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ABSTRACT

Online controlled experiment (also called A/B test or experiment)
is the most important tool for decision-making at a wide range of
data-driven companies like Microsoft, Google, Meta, etc. Metric
computation is the core procedure for reaching a conclusion during
an experiment. With the growth of experiments and metrics in an
experiment platform, computing metrics efficiently at scale becomes
a non-trivial challenge. This work shows how metric computation
in WeChat experiment platform can be done efficiently using bit-
sliced index (BSI) arithmetic. This approach has been implemented
in a real world system and the performance results are presented,
showing that the BSI arithmetic approach is very suitable for large-
scale metric computation scenarios.
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1 INTRODUCTION

Online controlled experiment (A/B tests) plays a central role in
data-driver decision-making in the Internet industry [2, 7, 12, 27].
With the collection of massive data from users during the experi-
ments, efficient data processing and analyzing is crucial for reaching
conclusions of experiments, and metric computation is the most
important part of it.

Metric computation in online controlled experiment platform is
usually performed with queries that join, filter and aggregate the
experiment data in a variety of ways. In WeChat experiment plat-
form, we have tens of thousands metrics, and also tens of thousands
experiment strategies running simultaneously, each experiment
strategy affects tens of millions users on average, and hundreds
of metrics would be computed in each experiment. As a result,
the metric computation procedure in WeChat costs hundreds of
petabytes network traffic and millions of CPU hours every day,
becoming the most resource-consuming procedure in our experi-
ment platform. Because the data involved is very large, computing
metrics efficiently and answering related user queries quickly is a
critical issue in our context.

Metric computation in WeChat experiment platform can be con-
sidered as some kind of specialized online analytical processing
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(OLAP) task, it differs in the following aspects from general purpose
OLAP.

e Not only a single value should be computed for an experi-
ment metric, the variance of the metric (and the covariance
between metrics) should be estimated correctly for statist-
ical inference.

Experiment data in our situation can be organized into few
categories, each category of data is related to WeChat-user
activities and attributes. We found that this kind of data
follows the Pareto principle [6, 18] (also known as the 80-20
rule) roughly, makes them very efficient when represented
by BSL

Most of the queries on the experiment data follow some
fixed paradigms, which makes it possible for us to propose
specialized solutions for handling these queries efficiently
and quickly.

Based on these characteristics in our scenarios, this paper first
introduce the representation of experiment data, we show that our
representation of data using BSI can be very efficient and satisfy the
needs of statistical inference. Later we introduce the computation
details and conclude that most of the metric computations can be
efficiently accomplished by BSI arithmetic. Then we describe our
system architecture and present the performance results, shows
that how efficient computation and fast interactive query can be
achieved in a real world system using reasonable resources. At last,
we discuss the expressive power and limitation of the proposed
method.

To the best of our knowledge this is the first paper that imple-
ments a real world large-scale experiment metric computing system
using BSI arithmetic. The primary contributions of this paper can
be summarized as follows:

e Implement a real world large-scale metric computation sys-
tem using BSI arithmetic, deal with the real world problems
encountered in experiment metric computing scenarios.

e Present the performance of our system, shows that BSI
arithmetic approach is very suitable for large-scale experi-
ment platform.

The rest of the paper is organized as follows. We present the
related work in section 2. section 3 present the details of the repres-
entation of our experiment data by BSI. Algorithms for computing
metrics in different scenarios are presented in section 4. In section 5,
we introduce our system architecture for metric computation. The
performance results in section 6 shows that the efficiency and low
latency characteristic of our system. The expressive power and
limitation are discussed in section 7. Our conclusions are given in
section 8.
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Figure 1: BSI Example

2 RELATED WORK
2.1 Roaring Bitmap

Roaring bitmap was introduced in [3, 15]. It is a bitmap scheme
using hybrid compression technique that uses both uncompressed
bitmaps and packed arrays inside a two-level tree. The roaring
bitmap is used to represent a set of 32-bit unsigned integers. A
roaring bitmap is a key-value data structure where each key-value
pair represents a set S of 32-bit unsigned integers that share the
same most significant 16 bits. The key is made of the shared 16 bits,
and the value is a container storing the remaining 16 least signi-
ficant bits for each member of S. According to the characteristics
of values stored in each container, roaring bitmap uses different
container structures for better compress the values. For example,
roaring bitmap uses a sorted array when the number of values does
not exceed 4096 in a container (a sparse container). Furthermore,
roaring bitmap operations (AND, OR, ANDNOT, XOR, etc.) can be
parallelized by exploiting single-instruction-multiple-data (SIMD)
instructions [13, 14]. It is worth mentioning that the compactness
of the integers in a roaring bitmap has great performance impact
on bitmap operations due to its design, the denser the bitmap is, the
faster the operations are. We use roaring bitmap as a component
for building BSIs of experiment data.

2.2 Bit-Sliced Index (BSI)

Bit-sliced index (BSI) was introduced in [19]. It is an ordered list
of bitmaps, B®, Bs~1 .., B! BY and is used to represent the values
(normally non-negative integers, and we use BSI to represent non-
negative numeric values in our system) of some column C of a table
T (although the column C might be calculated values associated
with rows of T, and have no physical existence in the table). The
bitmaps B0 < i < s are called bit-slices, and their bit-values are
defined this way:

Cljl =) Bl -2
i=0

where C|j] is the C value for the row with ordinal position j in
T, B![j] is an indicator representing if j is in bitmap B. In other
words, B![j] = 1 if and only if bit i in the binary representation of
C[J] is on. For a BSI denoted as S representing the values of column
C, we use S| j] for representing the C value for the row with ordinal
position j.

Figure 1is an example of a BSI. In the figure, the column C; is the
binary representation of column C. Each bit-slice of a BSI is like a
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Figure 2: BSI Addition

vertical partition of a column. Range searches can be executed very
efficiently using bit-sliced indexes. Some aggregate functions over
values in a BSI, like the sum, average, median, and n-tile can also be
executed efficiently on BSIs. Refer to [19] for a complete analysis of
aggregate functions and range searches. These algorithms make use
of the bitmap operations (AND, OR, ANDNOT, XOR, etc.), described
above, to operate on the BSI slices.

2.3 BSI Arithmetic

Bit-sliced index addition and other bit-sliced index operations like
subtraction, multiplication, etc..., were defined in [21, 23]. In these
works, the focus was put on answering term matching (TM) queries.
Later in some other works [8, 22], BSI arithmetic was used to answer
preference queries. Term matching queries work on the contents
of textual documents, while preference queries work on combining
different attributes of some relation.

Bit-sliced index addition for two BSIs X and Y works in the
following way. We want to perform the addition S = X + Y, where
X and Y are the bit-sliced indexes for column x and y, and S[j] =
X[j] + Y[Jj], for every row r with ordinal position j. We perform
the usual addition of binary numbers, not in a bit-by-bit manner,
but by using bitmap operations described earlier. We first compute
the low-order bit-slice of S by doing $® = X® XOR Y?, and compute
the carry bitmap with Cop = X® AND Y°. Then we compute the
next bit-slice of S by doing S' = X' XOR Y! XOR Cy, and compute
the new carry with

C1 = (X' AND Y') OR [(X' XOR Y') AND Cy)].

We go on like this until we run out of slices. In the example of
Figure 2, both X and Y have two slices each, so we do S$? = (.
Remember that these bitmap operations are parallelized using the
SIMD instructions.

The subtraction and multiplication of BSIs work in a similar
way, mimicking digital logic algorithms [20] using bitmap opera-
tions. Furthermore, we can easily define comparison of BSIs using
the same idea, which extend the capability of BSI arithmetic. As
illustrated in Algorithm 1, Algorithm 2 and Algorithm 3, the com-
parison operator (<, =, #, etc.) takes two BSIs as input, and produces
a binary-value BSI indicating the row-wise comparison results. We
treat zero values in BSI as not existing in our scenarios, so we do
not care the results of rows that have zero values in both BSIs when
doing BSI arithmetic, and we set these results to zeros for better
compression of the data with roaring bitmap.



It is easy to see that the computational complexity of addition,
subtraction, comparison operators(<, =, #), in-BSI aggregate func-
tions and range searches grows linearly as the number of non-empty
bit slices increases. While the complexity of general multiplication
and division of BSI are O(s1s2), s1 and sy are the numbers of non-
empty bit slices in each BSI, which seems to be slower. Fortunately,
in the scenarios of this paper we only need the multiplication with
one of the operators being binary, which makes the complexity also
linear.

Algorithm 1 Less Than Operator of BSIs

Given two BSI X and Y with s bit slices, compute the less than
comparison result L, which is a binary-value BSI (has only one
bit slice) that satisfies L[j] = 1 if and only if X[j] # 0,Y[j] #
0 and X[j] < Y[j] for each row with ordinal position j.
Initialize L to empty BSI (with all value in it equal to 0)
fori=0tos—1do

L% — [(Y! ORL%) ANDNOT X'] OR (Y! AND L?)
end for
return L

Algorithm 2 Equal Operator of BSIs

Given two BSI X and Y with s bit slices, compute the equal
comparison result E, which is a binary-value BSI (has only one
bit slice) that satisfies E[j] = 1 if and only if X[j] # 0,Y[j] #
0 and X[j] = Y[j] for each row with ordinal position j.
Initialize E to X OR X' OR .. OR X571
fori=0tos—1do

E% «— E° ANDNOT (X! XOR Y?)
end for
return E

Algorithm 3 Not Equal Operator of BSIs

Given two BSI X and Y with s bit slices, compute the not equal
comparison result NE, which is a binary-value BSI (has only one
bit slice) that satisfies NE[j] = 1 if and only if X[j] # 0, Y[j] #
0 and X[j] # Y[j] for each row with ordinal position j.
Initialize NE to empty BSI (with all value in it equal to 0)
fori=0tos—1do

NE® « NE° OR (X! XOR Y?)
end for
return NE

3 REPRESENT EXPERIMENT DATA BY BSI

3.1 Categories of Experiment Data in WeChat

3.1.1 Expose Log. Randomized traffic will be assigned to different
strategies when an experiment is started. There are different ran-
domization configurations for different scenarios. For example, an
experimenter that wanted to test the latency of page views within
strategy A and B may use page-view as the randomization unit
for traffic allocation, and an experimenter that wanted to keep the
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consistent experience of WeChat users when the experiment is run-
ning should use user as the randomization unit, as thus the same
user will be assigned to a fixed strategy in the experiment during
the whole process.

In addition to the randomization unit, the analysis unit is another
important concept, it is typically the denominator in a metric, e.g.
page-view for page-click-rate and revenue-per-search, session for
session-success-rate, etc. If we order different levels in a hierarchy
[4], the randomization unit should always be higher or equal to the
analysis unit (that is to say, the analysis unit is more fine-grained
than the randomization unit when they are not the same unit). For
example, any user-level metric would be ill-defined under page-
level randomization, because the same user might be exposed to
both the treatment and control strategies. In our scenarios, the
analysis unit is equal to the randomization unit in most of the
experiments.

User requests with multiple unit ids will be exposed to the ex-
periment strategies gradually when an experiment is started (e.g.
a request of page-view issued by a user in a session will bring the
page-view id, the session id and the user id in its context). The
expose log of an experiment strategy consists of 4 columns: the
strategy-id, the analysis-unit-id, the randomization-unit-id (e.g. re-
lated user-id of each page view) and the first-expose-date (the date
when the experiment strategy starts to take effect on the unit),
it is generated by aggregating raw log of exposed requests with
same analysis-unit-id. We may generate multiple expose log for one
experiment, because there may be metrics with different analysis
units related to one experiment, for example, we may need to ana-
lyze page-view metrics and user-level metrics in a user randomized
experiment.

3.1.2  Metric Log. Metric log describes metric values for each ana-
lysis unit in each day. For example, stay-time-per-user log is or-
ganized into 3 columns: date, user-id and stay-time, forwarding-
count-per-session is organized into 3 columns: date, session-id and
forwarding-count, active-days-per-user is organized into 3 columns:
date, user-id and active-days. The metric log will be joined with the
expose log by the analysis-unit-id for analyzing the metrics related
to the experiment.

3.1.3 Dimension Log. Dimension log describes some attributes of
the analysis unit in each day. For example, user-age is a user-level
dimension log that describes the age of each user, client-type is a
page-view-level dimension log that describes the client used in a
request. We also partition dimension log by date. Dimension log is
used to filter specific analysis units out of expose log, making deep
dive analysis of an experiment.

It is worth mentioning that we generally have only one id (the
analysis-unit-id) in metric log and dimension log, this is because
that not the whole pipeline of generating the metric log and dimen-
sion log is inside our experiment platform, and the analysis-unit-id
is the minimal requirement for matching related metric and dimen-
sion values to expose log when analyzing an experiment. With
minimal requirement of the data, the pipeline of generating this
data can be more flexible and maintainable. Table 1 summarizes the
categories of experiment data.



Table 1: Categories of Experiment Data

Category Object Described Schema
Expose Log an experiment strategy  strategy-id, analysis-unit-id, randomization-unit-id, first-expose-date
Metric Log a metric at some date date, metric-id, analysis-unit-id, value

Dimension Log  an attribute at some date

date, dimension-name, analysis-unit-id, value

3.2 Segmentation

The metric computation is based on the analysis unit. We segment
the experiment data described above according to the analysis-unit-
id. Specifically, we employ a hash function HASH that is independ-
ent of traffic randomization process and calculate segment-id =
HASH (analysis-unit-id)%1024. It is a deterministic randomization
process for assigning all analysis units into different segments 0,
1, ..., 1023. Operations on each segment of data are identical when
computing metrics, which makes segment the basic unit of parallel
computing and load balancing.

3.3 Bucketing and Statistical Inference

A major challenge of metric computation is to perform statistical
inference efficiently on the experiment data. As described earlier,
not only a single value should be computed for an experiment
metric, the variance of the metric (and the covariance between
metrics) should be estimated correctly.

We suggest that it is reasonable to assume the randomization
units satisfy the stable unit treatment value assumption (SUTVA)
[24-26], which requires that "the observation of potential outcome
on one unit should not be affected by the particular assignment of
treatments to the other units". It is an assumption about independ-
ence among randomization units, but goes beyond the concept of
independence. If the assumption is not satisfied, for example, in a
user-randomized experiment, a user who is exposed to experiment
strategy B will have different stay-time, depends on the strategy
exposure of other users, then the stay-time computed by users in
strategy B with partial users in it can not stand for the real effect
of strategy B when it is full launched, which makes the experiment
conclusion invalid.

Based on the "independence" property of the randomization
units, we introduce a bucketing procedure for estimating variance
and covariance of metrics efficiently. Similar to what we did for
segmentation, we introduce a deterministic randomization process
for assigning all randomization units into different buckets 0, 1, ...,
1023, and we compute the metric value for each bucket separately.
It can be seen as generating 1024 independent replicates of the
metric values of an experiment strategy, and then bootstrapping
[11, 17] the variance and covariance of metrics. We proved that the
bucket-based method of estimating the variance and covariance of
metrics is correct in theory, and it makes the statistical inference
procedures more efficient, check [28] for more details.

It is worth mentioning that the randomization unit and the ana-
lysis unit are the same in most of the experiments, in which case
the segmentation and bucketing can be the same procedure.

3.4 Position Encoding and BSI Representation
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Figure 3: Position Encoding Example of Segment 0

3.4.1 Position Encoding. We noticed that the analysis unit plays
the center role when computing the metrics, and we introduce a
position encoding process for making full use of BSI arithmetic’s
capability. Specifically, we encode each analysis-unit-id to a position
within each segment independently, the position starts with 0 and
increases sequentially for those ids that have not been encoded.
As illustrated in Figure 3, each user will be encoded to a fixed
position, makes the value column be represented by BSI naturally
and compactly (recall that zero values in BSI are treated not existing
in our scenarios). Furthermore, we tend to encode the user-id with
higher user engagement to smaller position as most as we can, to
make the roaring bitmaps in BSI more compact and efficient.

3.4.2 Expose Log Representation. For each experiment strategy in
a segment, there are 3 columns: analysis-unit-id, randomization-
unit-id and first-expose-date in expose log. We first transform first-
expose-date to 2 columns: min-expose-date and offset, because
zeros in BSI are ignore, we start offset from 1, min-expose-date is a
constant, representing the minimum date of original first-expose-
date column. The offset column can be represented by BSI more
efficiently than the original first-expose-date, because that offset has
a smaller value range, which leads to less non-empty bitmaps in the
BSI. Due to bucketing, the randomization-unit-id is not necessary
to exist in exposed log, we use the bucket-id instead, finally, we get
one constant: min-expose-date, and two BSIs: offset and bucket-id
for representing the expose log for each experiment strategy, as
illustrated in Table 2.

3.4.3 Metric and Dimension Log Representations. For each met-
ric (dimension) and each date in a segment, there are 2 columns:
analysis-unit-id, value. We simply represent the value column by
BSI after the position encoding process, as illustrated in Table 2.



Table 2: BSI Representation of Experiment Data

Category Object Described BSI Representation
Expose Log an experiment strategy ~ segment-id, strategy-id, bucket-id(BSI), min-expose-date, offset(BSI)
Metric Log a metric at some date segment-id, date, metric-id, value(BSI)

Dimension Log  an attribute at some date

segment-id, date, dimension-name, value(BSI)

value range<=100(3979/5890) value range>100(1911/5890)

1034 E
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Figure 4: Value Range Cardinalities Distribution of 5890 Real
World Metrics in One Day

3.5 Efficiency of BSI Representation

We use 5890 real world user-level metrics in our system for analyz-
ing the characteristics of the data. As illustrated in Figure 4, most of
the metrics have a small value range in one day (for example, there
are 3979 metrics out of 5890 have a value range with cardinality
< 100), and we also checked the distributions of the metric values,
as illustrated in Figure 5, we found that the values are roughly
distributed in ranges near to 0, following the Pareto principle [6].
We also observed the same characteristic in the expose data and
the dimension data (for example, most of the users will be exposed
to strategies in the beginning few days after the experiment has
been started).

An important property of BSI with roaring bitmaps is that the
data will be well compressed when the most of the values of BSI are
concentrated in relatively small range and the position encoding is
compact, because the roaring bitmap will compress the zeros of bin-
ary representation of each value and keep bitmap operations avail-
able on compressed data at the same time. This kind of compression
is different from the data storage compression, it compresses the
data size processed by CPU when executing the related operations
on the data, for example, for raw data with two columns of size 1GB
we need process 1GB data by CPU when adding these two columns,
while for compressed BSI data we maybe only need process 100MB
data by CPU, which improves the performance significantly if the
addition operation on BSI are efficient enough compared to the
addition operation on raw data.

4018

metric12634(171) metric24656(38) metric13369(115)
0.10
3 30.2 3
S 9.1 g0.05
£ £ £
0.00 - 0.0- 0.00 -
] 100 ] 20 ] 50 100
metric10549(112) metricl17407(2307) metric12537(30)
9 9 9
2 0.5 2 0.10 2
! g £%
8 ?_/ 0.05 - 8
0.0 T T 0.00 T T 0.0
] 50 100 ] 1000 2000 ] 20
metric24809(13) metric17619(26) metric25669(76252)
I oy o
2 2 2
g 0.5 g 0.21 S @.05 -
o o -3
@ 7 [
& & L &
0.0 0.0 0.00 —

T T T
5 10 ] 10 20 25000 50000 75000

Figure 5: Metric Value Distribution Examples

We evaluate the performance of BSI representation in section 6
with more details.

4 METRIC COMPUTATION BY BSI
ARITHMETIC

We now discuss the metric computation logic in our system. First
we introduce some SQL operations (join, filter and aggregate) on
the BSI representation, concrete metric computation scenarios are
discussed later.

4.1 Join, Filter and Aggregate

With the help of BSI arithmetic, we can perform join, filter and
aggregate operations on experiment data represented by BSL

4.1.1  Join. All BSIs are naturally joined together by analysis-unit-
id through the position encoding. We can access values of the same
analysis unit in all BSIs by its encoded position.

4.1.2  Filter. The entire BSI can be filtered out with predicates on
normal columns, for example, we can select the value BSI of a metric
by metric-id and date:

SELECT value
FROM metric-log
WHERE metric-id = 8371 AND
date = '2024-02-27';
Part of the values in BSI can be filtered out with predicates on
BSIs, for example, we can select the expose information of a strategy
whose analysis units are first exposed between the 2nd day and 5th



day (the symbol * is for multiplication of BSI, and the comparison
is also performed on BSI):

SELECT min-expose-date,
bucket-id * (offset
offset * (offset >=

FROM expose-log

WHERE strategy-id = 8746325;

>= 2) x (offset <= 5),
2) * (offset <= 5)

4.1.3  Aggregate. Aggregate functions over values in a BSI, like
the sum, average, median, n-tile can be executed efficiently, these
function aggregate all values in a BSI into one numerical result,
refer to [19] for more details. Furthermore, we found that aggregate
functions over BSIs, like sumBSI, maxBSI, mulBSI, distinctPos, can
also be implemented efficiently by BSI arithmetic. These functions
aggregate multiple BSIs into one BSI, for example, the sumBSI
aggregate function add all BSIs together. The distinctPos aggregate
function is a special aggregate for generating a binary BSI indicating
all the distinct encoded positions where a value exists (i.e. there
exists non-zero value on the position), it is used for calculating
unique analysis units count (e.g. Unique Visitors) when computing
metrics. The implementations of these functions are illustrated
below.

sumBSI(X, Y) := X +Y;

maxBSI(X, Y) := X * (X > Y) + Y * (X <= Y)
mulBSI(X, Y) := X * Y

distictPos(X, Y) := (X > @) OR (Y > 0)

4.2 Scorecard Computation

The simplest form of experiment results is an experiment scorecard,
it is a table consisting of a set of metrics and their movements in
an experiment [7]. It contains the observed metric values and the
p-values that generated by the statistical inference (typically t-test)
for each strategies in the experiment. At WeChat, it is common for
an experiment scorecard to compute hundreds of metrics over tens
of millions of end-users, and there are millions of strategy-metric
pairs to be computed every day.

Recall that the randomization unit and the analysis unit are
the same in most of the experiments, in which case the segmenta-
tion and bucketing become the same procedure. For simplicity, we
demonstrate the single-day scorecard computation for one strategy-
metric pair in such case. The SQL below computes the bucket-
value (by sum aggregate function) for each bucket, then the metric-
value and related statistical inference are carried out based on these
bucket-values.

SELECT t1.segment-id as bucket-id,
(t1.expose-date <= t2.date) as expose,
(t2.value * expose) as filtered-value,
sum(filtered-value) as bucket-value

FROM (

SELECT segment-id,
(min-expose-date + offset - 1) as expose-date
FROM expose-log
WHERE strategy-id = 8764293
) as ti
INNER JOIN (
SELECT segment-id, date, value
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FROM metric-log
WHERE date 'someday' AND
metric-id = 8371
) as t2
ON t1.segment-id = t2.segment-id;

For the case that the segment-id and the bucket-id are not the same,
we need to sum the filtered-value by bucket-id, generating 1024
bucket-values for each segment, and then merge the bucket-value
results of each segment. There may be some aggregate functions
that cannot be merged through numerical bucket-values, like me-
dian (Non-decomposable aggregate functions [10]), in such case we
generate intermediate BSI format state for the bucket-value or em-
ploy some approximation algorithms. This is also the solution for
merging non-decomposable aggregate function bucket-values of dif-
ferent dates, for example, we compute the (value > 0) (a BSI format
state s representing unique visitors of a metric) as the bucket-value
for a metric in different dates, and then use sum(distinctPos(s))
for merging these states into the unique-visitor count.

4.3 Pre-Experiment Computation

In [5] a technique was introduced that uses pre-experiment data to
reduce the variance in experimentation metrics. We also implemen-
ted the method in our system. The computation of pre-experiment
is similar to the scorecard computation, except that the expose-log
is joined with C successive days of the metric-log previous to the
experiment start date. We also demonstrated the single-day pre-
experiment computation for one strategy-metric pair just like done
before.

SELECT t1.segment-id as bucket-id,
(t1.expose-date <= 'someday') as expose,
(t2.value * expose) as filtered-value,
sum(filtered-value) as bucket-value
FROM (
SELECT segment-id,
(min-expose-date + offset - 1) as expose-date
FROM expose-log
WHERE strategy-id = 8764293
) as ti
INNER JOIN (
SELECT segment-id, sumBSI(value) as value-sum
FROM metric-log
WHERE metric-id = 8371 AND date between
(expt_start_date - C) AND (expt_start_date - 1)
GROUP BY segment-id
) as t2
ON t1.segment-id = t2.segment-id;

It is worth noting that C successive days of metric-log are ag-
gregated by sumBSI first, this procedure can be accelerated by
pre-aggregating the metric-log with a tree data structure. As illus-
trated in Figure 6, each non-leaf node of the tree is merged from its
two children by some aggregate function over BSIs. We can com-
pute aggregation of successive days more efficiently by merging
less nodes in the tree, for example, performing sumBSI for day 1 to
day 7 can be accomplished by merging 3 nodes (1234, 56, 7) in the
tree instead of 7 nodes.
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Figure 6: Pre-Aggregate Tree

4.4 Deep Dive Analysis

While the scorecard provides the overall strategy effect on a set of
metrics, experiment owners should also have an ability to better
understand metric movements. We provide an option to investigate
the data by the analysis unit attributes (e.g. client-type) or time
period (e.g. daily, weekly). Using this feature, experiment owners
might discover heterogeneous effects on different attributes (e.g.
a specific client-type might be causing a higher number of errors)
and detect novelty effects (e.g. the treatment group that received a
new feature engages with it in the first day and stops using it after
that).

This kind of analysis is too flexible to be pre-computed com-
pletely, and we compute them as needed by ad-hoc queries. The
computation is also similar to the metric computation logic de-
scribed earlier, but with an extra step for filtering the expose-log
by dimension-log, the cost of this extra step is negligible because
that we just need to analysis few strategy in deep dive analysis. We
demonstrate the expose filtering example below, which filters the
expose-date of the analysis units with client-type = 1 and client-
version > 134.

SELECT t1.segment-id as segment-id,
(t1.expose-date * t2.dim-filter) as expose-date
FROM (
SELECT segment-id,
(min-expose-date + offset - 1) as expose-date
FROM expose-log
WHERE strategy-id in (8764293,8764294,8764295)
) as ti
INNER JOIN (
SELECT segment-id, mulBSI(filter) as dim-filter
FROM (
SELECT segment-id, (value
FROM dimension-log
WHERE dimension-name = 'client-type' AND
date 'someday’
UNION ALL
SELECT segment-id, (value > 134) as filter
FROM dimension-log
WHERE dimension-name =
date = 'someday'

1) as filter

‘client-version' AND

)
GROUP BY segment-id
) as t2
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ON t1.segment-id = t2.segment-id

5 SYSTEM ARCHITECTURE
5.1 Overall Architecture

The architecture of the metric computation is illustrated in Figure 7
in the next page. The raw expose log and the raw metric/dimension
log are first processed, then converted to BSI representations and
stored on a distributed data warehouse system. Routine compu-
tations like the scorecard computation and the pre-experiment
computation are executed by pre-compute pipeline using Apache
Spark [29, 30]. Ad-hoc queries like deep dive analysis are processed
by Clickhouse [9] (an open-source columnar database management
system for online analytical processing).

5.2 Pre-Computation by Spark

We submit jobs to spark clusters for pre-computing the metrics
every day. The experiment data in BSI format is read from the dis-
tributed data warehouse system through network by spark jobs.
Each job computes a batch of strategy-metric pairs for better utiliz-
ing network traffic. The results are cached for user analysis later in
the day. The BSI related operations are implemented in the spark
framework. Recall that the BSI operations are based on roaring
bitmap operations, which can be parallelized by exploiting SIMD
instructions, we delegate these bitmap operations to SIMD imple-
mentations through Java Native Interface [16].

5.3 Ad-hoc Queries by Clickhouse

The critical issue of add-hoc queries is answering them as quickly
as possible, thus we introduce the Clickhouse with fast local storage
(typically local SSD) in our system. The details of ad-hoc queries
processing are illustrated in Figure 8, generally each segment of
data will be located in one node of the Clickhouse cluster, and the
BSI related operations are implemented in the Clickhouse engine
for processing the queries. Queries are processed in parallel and
locally in each node, makes the latency as low as possible. We only
keep the hot data (e.g. data with recent date or visited recently)
for reducing the storage cost of local storage, the cold data located
in the distributed data warehouse system will be loaded to local
storage when needed.

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of BSI representation
and the real world computation performance of our system.

6.1 BSI Representation Evaluation

In subsection 3.5 We use 5890 real world user-level metrics in our
system for analyzing the characteristics of the data, and conclude
that we can compress the data through the BSI representation and
keep the operations on it available without decompression. In this
subsection we evaluation the storage and computational efficiency
of the BSI representation, or BSI format.

6.1.1 Storage Evaluation. We choose 105 user-level core metrics,
these core metrics are the most important metrics of one of the
vital business scenarios in WeChat. The value range cardinalities
distribution of the these metrics in one day are illustrated in Table 3,
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the table shows that these metrics tend to have bigger value ranges
compared to the 5890 metrics, and they should be enough for eval-
uation usage (the performance will be better if the evaluation is
carried out with the 5890 metrics). We do not use more metrics
here, because too many metrics will lead to too much storage and
computational cost.

Then we generate the metric-log within a month using a normal
format, the schema of the normal format is (segment-id Ulnt16,
date Ulnt32, metric-id UInt32, user-id Ulnt32, value Ulnt32), and
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Table 3: Value Range Cardinalities Distribution of the 105
Core Metrics

Range Card (One Day) Number of Metrics Proportion

(0, 10] 33 31.4%
(10, 100] 4 3.8%
(102, 10%] 26 24.8%
(103, 104 18 17.1%
(104, 10°] 12 11.4%
(10°, 10%] 5 4.8%
(10, 107] 5 4.8%
(107, 108] 2 1.9%

Table 4: Storage of 105 Core Metrics in a Month(29 days)

Format Rows Compressed Size(LZ4) Original Size
Normal 890 billion 41TB 15.6 TB
BSI 3.1 million 1.6 TB 1.7 TB

the schema of the BSI format is (segment-id Ulnt16, date Ulnt32,
metric-id UInt32, value BSI). We compared the storage cost of these
two formats, the results are illustrated in Table 4. The compressed



Table 5: Details of Three Typical Metrics in One Day

Metric Rows Normal Size BSI Size Value Range
A 316 million 29GB 140 MB (0, 1]
B 34 million 324 MB 86 MB (0, 50]
C 510 million 4.7 GB 2.0 GB (0, 21600]

Table 6: Average Time of Computation with Normal Format
and BSI Format

Format Metric A Metric B Metric C
Normal 59.2 seconds 7.3 seconds 94.3 seconds
BSI (no SIMD) 1.2 seconds 3.8 seconds 18.3 seconds
BSI (AVX2) 0.6 seconds 1.3 seconds 10.5 seconds

size of the BSI representation is about half of the size of the nor-
mal representation, and it is worth noting that the original size
of BSI representation is roughly the same as the compressed one,
because that the BSI representation is already a compressed format
as described earlier.

6.1.2 Computational Evaluation. Next we evaluate the computa-
tional cost of the BSI representation. We choose 3 typical metrics
with different value ranges and rows. Raw data of each metric in
one day is represented as rows of (segment-id, user-id, metric-value)
with normal format, and there is at most one row for each user in
one day (that is, aggregated by user-id within one day). Raw data of
the metrics is converted to BSI representation for evaluation. The
details of the 3 metrics in one day are illustrated in Table 5, The size
of data that processed by CPU with normal format (Normal Size
column) is only affected by number of rows, while the size of BSI is
determined by number of rows and value range (value distribution).
Metric C has a big value range and the maximum number of rows,
thus has a maximum BSI size in one day, metric B has a bigger
value range than metric A, but also has much less rows than metric
A, and the final BSI size of metric B is smaller than metric A.

For each metric, we use one CPU core for calculating the sum of
metric values for each user in two days (that is, within each segment,
performing sumBSI for two BSIs or aggregating two days raw data
by user-id). The evaluation program is single threaded and written
in C++, compiled with —O3 optimization option, and runs 10 times
repeatedly on a machine with a 2.4GHZ CPU. The performance
results are listed in Table 6, it shows that the computation of BSI
representation is much more efficient than that with the normal
format, the main reason is that the size of data processed by CPU
with BSI representation is much more smaller than that with normal
format, and the SIMD instructions also play an important role in
performance improvement.

We conclude that the performance gain of the BSI computation
mainly comes from the compression of data when processed by
CPU and the SIMD instructions when performing BSI operations.

6.1.3 Extra Cost in Log Processing. We evaluated the extra com-
putational cost in log processing derived from conversion to the
BSI format in the same settings. For each metric, we converted
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Figure 9: Convert back to Normal Format within a Container

a day’s worth of data from the normal format to the BSI format
using a straightforward method, extracting bits from each metric
value and setting these bits into corresponding bitmaps. We also
observed that the conversion process can be more efficient when
the data is pre-sorted by user-id in the normal format. By splitting
the pre-sorted rows into blocks and processing each block with
neighbouring user-ids, we set bits extracted from metric values
in the block into adjacent containers in the roaring bitmap. This
approach achieves better cache locality, enhancing the overall effi-
ciency of the conversion. The results are illustrated in Table 7. It is
easy to see that the conversion cost is mainly related to the number
of rows and the value range of the metric, more rows and bigger
value range cost more CPU time. In our situation, most metrics
have relatively small value ranges, and the total computation cost
(conversion and BSI computation) is still much lower than that with
normal format in our scenarios.

Furthermore, we have monitored the overall cost (CPU hours and
latency) of log processing in our real system, and the results show
that the log processing cost remains almost the same as before, the
reason is that there are more IO-bound operations in log processing,
so the BSI conversion cost does not become a bottleneck in this
procedure.

6.1.4 Cost of Converting Back to the Normal Format. We also eval-
uated the cost of converting data back to the normal format in the
settings above. For each metric, we converted a day’s worth of data
from the BSI format to the normal format using both a straightfor-
ward method and a per-bitmap method. Using the straightforward
method, we collect the bits of the metric-value for a user from each
bitmap and combine them into a single value. The problem of the
straightforward method is that we need to check all the bitmaps
for each metric value, even if there is only one bit in the value.
Additionally, the scattered bitmap access reduces the cache hit rate.
To resolve the problem, we extract the bits in a per-bitmap man-
ner, as illustrated in Figure 9, for each bitmap, bits identified by
a mask (indicating the user-ids of interest) within a container are
first extracted and then set into corresponding positions of metric
values, the output is then generated by retrieving the metric values
corresponding to the mask, this process is repeated for each con-
tainer of the roaring bitmap. This approach avoids the extra cost



Table 7: Average Time of Converting to BSI format

Method Metric A Metric B Metric C
Straightforward 4.2 seconds 0.9 seconds 34.9 seconds
Pre-sorted 39seconds 0.8 seconds 12.9 seconds

Table 8: Average Time of Converting back to Normal Format

Method Metric A Metric B Metric C

164.6 seconds
8.7 seconds

10.0 seconds
1.1 seconds

Straightforward 44.6 seconds

Per-bitmap 2.0 seconds

Table 9: CPU Hours for Pre-computation for 105 Metrics

Format of Representation CPU Hours Consumed

22712
5446

Normal
BSI

of processing zero bits in metric values and achieves better cache
locality. Additionally, the bit extraction process can also be acceler-
ated by SIMD instructions when necessary. The evaluation results,
illustrated in Table 8, shows that the conversion back process is
very efficient with the per-bitmap method. Furthermore, the output
of the conversion is naturally sorted by user-id within the mask,
and can be efficiently converted to the BSI format again.

6.2 Pre-Computation Evaluation

Pre-computation performance is also evaluated on the 105 core
metrics. There are about 240,000 strategy-metric pairs to be com-
puted in November 21, 2023 in our system, these pairs involves
about 8,500 strategies and each strategy contains an average of 21
million exposed users. We evaluate the CPU hours consumed for
computing the scorecard results of these pairs using two methods.
The BSI-based method is described in subsection 4.2, while the
normal representation based method is described as follow (this is
also the method used in our system before the deployment of the
BSI method):

e Represent the expose-log by the normal format: (segment-id
Ulnt16, strategy-id UInt32, bucket-id Ulnt16, first-expose-
date Ulnt32)

Implement the scorecard computation logic with Spark SQL
[1] on expose-log and metric-log with the normal format
Spark SQL jobs are executed on our clusters, we split the
strategy-metric pairs into several jobs so that the total num-
ber of cores of the job will not be too large (no more than
2000 cores)

The results are illustrated in Table 9, the CPU hours of the BSI-
based method are about a quarter of that with the normal format.

6.3 Ad-hoc Queries Evaluation

The latency of the ad-hoc queries are evaluated on the 105 core
metrics. We choose an experiment containing 3 strategies with an
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Table 10: Latency for Ad-hoc Queries on 105 Metrics

Format of Representation Average Latency

22.3 seconds
6.0 seconds

Normal
BSI

average of 200 million exposed users (a huge experiment!), and
issue ad-hoc queries for computing the 105 core metric results
within a specific week. These ad-hoc queries will be processed on
the Clickhouse cluster described in subsection 5.3 by the BSI-based
method and the normal representation method (repeat 10 times).
The normal representation based method is similar to the BSI-based
method, and is described as follow (this is also the method used in
our system before the deployment of the BSI method):

e For each segment, use a bitmap for representing the exposed
users in each day in this week, and cache these bitmaps in
memory (join is slow in Clickhouse, we do not join expose-
log and metric-log with the normal format here, we use
bitmaps for expose-log instead)

Scan the metric-log with the normal format, and filter the
rows which satisfy expose condition: the user-id of the row
is contained in the expose bitmap

e Aggregate the metric values of each segment on each Click-

house node in parallel

The results are illustrated in Table 10, the latency of the BSI-
based method is reduced significantly compared to that with the
normal format.

7 EXPRESSIVE POWER AND LIMITATION

BSIs can be considered as unsigned numerical vectors that support
element-wise elementary arithmetic between vectors (+, —, X, +,
<, =, etc) and aggregate operators over values in the vector (sum,
max, min, etc), the proposed BSI-based method has the power of
expressing algorithms that can be implemented by these operators,
for example, RSME can be computed with this method by:
sum(viz) sum(v;) |
- . )

_ sum(mulBSI(v,v)) sum(v) 9

"~ sum(gtBSI(v,0)) B sum(gtBSI(v,0)) )
where v is a vector containing metric values of each user, v; is the
value at position i of the vector (zero value for nonexistence), n is
the number of non-zero values in v, mulBSI and gtBSI mean X and
> for BSIs.

For other algorithms that are difficult to implemented by BSI
operators, we can convert the BSI format back to normal format on
the fly for adaptation, as illustrated in subsubsection 6.1.4, the con-
version process is efficient and won’t be bottleneck of the pipeline
in most cases.

The main limitation of the method is the performance degrada-
tion of BSI operations under certain circumstances. Especially for
multiplication and division, as described in subsection 2.3, unlike
other linear complexity operators, the time complexity of mulBSI
and divBSI are O(s1s2), the performance gain of these non-linear
complexity operators will diminish rapidly in certain cases. For

RMSE(v)? =
(1)




example, when values in BSI are distributed across large ranges or
are uniformly distributed, the BSI representation cannot compress
the data well. In such cases, we can convert the BSI format back,
perform the multiplication (or division), and then convert it back
to BSI to avoid severe performance degradation. However, in our
situations, values always follow the Pareto principle as described
in subsection 3.5, and we do not need general multiplication and
division in most cases either, the limitation described above won’t
be a major concern.

8 CONCLUSION

We implemented a large-scale metric computing system using the
BSI approach. We started by analyzing the characteristics of the
data in our situation. Our observations lead to a BSI representa-
tion of the experiment data. The BSI representation with roaring
bitmaps is an already compressed structure, and the arithmetic
operations on it are performed at the compressed data directly,
thus being very efficient. We implemented the metric computation
logic in our system using BSI operations, and evaluated the storage
and computational efficiency of the BSI representation, and also
evaluated the real-world performance in the pre-computation and
ad-hoc computation scenarios.

With the deployment of the new system, we save a lot of com-
puting resources, and support faster interactive explorations of
the experiment data. The system has successfully met the analysis
needs of experiment owners, and is widely used within WeChat
as an important data-driven tool for decision making. It allows us
to continuously improve the user experience of one of the world’s
largest social media platforms.
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