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ABSTRACT

This paper presents MLOS (ML Optimized Systems), a flexible frame-
work that bridges the gap between benchmarking, experimentation,
and optimization of software systems. It allows users to create one-
click benchmarking and experimentation scenarios for multi-VM se-
tups in the cloud with optional standard and custom metrics collec-
tion and data management of the results. MLOS provides a collection
of pluggable optimizers (ML or otherwise) for efficiently exploring
the configuration space and finding optimal values for parameters
across the entire software stack, including VM, OS kernel, and user-
land applications. It has a convenient lightweight interface for data
storage, access, and visualization for a user-friendly notebook expe-
rience. These features make it a useful platform for both systems de-
velopers and auto-tuning researchers. MLOS is an active open-source
project and is being used within Azure Data. A video demonstrating
MLOS is available at https://aka.ms/MLOS/VLDB-2024-demo-video.
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1 INTRODUCTION

The ever-increasing complexity of modern software stacks makes
it hard, if not impossible, to tune all system components by hand.
However, the ability to do so can have a significant impact on both
performance and cost [3]. This challenge intensifies as the diversity
of the cloud introduces a growing number of systems, workloads,
and a heterogeneous mix of hardware [4]. For instance, Linux ker-
nel alone has more than 1200 tunable parameters; there are over 300
configuration parameters in PostgreSQL and over 600 in MySQL,
with these numbers growing with each release [18]. Given many
different usage scenarios and workloads for (a combination of)
these systems, optimizing their parameters specifically to a user’s
workload, while desirable both for customers and service providers,
is a significant challenge. As a result, we witness a growing array of
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auto-tuning products like OtterTune [18] and DBTune [2], research
efforts like DBBert [19] and GPTuner [14], as well as general opti-
mization services such as Google Vizier [11] and Facebook Ax [15].
These frameworks leverage machine learning (ML) models to nav-
igate the configuration space efficiently, relying on data points
collected from often externally managed experimentation scripts
or are tightly coupled to a specific domain like ML model training
or online DB tuning. While these frameworks may allow users to
feed basic performance values into their optimizer, they typically
lack integration of standard repeatable offline benchmarking in-
frastructure provided by dedicated suites such as BenchBase [8],
Dike [21], and LSTBench [6]. Moreover, they are often limited to
tuning a small subset of systems targets.

We argue that a more generic infrastructure for systems bench-
marking, optimization, and data management is essential for the
following reasons: (a) aside from the classic developer-oriented
scenarios, internal user studies indicate many customers and sup-
port teams are not yet comfortable with an online tuning approach
(e.g., due to unpredictable behavior), so offline benchmarking of
similar workloads and transferred to production continues to hold
significant importance; (b) the ever-evolving and varied systems
and their workloads supported in the cloud and limited engineer-
ing resources require more flexibility and automation in defining
new benchmarking and customizing existing ones to represent
real-world scenarios for services; (c) new approaches are needed
for auto-tuning different software systems since despite sharing a
similar overall architecture, each comes with its own peculiarities
that require adjustments, and (d) data management of these experi-
ments is often bespoke and can benefit from standard organization
to facilitate reusable analysis and visualization across domains.

In this paper, we present MLOS [7], a flexible open-source frame-
work that bridges this gap between (a) experimentation, (b) bench-
marking, (c) optimization, and associated (d) data management of
arbitrary systems software stacks. MLOS serves as a flexible bench-
marking automation tool that supports easy-to-use experimentation
with user-specified, tunable parameters that can generically span
the entire software stack, including, but not limited to, VM, OS
kernel, and userland applications. With pluggable optimizers (both
ML and not), MLOS serves as a platform for researchers to explore
new auto-tuning optimization and search strategies for different
systems. Systems can be deployed to test these parameters by run-
ning benchmarks or other arbitrary scripts with its generic and
modular automation framework. Finally, MLOS includes a data man-
agement component that helps track and analyze each aspect of
the benchmark and optimization experiment. Although all MLOS
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components work together by design, they can also be used in
isolation or integrated with other software systems.

The ability to combine manual and automated experimentation
with efficient auto-tuning optimization and easy-to-use data man-
agement and visualization of the results sets MLOS apart from other
frameworks and makes it useful for many (intersecting) cohorts of
users, most notably: (1) Software Engineers who look to vet or tune
their code changes in a principled and automated way; (2) Platform
Engineers who explore ways of configuring the deployment plat-
form; and (3) Researchers to develop optimization, and auto-tuning
strategies for improved performance and cost of operation.

In summary, MLOS makes the following contributions:

e An open-source framework that supports full-stack auto-
tuning with easy-to-use benchmarking automation tools.

e A convenient platform to explore new auto-tuning algo-
rithms and search strategies for various systems.

e A comprehensive data management component that facili-
tates tracking and analysis of experiments.

e Deployed in production, MLOS has been widely used to man-
age the launch of a large number of experiments to verify
new setups, configurations, workloads, and hardware.

In this demo proposal, we will first showcase the need for cloud-
centric experimentation and auto-tuning platform and give exam-
ples of real-life scenarios where MLOS has been successfully applied
to optimize the performance of various software systems. Then, we
will briefly describe the MLOS architecture and outline the user ex-
perience with the framework. Finally, we will describe our planned
demonstration and review the related work.

2 MOTIVATION

Numerous research projects have demonstrated the benefits of auto-
tuning for systems at cloud scale due their potential to improve
application performance and thereby cost efficiencies [5, 23, 24].
However, current state-of-the-art auto-tuning software is not eas-
ily adaptable to leverage the existing standard or custom bench-
marks, or apply to new tunable systems. Users then have to repeat-
edly write custom, often ad-hoc, scripts for parsing and managing
the results and turn the benchmark data into machine- or human-
consumable formats. Worse yet, neither benchmarking tools nor
auto-tuners provide a convenient way to tweak the configuration
parameters across the entire software stack (i.e., VM, OS, and ap-
plication) and quickly experiment with new or modified setups.
Such a holistic approach is essential. We have found, for instance,
that co-tuning kernel and application parameters can yield higher
performance improvements than either of them alone. We also
find that different systems targets require different auto-tuning
techniques (i.e., no silver bullets).

These considerations motivated us to develop MLOS, a framework
that allows users to define and integrate new and existing bench-
marks while exposing a set of tunable configuration parameters that
can be adjusted for experimentation automation. The flexibility of
the MLOS approach allows human experts and software optimizers
(ML-based or otherwise) to work together to find the best configu-
ration and best search algorithm for a given workload and easily
validate new configurations in various system environments.
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2.1 Use Cases

We now outline just a few use cases of MLOS within Microsoft.

2.1.1  Linux kernel tuning for Redis. Our studies of Azure usage
show that there is typically a single main application per VM. More-
over, while customers may spend significant time and effort tuning
the application parameters, they often neglect the OS kernel config-
uration. Linux kernel has over 1200 tunable parameters that almost
always stay at their default, general purpose, values for the lifetime
of the VM. Internal research [5] has shown that tuning even a small
number of kernel parameters can significantly improve the applica-
tion’s performance. For instance we used MLOS to benchmark and
optimize Redis on a Linux VM on Azure. We find that after just a
few hours of trials, it can produce a new Linux kernel configuration
that decreases the P95 tail latency of Redis’ GET requests by 68%.

2.1.2  MySQL optimization on Azure. We have also looked at op-
timizing application services, e.g., MySQL. Specifically, we were
able to reuse many MLOS configuration components from the Redis
optimization scenario, including Azure VM provisioning, remote
VM script execution, and Linux kernel configuration, to optimize
the MySQL InnoDB parameter for Azure MySQL Flexible Server.
Our preliminary results for this setup show a 49% decrease in P95
query tail latency and a 51% increase in throughput for TPCC.

Note that the high variance in some of these initial results makes
it more difficult for ML optimizers to learn an accurate signal from
the data. However, with MLOS’s flexibility, we can explore alternative
trial scheduling and search policies for tuning for robust configs [10],
and use the insights to improve the baseline service noise.

Currently, MLOS is part of the daily workflow of the MySQL pro-
duction team, which uses the tool for benchmarking as well as
optimization by running a large number of optimization experi-
ments for a variety of workloads and VM configurations.

A similar effort has also begun with Azure PostgreSQL.

2.1.3  Cost constants tuning for SQL Server Query Optimizer. Like
many other Query Optimizers (QO), SQL Server QO has a number
of predefined, hard-coded values to estimate operation costs such
as predicate evaluation, HashJoin, and operator exchange. Our
experiments show that the one-size-fits-all nature of hard-coded
values can lead to sub-optimal performance, particularly in diverse
query and hardware environments. We utilize MLOS to re-calibrate
these constants, tailoring them to the specific characteristics of the
workload and hardware. Initial results show that tuned values can
lead to 2.6x speedup for a subset of TPC-H queries thru improved
plans, and even more for internal workloads.

3 MLOS OVERVIEW

We have designed MLOS to be modular and extensible, with a focus
on flexibility and automation. All MLOS components are pluggable;
the user can replace any with provided alternatives (e.g., Grid Search
vs. SMAC BO) or even custom implementations adhering to the core
APIs (e.g., suggest, register, etc.). This architecture makes the
framework applicable to many scenarios, from simple application
benchmarking to complex full stack multi-VM optimization, and
allows users and researchers to reuse and compose configs for new
use cases to try different setups and optimization algorithms easily.



3.1 MLOS Architecture

MLOS architecture (Figure 1) consists of three main components:
a) Optimizer module suggests new values for the various tunable
parameters - a description of the configuration space provided by
the user including hints on sampling distribution, quantization, etc.;
b) Scheduler module assigns the config to one or more trial workers,
which, optionally acting in parallel, plug the suggested values into
the configuration templates and, using a combination of built-in
and user-provided scripts and MLOS configuration files, sets up and
runs the experiments, deploying VMs if necessary, and collects the
results; and c) Storage module preserves the exercised configura-
tions and the results of the experiments. An optional Visualization
module provides a collection of stock visualization and analysis
routines for the data collected. MLOS connects these components in
a main optimization cycle that runs repeatedly until it meets a spec-
ified stopping criterion. The collected data can be reused to inform
the optimizer’s choices in compatible experiments, i.e., to warm up
the optimizer after restarts or transfer learn. Users can also replace
or turn off the optimizer as needed. In those cases, the scheduler
can still load explicit tunable values from a JSON file or the storage
module, thus working as a benchmarking and manual exploration
framework. For example, some of our customers initially use MLOS
only for benchmarking, gradually enabling the optimizer to experi-
ment with different system configurations offline while they gain
confidence in the system and the values the optimizer produces.
MLOS Environments. An Environment is a key abstraction used
within the MLOS scheduler. It encapsulates a benchmark setup’s
logic, configuration, and runtime state. A benchmarking environ-
ment has three phases: setup creates the system-under-test (SUT),
setting the tunable parameters’ values as part of the configurations
to instantiate the system stack; run executes the benchmark and
collects its results; teardown cleans up the resources acquired.
As shown in Figure 2, environments can be stacked to chain
up the setup, run, and teardown phases. This allows users to com-
pose smaller reusable environment configurations into complex
benchmarking scenarios. MLOS has a growing open-source library
of such configuration files available in the GitHub repository. Such
reusable configuration modules not only lower the barrier to entry,
but also allow users to continually benefit from additional improve-
ments made by others, rather than each implementing their own
proprietary non-reusable and non-repeatable systems.
MLOS Services. Another key abstraction in MLOS configs is Services,
which implement pluggable functionality required by different En-
vironments in the stack (e.g., deploy resource, remote exec, etc.).
Services allow MLOS users to reuse portions of the configurations
across different Environments and experiments. As a result, MLOS
users can quickly reconfigure their experiments from one cloud
provider to another, run on CloudLab [9], or locally via SSH.

4 DEMONSTRATION

Although MLOS can be used on cloud resources, due to time con-
straints and setup simplicity, in this demo we use MLOS to tune a
local self-contained SQLite [1] example DB in conjunction with
BenchBase [8], a SQL benchmarking framework. We have created
a DevContainer with the dependencies preinstalled and several sim-
ple scripts to setup and configure the database, benchmark it, and
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parse the results. We also describe the SQLite tunable parameters
and define the benchmark orchestration using simple JSON con-
figs for MLOS. Working examples of the config files and scripts are
available at https://github.com/Microsoft- CISL/sqlite-autotuning.

4.1 Setup

Workload. We use the TPC-C benchmark to measure OLTP system
performance.

Tunable Parameters. In this demo, the tuning process focuses
on 9 parameters, each contributing to the database’s performance
and reliability for OLTP workloads, and resulting in a config space
size of 0(10%°) combinations. In other scenarios we see even larger
numbers, though intentionally limited it for a short demo. Examples
for the tunable parameters used in SQLite (amongst others) are:

Name Values/Range Short Description
synchronous | {‘off’, ‘normal’, ‘full’, ‘extra‘} Disk synchronization mode
locking-mode {'normal’,exclusive’} Database file locking strategies
cache-size [1,2147483647] Cache size

temp-store {'default’, ‘file’, ‘memory’} | Storage mode of temporary database files

4.2 User Interaction

Demo attendees will interact with the demo as follows:

MLOS as a One-shot Benchmark. We start the demo with MLOS
executing a single TPC-C benchmark against a sqlite DB and record-
ing the results in a local DB in order to expose users to the MLOS
configs and CLI Users will examine the MLOS configs that control
the tunables parameters, experiment name, environment setup, etc.
The entire process is flexible by design, allowing demo attendees
to provide different configs, thereby customizing the experiment
according to user interactions and acclimating to the system.
MLOS as an Optimization Loop. In this scenario, users will use
the MLOS tool to run an optimization cycle. Before they start tuning
a setup, they can (i) decide how many times the optimization loop
will run, (ii) choose which optimizer to use for tuning (e.g., FLAML,
SMAC, GridSearch) and optional space adapter (e.g., LlamaTune
[13]), (iii) specify the optimization objective metric (e.g., throughput
or P99 latency) and (iv) the preferred optimization direction such as
minimizing or maximizing the chosen objective. The optimization
loop runs several trials, each time updating the tunable values based
on the results of the preceding one. Figure 3 (lower left) shows a
snippet of the configuration file needed for the optimization phase.
Analyzing the Results. The users will run the provided Jupyter
starter notebook and MLOSvisualization module to analyze the data
obtained from running the experiment. This analysis will help the
users to identify a better SQLite configuration and to gain insights
into the optimizer’s findings regarding the performance of that
configuration. Figure 3 shows some of the results analysis APIs.

5 RELATED WORK

Machine learning has been widely used for parameter optimiza-
tion [12, 17]. For database management, OtterTune [3, 20] uses
machine learning models to identify key configuration parame-
ters for tuning based on workload analysis and is offered as a
service [18]. Similarly, DBTune [2] offers continuous tuning ser-
vices for databases like PostgreSQL, MySQL, RocksDB, and Founda-
tionDB. CBDTune [22] employs deep reinforcement learning with
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right) of the VSCode devcontainer (right) while simple MLOS APIs are used to visualize results in a Jupyter notebook.

policy gradient to recommend optimal configurations. Recently,
GPTuner [14] integrates domain knowledge with LLM to refine the
tuning domain and initial configs to improve the knob selection
per workload. Due to its pluggable APIs it is possible for MLOS to
incorporate LLMs for this purpose. General black-box optimization
services like Google Vizier [11] are implemented as a managed ser-
vice with an RPC AP, relying on a centralized persistent database
for optimization status. Ax [16] provides a simple Python API and
employs an optimizer suitable for noisy experiments. Using the
flexibility of our framework, we also have work investigating trial
scheduling policies for improved noise handling. However, most
of the existing tools are too infrastructure heavy for our purpose
or hard to integrate (e.g., Ax, Vizier) or run a very tight online
optimization loop that makes safe exploratory or manual experi-
mentation hard (e.g., DBTune, OtterTune). Benchmark suites such
as BenchBase [8], LSTBench [6] and Dike [21] provide flexibility in
defining new and customizing existing benchmarks to represent
the users’ workloads. In this work, MLOS aims at closing this gap by
providing a flexible framework for benchmarking and experimen-
tation in the cloud while also serving as an auto-tuning platform,
leveraging state-of-the-art optimizers and providing a platform to
continue their development for systems tuning applications.
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