and Bao Liu. 2020. Design of ETL Tool for Structured Data Based
on Data Warehouse. In CSAE. ACM, 119:1-119:5.

Kai Wang, Guoging Xu, Zhendong Su, and Yu David Liu. 2015. GraphQ: Graph
Query Processing with Abstraction Refinement - Scalable and Programmable
Analytics over Very Large Graphs on a Single PC. In USENIX Annual Technical
Conference. USENIX Association, 387-401.

Zhigang WANG, Ning WANG, Jie NIE, Zhiqiang WEI, Yu GU, and Ge YU. 2023.
A lock-free approach to parallelizing personalized PageRank computations on
GPU. Frontiers of Computer Science 17, 1, Article 171602 (2023), 171602 pages.
https://doi.org/10.1007/s11704-022-1546-2

Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang, Ji
Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, Tao Guan, Chen Li, and Jingren Zhou.
2020. Grosbeak: A Data Warehouse Supporting Resource-Aware Incremental
Computing. In SIGMOD Conference. ACM, 2797-2800.

JianXuan Wu, Xiangnan He, Xiang Wang, Qifan Wang, Weijian Chen, Jianxun
Lian, and Xing Xie. 2022. Graph convolution machine for context-aware rec-
ommender system. Frontiers of Computer Science 16, 6, Article 166614 (2022),
166614 pages. https://doi.org/10.1007/s11704-021-0261-8

Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haox-
iang Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: scaling graph computation
to the trillions. In SoCC. ACM, 408-421.

Tianyang Xu, Zhao Lu, and Yuanyuan Zhu. 2022. Efficient Triangle-Connected
Truss Community Search In Dynamic Graphs. Proc. VLDB Endow. 16, 3 (2022),
519-531.

Junyong Yang, Ming Zhong, Yuanyuan Zhu, Tieyun Qian, Mengchi Liu, and
Jeffrey Xu Yu. 2023. Scalable Time-Range k-Core Query on Temporal Graphs.
Proc. VLDB Endow. 16, 5 (2023), 1168-1180.

Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, and Jianling Sun. 2021. GPU-
Accelerated Graph Label Propagation for Real-Time Fraud Detection. In SIGMOD
Conference. ACM, 2348-2356.

Haoteng Yin, Muhan Zhang, Jianguo Wang, and Pan Li. 2023. SUREL+: Moving
from Walks to Sets for Scalable Subgraph-based Graph Representation Learning.
Proc. VLDB Endow. 16, 11 (2023), 2939-2948.

Kaigiang Yu, Cheng Long, Shengxin Liu, and Da Yan. 2022. Efficient Algorithms
for Maximal k-Biplex Enumeration. In SIGMOD Conference. ACM, 860-873.
Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2021.
POCLib: A high-performance framework for enabling near orthogonal process-
ing on compression. [EEE transactions on Parallel and Distributed Systems 33, 2
(2021), 459-475.

Yuhao Zhang and Arun Kumar. 2023. Lotan: Bridging the Gap between GNNs
and Scalable Graph Analytics Engines. Proc. VLDB Endow. 16, 11 (2023), 2728~
2741.

Ziwei Zhao, Xi Zhu, Tong Xu, Aakas Lizhiyu, Yu Yu, Xueying Li, Zikai Yin,
and Enhong Chen. 2023. Time-interval Aware Share Recommendation via
Bi-directional Continuous Time Dynamic Graphs. In SIGIR. ACM, 822-831.
Yanping Zheng, Zhewei Wei, and Jiajun Liu. 2023. Decoupled Graph Neural
Networks for Large Dynamic Graphs. Proc. VLDB Endow. 16, 9 (2023), 2239—
2247.

Xiangyu Zhi, Xiao Yan, Bo Tang, Ziyao Yin, Yanchao Zhu, and Mingi Zhou.
2023. CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph
Algorithm Execution. Proceedings of the VLDB Endowment 17, 4 (2023), 891-903.
Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gem-
ini: A {Computation-Centric} Distributed Graph Processing System. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
301-316.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. {GridGraph}:{Large-
Scale} Graph Processing on a Single Machine Using 2-Level Hierarchical Parti-
tioning. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 375-386.
Xiaoke Zhu, Yang Liu, Shuhao Liu, and Wenfei Fan. 2023. MiniGraph: Querying
Big Graphs with a Single Machine. Proc. VLDB Endow. 16, 9 (2023), 2172-2185.
Chaoji Zuo and Dong Deng. 2023. ARKGraph: All-Range Approximate K-
Nearest-Neighbor Graph. Proc. VLDB Endow. 16, 10 (2023), 2645-2658.


https://networkrepository.com
https://doi.org/10.1007/s11704-022-1546-2
https://doi.org/10.1007/s11704-021-0261-8

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Window-Based Monotonic Graph Analytics for Pattern-Consistent Query
	2.2 Iterative Monotonic Graph Analytics

	3 Motivation
	4 MergeGraph System
	4.1 Overview
	4.2 Storage and Utilization of Transitional Result
	4.3 Pattern-Consistent Query Computation
	4.4 Optimizing Graph Computation with Discrete Storage

	5 Implementation
	6 evaluation
	6.1 Experimental Setup
	6.2 End-to-End Performance
	6.3 Benefit Breakdown
	6.4 Detailed Analysis
	6.5 Discussion

	7 Related work
	8 Conclusion
	References

