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ABSTRACT
Over the past decade, millions of smart meters have been installed
by electricity suppliers worldwide, allowing them to collect a large
amount of electricity consumption data, albeit sampled at a low
frequency (one point every 30min). One of the important challenges
these suppliers face is how to utilize these data to detect the pres-
ence/absence of different appliances in the customers’ households.
This valuable information can help them provide personalized of-
fers and recommendations to help customers towards the energy
transition. Appliance detection can be cast as a time series clas-
sification problem. However, the large amount of data combined
with the long and variable length of the consumption series pose
challenges when training a classifier. In this paper, we propose ADF,
a framework that uses subsequences of a client consumption series
to detect the presence/absence of appliances. We also introduce
TransApp, a Transformer-based time series classifier that is first
pretrained in a self-supervised way to enhance its performance
on appliance detection tasks. We test our approach on two real
datasets, including a publicly available one. The experimental re-
sults with two large real datasets show that the proposed approach
outperforms current solutions, including state-of-the-art time series
classifiers applied to appliance detection.
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1 INTRODUCTION
Over the past ten years, smart meters have been installed in mil-
lions of households across the globe by electricity providers [10, 36].
These meters capture detailed time-stamped electricity consump-
tion data at a very low frequency (for instance, 15min in Italy,
30min in the UK, 30min in France and 60min in Spain [58]) that
enable consumers to understand better and manage their electrical
consumption [7].
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Figure 1: Example of a consumption series of 12hours, con-
taining a dishwasher and a plugin heater at two sampling
frequencies (1 second vs. 30min).

For electricity suppliers, it is crucial to know whether their cus-
tomers own specific electrical appliances. This knowledge allows
them to segment customers [3], offering personalized services that
increase their satisfaction and retention and help customers ratio-
nalize their electricity consumption, contributing to the energy
transition. One approach to gather this information is through a
consumption questionnaire, which can be time-consuming, costly,
and prone to errors. To overcome these challenges, electricity sup-
pliers can use advanced data analytics techniques to detect appli-
ances directly from the smart meter data collected. This approach
is more efficient and less intrusive, enabling suppliers to gather the
necessary information without inconveniencing their customers.

Appliance detection has become an important area of research [15,
34, 42, 44]. Signature-based methods are widely adopted and use in-
formation related to the unique patterns of specific appliances [30].
However, most of these studies relied on data from smart meters
capable of recording one, or more values per second, in contrast
to the vast majority of smart meters installed by suppliers that col-
lect data at considerably lower frequencies. As shown in Figure 1,
low sampling rates result in a smoothed signal that does not main-
tain the unique pattern information of each appliance. One way to
tackle this challenge is to cast the appliance detection problem as a
binary classification task, where a time series classifier is trained
to detect an appliance in a consumption series. Few recent studies
have tried this approach using very low-frequency smart meter
data (one point sampled every minute or less) and show promising
results [2, 15, 42]. Nevertheless, the series collected by suppliers
are really long (10k-20k points), in large numbers (i.e., from many
customers), and of variable length: not all classifiers can handle
data with such characteristics, and training a model with them can
be computationally intensive. One way to handle this issue is to
fragment the total consumption series in subsequences of equal
length. This process has been investigated in [15] and leads to su-
perior results than using the full consumption series as input. In
our approach, we use the same strategy.

In recent years, the Transformer-based architecture has been
investigated for time series, with promising results on downstream
tasks [54, 57]. One of the advantages of these architectures is their
ability to be first trained on an auxiliary task to learn a represen-
tation, and then finetuned to perform better on downstream tasks
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with the same amount of labeled data [16, 37, 57]. Given that elec-
tricity suppliers collect large amounts of non-labeled data from their
clients, this type of architecture and two step training process are
good candidates to enhance the performance of Transformer-based
classifiers on appliance detection tasks.

In this paper, we propose an Appliance Detection Framework
(ADF) designed to detect the presence/absence of appliances in
long and variable length consumption time series. The ADF frame-
work takes as input the subsequences of a client consumption se-
ries. In the end, the prediction probabilities made on each sub-
sequence are merged, allowing the model to predict the final de-
tection label for the entire series. We also introduce TransApp, a
deep-learning Transformer-based classifier that is first trained in a
self-supervised manner using non-labeled consumption time series.
Then, the model is fine-tuned on labeled data to detect a specific
appliance in a consumption series. Overall, TransApp is more accu-
rate than all state-of-the-art competitors, and the ADF framework
renders it scalable to the sizes of real-world datasets. In summary:
• We propose the Appliance Detection Framework (ADF) to detect
the presence of appliances in households, using real-world con-
sumption series, which are sampled at a very low frequency, and
are long and variable-length. ADF addresses these challenges by
operating at individual subsequences of each consumption series,
instead of each series in its entirety.
•We propose TransApp, a Transformer-based time series classifier,
which can first be pretrained in a self-supervisedmanner to enhance
its ability on appliances detection tasks. This way, TransApp can
significantly improve its accuracy.
•We evaluate our proposed approach (ADF + TransApp) in terms of
accuracy and scalability on two real-world datasets, and make the
code publicly available [41]. The results demonstrate the superiority
of our solution against previous approaches for appliance detection,
including state-of-the-art time series classifiers.
• Finally, we highlight the benefit of the self-supervised training
process on non-labeled consumption series so as to enhance the
performance of TransApp on appliance detection tasks.

2 RELATEDWORK & PROBLEM DEFINITION
2.1 Appliance Detection
Appliance detection is a problem related to Non-Intrusive Load
Monitoring (NILM), which aims at identifying the power consump-
tion, pattern, or on/off state activation of individual appliances
using only the total consumption series [29]. Even though de-
tecting an appliance can be seen as a step of NILM-based meth-
ods [4, 27, 28, 30, 39, 43, 50], they differ from our objective for two
main reasons. First, the vast majority of NILM studies relied on
smart meter data recorded at 1Hz (or more), which is much more
detailed than the datasets available in practice. Moreover, they need
either knowledge about how each appliance operates, or training
on their individual power consumption patterns. Second. these
studies essentially focus on detecting when a specific appliance is
"ON" rather than if a household owns a specific appliance. In addi-
tion, the presence of a specific appliance is already known before
applying these approaches.

Nevertheless, few studies exist in the literature that try to detect
if a specific appliance is present in a household, using consumption

time series sampled at very low-frequency (one point collected
every 1min or more) [2, 15, 42]. In [2], the authors use a Hidden
Semi-Markov Model (HSMM) to extract features from the consump-
tion series of a house. These features are then merged with external
variables (such as temperature) and serve to train an AdaBoost
classifier [45] to detect users’ characteristics, such as the presence
of appliances. The study shows encouraging results in identifying
some appliances, such as Electric Dryers or Washing Machines.

Deng et al. [15] proposed a framework to detect the presence
of appliances in a consumption series based on subsequences, and
using a modified ResNet classifier (cf. Section 2.2). This approach
first addresses the issue of unbalanced classes by employing an
oversampling slicing approach to obtain equal numbers of training
class instances. Then, it takes subsequences of the consumption
series as input, and uses majority voting with a threshold parameter
to predict the final label. However, the evaluation of the approach
does not measure the overall performance in detecting the pres-
ence/absence of appliances, and the study compares the proposed
approach to an HSMM-based classifier, but not against the state-of-
the-art time series classifiers for appliance detection.

A recent study [42] proposes an extensive benchmark of state-
of-the-art time series classifiers applied to the appliance detection
problem, using several very low-frequency electricity consumption
datasets. The results show that the convolutional-based time series
classifiers (random kernel and deep learning based) outperform
other approaches regarding detection performance, and are the
most scalable to the length of the series. However, the accuracy
results obtained using 30min sampled data are far from perfect
for several appliance detection cases, showing that more work is
needed in this area.

2.2 Time Series Classifiers
Time series classification (TSC) [5, 25] is an important analysis
task across several domains. Many studies have suggested differ-
ent approaches to solving the TSC problem, such as comparing
similarity measures between time series [11], identifying discrimi-
nant patterns [23], detecting rare patterns (e.g., anomalies) [8], and
addressing class imbalance [52]. In addition, benchmarks, such as
the UCR archive [13], have been proposed, on which exhaustive
experimental studies have been conducted [5]. In the following
paragraphs, we provide a brief overview of the state-of-the-art clas-
sifiers, selected based on their performance in previous studies and
their suitability for the appliance detection tasks [8, 42].

The RandOm Convolutional KErnel Transform (ROCKET) al-
gorithm utilizes [14] random convolutional generated kernels to
extract features from raw time series. It generates a set of random fil-
ters and extracts maximum values and positive value proportions as
new features for classification using a ridge classifier. Arsenal [35]
is an ensemble of multiple ROCKET classifiers that uses a restricted
number of kernels while estimating classification probabilities with-
out modifying the ridge classifier.

Convolutional Neural Network (CNN) [38] is a deep learning ar-
chitecture commonly used in image recognition. The ConvNet vari-
ant [53], we use in this study employs stacked convolutional blocks
with specific kernel sizes and filters, followed by global average
pooling and linear layers for classification. The Residual Network
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(ResNet) architecture [21] addresses the gradient vanishing problem
in large CNNs [46]. The adaptation for time series classification [53]
consists of stacked residual blocks with residual connections, where
each block contains 1D convolutional layers with the same kernel
sizes and filters. A global average pooling [32], a linear layer, and
a softmax activation are used for classification. The ResNet archi-
tecture was extended to utilize dilated convolutions to increase the
receptive field [15], also adding two encoder/decoder modules after
the convolutional block with a dot product attention mechanism
(hence, called ResNet with Attention Mechanism). After feature ex-
traction, classification is performed using a multi-layer perceptron
and a softmax activation. Inspired by inception-based networks [49]
for image classification, InceptionTime [19] is designed for time
series classification. It employs Inception modules composed of
concatenated convolutional layers using different filter sizes. The
outputs are passed through activation and normalization layers, at
the end, classification is performed using a global average pooling,
followed by a linear layer and softmax activation function.

The Transformer architecture has demonstrated remarkable suc-
cess in various tasks [9, 16], and has also been investigated for
time series analysis, demonstrating promising results on down-
stream tasks such as forecasting, anomaly detection, and classifica-
tion [37, 48, 54, 55, 57, 59, 60]. Nevertheless, the attention mecha-
nisms used in the Transformer [51] has a complexity of O(𝑁 2) on
both time and space (with 𝑁 the length of the input sequence), mak-
ing this type of model not scalable for long time series (more than
10000 points). In the energy domain, two recent studies investigated
the use of Transformer-based architecture to perform energy disag-
gregation using second sampled data and achieve state-of-the-art
performance against other deep learning architectures [47, 56].

2.3 Problem Formulation
An electrical consumption time series is defined as a univariate
time series 𝑋 = (𝑥1, ..., 𝑥𝑇 ) of ordered elements 𝑥 𝑗 ∈ R1

+ following
(𝑖1, ..., 𝑖𝑇 ) time consumption indexes (i.e., timestamps). Further-
more, we refer in the study to very low frequency consumption time
series for data sampled at more than 1min.
[Appliance Detection Problem] In this work, we treat the ap-
pliance detection problem as a supervised binary classification
problem. According to a collection of consumption time series
X = (𝑋 1, ..., 𝑋𝑁 ), which can be of variable-length, we want to
predict the presence/absence of an appliance 𝑎 in a time series 𝑋 𝑖 .

3 THE ADF
We propose ADF, an Appliance Detection Framework that takes
fragments of an entire consumption time series as input. Subse-
quently, the classifier used inside the framework is trained using
subsequences. The proposed framework (see Figure 2) uses the
following steps to detect the presence of an appliance 𝑎 in a con-
sumption time series 𝑋 .
Step 1. First, we extract from a database a client’s consumption
time series 𝑋 of length 𝑙 .
Step 2. The time series 𝑋 is then sliced in 𝑛 new non-overlapping
subsequences of length𝑤 , using a tumbling window. In addition,
to keep positional information about the time of the days and
hours, we concatenate the sliced sequences with temporal encoded

features (see Section 3.a for details). This results in 𝑛 = ⌊ 𝑙
𝑤 ⌋ new

multivariate time series 𝒙𝑤×𝑚 . With𝑚, the number of channels.
Step 3. Afterward, we feed each subsequence to a TransApp clas-
sifier instance previously finetuned to detect the specific appli-
ance 𝑎. The model then predicts a given detection probability for
each subsequence 𝒙𝑖 , resulting in a vector of probability 𝑃𝑋 =

(𝑝 (𝒙1), ..., 𝑝 (𝒙𝑛)).
Step 4. The value of the 𝛼∗𝑎-th quantile is then extracted from 𝑃𝑋 ,
allowing us to obtain the final prediction probability of our model
according to the entire consumption series (we discuss the tuning
of the 𝛼∗𝑎 parameter in the following Section 3.b).
Step 5. At the end, the final predicted label is given by rounding
the extracted value.

In addition, we note that this general framework can be used
with any classifier able to predict detection probabilities.

a) Temporal Features Encoding. The usage of various appliances
often correlates with specific times of the day (e.g., electric cookers
used during mealtime). However, the slicing process used in our
framework leads to subsequences that start and end at different time
points. To improve the model’s understanding of the correlation
between these time-related patterns and enhance detection, we
introduce additional channels to encode time. More precisely, we
add new channels as encoded features related to the days and hours
by projecting these discrete features on a 𝑆𝑖𝑛/𝐶𝑜𝑠 basis:

𝑇𝑒𝑠𝑖𝑛 (𝑖𝑡 ) = sin

2𝜋𝑖𝑡
𝑝


and 𝑇𝑒𝑐𝑜𝑠 (𝑖𝑡 ) = cos


2𝜋𝑖𝑡
𝑝


,

with 𝑖𝑡 = {1, ..., 24} and 𝑝 = 24 for hour encoding, and 𝑖𝑡 = {1, ..., 7}
and 𝑝 = 7 for days encoding. We motivate the choice of adding
these new channels instead using only the univariate consumption
series in the ablation study conducted in Section 4.4.

b) Quantile Parameters Tuning. As the model predicts a prob-
ability for each subsequence 𝒙𝑖 , we need to merge these values
to assign the final label to the entire consumption series 𝑋 . The
most straightforward approach could be to take the mean of these
probabilities (majority voting). However, this includes a too-strong
hypothesis that the appliance is present uniformly in each sub-
sequence (𝒙𝑤×𝑚

1 , ..., 𝒙𝑤×𝑚
𝑛 ). Thus, for an appliance 𝑎 and a pre-

dicted vector of discrete probabilities 𝑃𝑋 = (𝑝 (𝒙1), ..., 𝑝 (𝒙𝑛)), we
extract the values corresponding to its 𝛼∗𝑎-th quantile (defined as
𝑄𝑃𝑋 (𝛼∗𝑎)). The 𝛼∗𝑎 parameter is defined according to a validation
dataset during the training process of our framework. More pre-
cisely, for an appliance 𝑎 we compute the classification measure for
each extracted values 𝑄𝑃𝑋 (𝛼𝑎) (with 𝛼 ∈ {0, 0.5, ..., 0.95, 1}) and
keep the one that maximizes the chosen score (F1-Macro Score in
our experiments). Formally, for an appliance 𝑎, a validation dataset
D𝑣 = {𝑋 1, ..., 𝑋𝑁 }, and an accuracy measure 𝑆 , we define the pa-
rameters as follows: 𝛼∗𝑎 = argmax

𝛼∈{0,0.5,...,0.95,1}
𝑆


𝑦𝑡𝑟𝑢𝑒 , 𝑦

𝛼
𝑝𝑟𝑒𝑑


, with

𝑦𝛼
𝑝𝑟𝑒𝑑

= (𝑄𝑃
𝑋 1 (𝛼), ..., 𝑄𝑃

𝑋𝑁
(𝛼)) and 𝑦𝑡𝑟𝑢𝑒 ground true label for

each consumption series. Note that this 𝛼∗𝑎 parameter is reminis-
cent of the tuned threshold voter parameter in Deng et al. [15].
However, using a parameter tuned according to the predicted prob-
abilities (instead of the predicted label) on each subsequence allows
us to consider the model’s confidence on each one of them.
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Figure 2: Overview of our proposed Appliance Detection Framework (ADF).

3.1 TransApp Architecture
For the past few years, Convolutional Neural Networks have shown
great ability to extract discriminative patterns for Time Series Clas-
sification [14, 19], and more specifically, great performance when
applied to detect appliance in consumption time series [42]. On the
other hand, Transformer architectures are known to be good candi-
dates for learning universal representation of data and perform well
on several applications [16, 17, 20, 54]. However, as mentioned in
recent studies, the vanilla transformer architecture is not designed
initially to treat time series data [37]. Indeed, a single-time step
value of a data series does not have value by itself. Therefore, in-
spired by similar architecture proposed for image classification [12],
we propose TransApp as a deep learning time series classifier that
combines these two types of architecture: TransApp combines a
robust embedding block based on dilated convolutions with a Trans-
former block. The convolutional block serves as a features extractor
to give an inductive bias of localized patterns and helps the model
perform better on classification tasks. The Transformer module
learns long-range dependencies and is a key part of our architec-
ture to extract representation and benefit of our pretraining process.

The TransApp core model, shown in Figure 3(a), results in an
encoder that maps an input series 𝒙𝑤×𝑚 to a latent space 𝒛𝑤×𝑑model ,
where𝑤 is the length and𝑚 the number of variables of the input
time series, and 𝑑model the dimension of the latent space, a.k.a.
inner model dimension (𝑑model = 96 in our experiments). The latent
representation 𝑧𝑤×𝑑𝑚𝑜𝑑𝑒𝑙 is used by a specific head to perform the
pretraining (sort of denoising), or classification task.

3.1.1 Embedding Block. The first block of our model, shown in
Figure 3(b), results in 4 stacked convolutional Residual Units (Re-
sUnit). Each ResUnit is composed of a convolutional layer, a GeLU
activation function [22], and a BatchNormalization layer [24]. For
each ResUnit 𝑖 = 1, ..., 4, a dilation parameter 𝑑 = 2𝑖 that exponen-
tially increases according to the ResUnit’s depth is employed. It has
been experimentally proven to significantly broaden the receptive
fields for time series applications, in contrast to using a constant
dilation parameter [6]. A stride parameter of 1 is employed to keep
the time dimension identical to the input series. Furthermore, a
residual connection is used between each Residual Unit to ensure
stability during the training.

3.1.2 Transformer Block. The second block of our model, visible
in Figure 3(b), results in 𝑁 stacked Transformer layers (𝑁 set to
3 or 5 in our experiments) using pre-Layer Normalization. Each
Transformer layer comprises the following elements: a layer normal-
ization, a Multi-Head DiagonallyMasked Self-Attentionmechanism
(Multi-Head DMSA), a second layer normalization, and a Positional
Feed-Forward Network [51] (PFFN). We introduce residual connec-
tions after the Multi-Head DMSA and the PFFN and the use of a
Dropout parameter to prevent overfitting.

Note that we do not apply any positional encoding before the
Transformer block as it is usually used in most of the Transformer
architectures [17, 51, 54, 57]. Our experiments in Section 4.4 demon-
strate that using fixed or fully learnable positional encoding leads
to a deterioration in results. We assume this is because the mul-
tivariate sequences given at input already incorporate temporal
encoded features, rendering positional encoding unnecessary.
[Diagonally Masked Self-Attention] In our Transformer block,
we utilize a modified version of the original Self-Attention mecha-
nism [51] called Diagonally Masked Self-Attention (DMSA). DMSA
involves applying a mask to the diagonal elements of the atten-
tion score matrix, forcing the scores to be zero after the softmax
operation. This modification emphasizes inter-token relations and
enhances the model’s ability to capture meaningful dependencies.
In our architecture, we used Multi-Head DMSA, a multi-head im-
plementation of DMSA similar to the original attention mecha-
nism [51] that uses 𝐻 different parallel projection sets.

Wemotivate the choice of DMSA against the original mechanism
in the ablation study conducted in Section 4.4. Note that this type
of diagonal attention mask has already proven better performance
against the original one in Vision Transformer [31] to improve the
overall performance of the model when dealing with small-size
dataset, and more recently for time series imputation [18].

3.2 Two-step training process
The training of our proposed TransApp architecture results in a
two-step training, illustrated in Figure 4.

3.2.1 Self-supervised Pretraining. The use of a self-supervised pre-
training of a Transformer architecture on an auxiliary task has been
used in the past to boost the model performance on downstream
tasks [16, 20, 37, 47, 57]. This process is inspired by the mask-based
pretraining of vision transformer [20]. As shown in Figure 4, it
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Figure 3: Overview of the TransApp architecture.

Figure 4: Overview of the TransApp two steps training.

requires only the input consumption series without any appliance
information label. The training results in a reconstruction objec-
tive of a corrupted (masked) time series fed to the model input.
To do that, as shown in Figure 3(a), we use a reconstruction head
after the core model architecture, resulting in a linear layer that
maps for each time step the latent representation obtained after the
Transformer layers 𝑧𝑤𝑖𝑛×𝑑model to a space 𝑥𝑤𝑖𝑛×1.
[Masking Process] The masking process used in our approach is
inspired by the one proposed in [57]. It aims to introduce random
corrupted segments inside the input sequence (i.e., values set to
0). However, as shown in Figure 4, we apply the mask only on the
consumption series channel, leaving the temporal encoded feature
channels untouched. Furthermore, in our experiments, we use a
high masking ratio corresponding to 50% of the original time series
masked with segments of length 𝑙𝑚 = 24 on average (this length
corresponds to periods of 12hmasked values in average using 30min
sampled data).
[Reconstruction Loss] During the self-supervised process, the
model is trained using a Loss function that calculates the Mean
Absolute Error between the predicted and true values of the masked
elements of an input consumption time series. It is formally defined
as : L𝑀𝐴𝐸 = 1

#𝑀

𝑖 |𝑥𝑖 − 𝑥𝑖 |1, with #𝑀 the number of masked

elements in the input series.

3.2.2 Supervised Training. As depicted in Figure 4, the supervised
training results in a simple binary classification process using la-
beled time series. In addition, we used a classification head for this
step (see Figure 3(a)). This head comprises a global average pooling
[33] applied along the sequence length dimension, followed by a
linear layer that maps the results to the number of classes (2 in

Table 1: Dataset characteristics: number of time series ♯TS,
number of label instances ♯Labels 0/1, and class imbalance.

Detection cases Dataset description
Datasets Appliances ♯TS ♯Labels 0/1 Imbalance Ratio

CER

Desktop Computer 3470 1827/1643 0.47
TVs (greater 21") 3470 540/2930 0.84
TVs (less 21") 3470 1212/2258 0.65

Laptop Computer 3470 1618/1852 0.53
Cooker 3482 841/2641 0.76

Dishwasher 3482 1175/2307 0.66
Tumble Dryer 3482 1107/2375 0.68
Water Heater 3488 1535/1953 0.56
Plugin Heater 3482 2394/1088 0.31

EDF 1

Tumble Dryer 3365 2071/1294 0.38
Dishwasher 3372 279/3093 0.93

Convector/HeatPump 1478 468/1010 0.68
Air Conditioner 3388 524/2864 0.85
Water Heater 4685 1635/3050 0.53

Heater 4685 2202/2483 0.53
Electric Vehicle 558 330/228 0.41

our case). Note that the label of the entire consumption series is
assigned to all sliced subsequences during the training process.

4 EXPERIMENTAL EVALUATION
All experiments are performed on a high-performance computing
cluster node with 2 Intel Xeon Gold 6140 CPUs with 190 Go RAM
and 2 NVidia V100 GPUs with 16Go RAM. The source code [41]
of our framework is in Python 3.7, and the core of our model is
implemented using the 1.8.1 version of PyTorch [40].

4.1 Datasets
We now describe the datasets we used in this study (see Table 1).
The first one comes from the Irish Social Science Data Archive
(ISSDA) [26], and the two other two are from Electricité De France
(EDF), the main French electricity supplier.
[CER Dataset] The Commission for Energy Regulation of Ireland
conducted a study between 2009-2011 to assess the performance
of smart meters and their impact on consumer energy consump-
tion [1]. Over 5000 Irish homes and businesses were monitored with
communicant Smart Meters, recording the electricity consumption
every 30min. For our experiments, we were only interested in the
residential sub-group of the study, i.e., 4225 households recorded
from July 15, 2009, to January 1, 2011. This sample results in 4225
electricity consumption series of length 25728 each. For the study,
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the participants filled out a questionnaire allowing us to know the
household composition and appliances present in the household.
[EDF Dataset] As part of these activities, EDF collects data from
customers who give their consent.
• EDF 1 This dataset is based on a survey conducted by EDF to
better understand its customers and their electricity consumption
behavior. The total power consumption of 4701 houses was recorded
every 30min. The dataset contains variable-length consumption
series collected between September 2018 and December 2022. The
dataset’s time series have an average length of 21630 points (min:
1338, max: 40300). Like the CER dataset, customers filled out a ques-
tionnaire with information about household composition, including
the appliances in the house.
• EDF 2 The second dataset provided by EDF results in a huge
collection of nearly 200 000 variable-length consumption series
recorded from different households. However, this dataset only
provides the house’s power consumption recorded every 30min,
without any information about the appliances present in the house.

4.2 Evaluation Procedure
We use different types of baselines to compare to our TransApp
architecture. First, we include the framework proposed by Deng et
al. [15]. Then, according to the results of [42], we selected the 5 best
time series classifiers for the appliance detection problem (Arsenal,
ROCKET, ConvNet, ResNet, and Inception). Finally, we include 3
additional state-of-the-art Transformer-based models proposed for
time series modeling (Informer, Autoformer, and Fedformer).

For the two datasets, we evaluated the effectiveness of ADF by
comparing the performance of selected state-of-the-art classifiers
inside and outside ADF. For all the baselines, we use the same
70%/10%/20% random split of the dataset for the training, valida-
tion, and test sets. The validation set stops the training and prevents
overfitting using deep-learning classifiers. Furthermore, it is used
for our framework and the one proposed by Deng et al. [15] to
calculate the optimal 𝛼∗𝑎 and voter threshold parameter of the re-
spective merging process. We balance the data before training for
all the tested classifiers: we apply the subsequences oversampling
method proposed in the original paper when using the framework
proposed by Deng et al. [15], and we equalize each class using a
random undersampling process for all the other approaches.
[Outside ADF] Since the consumption series of the EDF 1 dataset
are of different lengths, we used standard padding methods to train
the classifier outside ADF with this dataset (by setting all the time
series to a specified maximum length). More specifically, we pad the
time series with 0 at the end to meet the length of the longest time
series of the dataset. For the deep learning-based methods, we also
tried to train the classifier using a batch of 1 (as convolutional-based
methods are insensitive to time series length); however, this led to
poorer results than padding the series to equal length. Note that
Informer, Autoformer, Fedformer, and our TransApp architecture
could not train outside ADF (using as input the entire series of
length 25728 for the CER dataset and 40300 for the EDF 1 dataset)
due to GPU memory issues (even with a batch size of 1).
[Inside ADF]We evaluate ADF coupled with all the baselines with
different subsequences windows length𝑤 to assess the sensitivity

of this parameter on the results of each classifier. We performed ex-
periments with𝑤 = {256, 512, 1024, 2048, 4096} for the CER dataset.
For the EDF 1 dataset, we used only 𝑤 = {256, 512, 1024} as the
shortest time series has length 1338 in this dataset. We also note
that Rocket was not evaluated inside ADF as this classifier is not
designed to predict probabilities. For the pretraining part of our
proposed TransAppPT model, we use all available time series with-
out considering any label information. We named TransApp the
no-pretrained architecture and TransAppPT the pretrained one.
In addition, we also evaluate a TransApp architecture pretrained
on the EDF 2 dataset that is then finetuned to the EDF 1 dataset
(TransAppPT-l, composed of 5 Transformer layers instead of 3)1.

4.2.1 AccuracyMeasure and Addressing Imbalanced Datasets. Accu-
racy represents the fraction of correct predictions across all classes.
However, it treats each class equally, regardless of class distribution,
making it inadequate for imbalanced datasets. Precision, recall, and
the F1-score are standard measures to address this issue. Precision
(Pr) is the percentage of class instances correctly classified, while
recall (Rc) is the percentage of misclassified instances. The F1-score
is the harmonic average of precision and recall, providing a bal-
anced measure. For binary classification problems with imbalanced
data, these measures are often applied only to the minority class.
However, in appliance detection scenarios, the minority class may
vary. Therefore, to evaluate overall performance and account for
variability, the Macro F1-score is used, which calculates the aver-
age F1-score across all classes: Macro F1-score = 1

𝑁

𝑁
𝑖=1 F1-score𝑖 ,

where 𝑁 is the number of classes (equal to 2 in this study).

4.2.2 Scalability. We evaluate the scalability of the solutions, fo-
cusing on two aspects.
[Time] To assess the ability of the solution to scale to large con-
sumption series, we measured and compared the training time. In
addition, as the Transformer architecture is known to have time
complexity depending on the input sequence length, we also evalu-
ate the gain of using slicing subsequences against the entire con-
sumption series on the running inference performance.
[Memory] We measured the memory consumption of all the base-
lines inside and outside ADF during training. We tracked the to-
tal CPU memory for non-deep learning methods (Arsenal and
ROCKET). For deep learning-based methods (that run on a GPU),
we tracked the consumed GPU memory for a minibatch of data for
a full forward/backward pass and an optimization step. We set the
size of the minibatch to 32 for each baseline.

4.3 Results
Table 2 reports the results for the appliance detection cases for
the CER dataset, while Table 3 reports the results obtained for
the EDF 1 dataset. For methods that use subsequences (Deng et
al. [15] and ADF combined with different classifiers), we report
the scores for the parameter 𝑤 that leads to the best results (av-
eraged over all cases). First, note that ADF, when combined with
various classifiers, outperforms those used outside of ADF, and
outperforms the framework proposed by Deng et al. Specifically,

1Pretraining TransApp with 3 Transformer layers on the EDF 2 dataset leads to equiv-
alent results as pretraining it on EDF 1. Thus, we investigate a larger architecture that
can benefit from this large dataset.
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Table 2: Results (average Macro F1-score for 3 runs) for the different approaches (time series classifier, frameworks) applied to
the detection cases using the CER dataset. The best score is shown in bold, and the second best is underlined.

Models comparaison
Time Series Classifiers Deng et al. ADF with

Appliance Arsenal ROCKET ConvNet ResNet Inception framework Arsenal ConvNet ResNet Inception Informer Autoformer Fedformer TransApp TransAppPT
Detection Cases 𝑤 = 512 𝑤 = 1024 𝑤 = 512 𝑤 = 512 𝑤 = 1024 𝑤 = 256 𝑤 = 256 𝑤 = 512 𝑤 = 1024 𝑤 = 1024

Cooker 0.68 0.676 0.665 0.698 0.705 0.670 0.723 0.71 0.732 0.729 0.71 0.704 0.62 0.746 0.754
Dishwasher 0.705 0.708 0.736 0.72 0.732 0.652 0.726 0.719 0.716 0.758 0.644 0.661 0.653 0.742 0.738
Water Heater 0.631 0.616 0.615 0.617 0.631 0.519 0.629 0.608 0.609 0.614 0.581 0.598 0.479 0.601 0.616
Plugin Heater 0.509 0.507 0.539 0.497 0.556 0.536 0.609 0.597 0.581 0.568 0.540 0.563 0.519 0.589 0.624
Tumble Dryer 0.645 0.641 0.605 0.589 0.616 0.615 0.657 0.644 0.658 0.656 0.619 0.624 0.507 0.654 0.655

TVs (greater 21") 0.555 0.55 0.58 0.589 0.591 0.576 0.592 0.579 0.577 0.592 0.579 0.581 0.534 0.578 0.593
TVs (less 21") 0.539 0.526 0.449 0.454 0.513 0.519 0.54 0.537 0.549 0.544 0.545 0.534 0.463 0.52 0.543

Desktop Computer 0.618 0.609 0.606 0.61 0.609 0.537 0.624 0.601 0.608 0.59 0.605 0.595 0.566 0.626 0.612
Laptop Computer 0.641 0.632 0.621 0.64 0.620 0.573 0.642 0.637 0.64 0.624 0.617 0.636 0.538 0.64 0.652

Avg. Score 0.614 0.604 0.599 0.597 0.619 0.577 0.638 0.626 0.63 0.631 0.604 0.61 0.542 0.633 0.643
Avg. Rank 7.5 9.778 10 8.778 7.556 12.889 3.278 7.556 5.778 5.611 9.667 9.222 14.111 5.556 2.722

Table 3: Results (average Macro F1-score for 3 runs) for the different approaches applied to appliance detection cases using the
EDF 1 dataset. The best score is shown in bold, and the second best is underlined.

Models comparaison
Time Series Classifiers Deng et al. ADF with

Appliance Arsenal ROCKET ConvNet ResNet Inception framework Arsenal ConvNet ResNet Inception Informer Autoformer Fedformer TransApp TransAppPT (EDF 1) TransAppPT-l (EDF 2)
Detection Cases 𝑤 = 256 𝑤 = 1024 𝑤 = 1024 𝑤 = 1024 𝑤 = 1024 𝑤 = 256 𝑤 = 512 𝑤 = 256 𝑤 = 1024 𝑤 = 1024 𝑤 = 1024

Electric Heater 0.808 0.817 0.736 0.748 0.757 0.793 0.815 0.796 0.800 0.805 0.77 0.725 0.731 0.815 0.818 0.828
Convector/HeatPump 0.678 0.674 0.605 0.542 0.578 0.659 0.711 0.689 0.706 0.701 0.652 0.563 0.552 0.706 0.706 0.736

Air Conditioner 0.543 0.542 0.531 0.494 0.528 0.610 0.577 0.603 0.568 0.623 0.598 0.558 0.548 0.656 0.669 0.67
Water Heater 0.827 0.825 0.774 0.814 0.828 0.836 0.835 0.822 0.834 0.840 0.79 0.773 0.753 0.844 0.849 0.855
Dishwasher 0.514 0.523 0.578 0.581 0.568 0.560 0.577 0.553 0.571 0.555 0.521 0.505 0.5 0.564 0.594 0.601
Tumble Dryer 0.674 0.675 0.595 0.642 0.625 0.635 0.698 0.662 0.685 0.701 0.570 0.584 0.591 0.694 0.708 0.709
Electric Vehicle 0.7 0.709 0.626 0.682 0.693 0.726 0.757 0.707 0.750 0.778 0.709 0.683 0.661 0.782 0.807 0.825

Avg. Score 0.678 0.681 0.635 0.643 0.654 0.688 0.719 0.69 0.70 0.715 0.633 0.627 0.619 0.723 0.736 0.746
Avg. Rank 9.714 8.929 12.429 12 11.286 8.143 4.929 9 6.571 5.429 11.357 14 14.571 4.357 2.286 1

we observe an average increase for all the classifiers (Arsenal, Con-
vNet, ResNet, and Inception) when combining them with ADF of
two and five points on the CER and EDF 1 datasets. On average,
ADF combined with the pretrained TransApp is better than all
other classifiers on the two datasets (avg. score and avg. rank). Fur-
thermore, the larger TransApp (TransAppPT-l) pretrained on the
(large) non-labeled EDF 2 dataset outperformed all other classifiers.
These results demonstrate that pretraining is an important step to
significantly boost the model’s performance.

The results also imply that our solution can be used by suppliers
in real scenarios to detect appliances. Indeed, most appliances are
accurately detected, with a Macro F1-Score higher than 0.8 for
Electric Vehicles, Electric Heaters, and Water Heater appliances.
Figure 5(a) shows the average detection score for TransAppPT-l
across all the cases of EDF 1, when varying the size of EDF 2 data
used for pretraining. More precisely, we pretrained with a random
percentage of selected consumption series and finetuned it on all
the detection cases (0% means no pretraining). The results show
that the detection score increases proportionally to the amount of
data used, confirming the validity of our proposed pretraining, and
of using non-labeled data collected by electricity suppliers.
[Sensitivity influence of𝑤] Figure 5(b) report the average sensi-
tivity influence of the parameter𝑤 over all the baselines for the two
datasets. Deng et al. and ADF combined with Informer, Autoformer,
and Fedformer seem to benefit from small subsequences. However,
they achieve poor results compared to all the baselines regarding
this parameter. ConvNet and ResNet benefit from𝑤 = 512 on the
CER dataset. However, all the 3 best competitors (Arsenal, Inception,
and TransApp) benefit from𝑤 = 1024 on the two datasets.

Figure 5: (a) Impact of amount of unlabeled data used for
pretraining; (b) Sensitivity study for𝑤 .

[Training scalability Performance] Figure 6 shows the train-
ing time cost, memory consumption, and number of trainable pa-
rameters of the different approaches (averaged across all possible
detection cases of the CER dataset). We show that for all the classi-
fiers (except Arsenal), their training time is equivalent inside and
outside ADF. Moreover, we show that TransApp is equivalent to
train as convolutional-based methods in ADF, and faster than other
Transformer-based approaches. Note that the reported training
time for TransAppPT corresponds to the addition of the pretraining
and finetuning steps. Although Arsenal is the second best accu-
rate on the CER dataset, this classifier’s training time is very slow
compared to other methods, especially when used inside ADF. The
training time of this classifier depends mainly on the number of
instances rather than their entire length. In addition, we note that
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Figure 6: Training time, memory consumption, and number
of trainable parameters averaged across the different appli-
ance detection cases for the CER dataset (log scale left y-axis).

Figure 7: Running time for classifiers (inside/outside ADF)
to predict 1K instances labels according to the length of the
input consumption series using the CER dataset.

except for Arsenal, all the baselines use less memory consumption
when used inside ADF. We also note that the memory consumption
of TransApp, as well as its number of parameters, is kept small
thanks to the use of ADF.

Figure 7 shows the inference time to predict 1K consumption
series labels according to the length of the input sequence. A dashed
line corresponds to using a specified classifier inside our proposed
ADF. In contrast, a solid line corresponds to the same classifier that
uses the entire series as inputs. First, we can see that Inception (in-
side and outside our framework) is the fastest and is insensitive to
the length of the whole input time series. Secondly, we see that Arse-
nal and Rocket (the two random kernel convolution-based methods)
are way slower at inference than other proposed approaches. How-
ever, our proposed TransApp model inside our framework can also
scale nearly linearly according to the sequence length. However,
we show that using our TransApp classifier outside our framework
makes it sensitive to the entire input length and, therefore, leads to
a much longer inference time for long sequences.

Overall, we show that the training and running time of our
proposed ADF approach combined with our TransApp classifier
can scale as efficiently as other approaches using long sequences
and large databases currently available by electricity suppliers.

4.4 Ablation Study and Hyperparameters
[Ablation Studies] Table 4 shows the average F1-Macro Scores
for the CER and EDF 1 datasets for the non-pretrained TransApp
inside ADF when we remove key elements of the proposed architec-
ture. "Default" shows the score obtained with the base architecture
(i.e., the same results as the one obtained in Table 2 and Table 3).

Table 4: Average F1-Macro Score results for the CER and EDF
1 datasets when removing key parts of ADF & TransApp.

TransApp CER EDF 1
Default 0.633 0.723

w/o Embedding Block 0.594 (-6.2 %) 0.659 (-8.9 %)
w/o DMSA 0.623 (-1.6 %) 0.717 (-0.8 %)

w/o Time Encoded Features 0.625 (-1.3 %) 0.719 (-0.6 %)

Table 5: Influence of hyperparameters choice on the average
detection score on the CER and EDF 1 datasets.

(a) Inner dimension

Dim CER EDF 1
64 0.62 0.719
96 0.633 0.723
128 0.62 0.717

(b) Positional Encoding

Type CER EDF 1
None 0.633 0.723
Fixed 0.623 0.711

Learnable 0.620 0.715

Then, we show the results with the three following parts removed
successively: (i) Embedding block: we replace the Convolutional
Embedding Block with a simple linear embedding layer that maps
each time step of the input sequence 𝒙𝑤×𝑚 to a space 𝒙𝑚×𝑑model

(the approach used in [57]). (ii) DMSA: we replace the Multi-Head
DMSA with the original Multi-Head Self-Attention mechanism. (iii)
Time Encoded features: We use only the univariate consumption
time series as input for training our TransApp architecture.

The results show that the Embedding Block is themost important
part of our proposed architecture and therefore confirms the need to
introduce an inductive bias to render the Transformer able to detect
the different appliance patterns more accurately. Subsequently, we
see that removing the DMSA mechanism or not using temporal
encoded features leads to a small drop in the average results.
[Hyperparameter Choice] Tables 5(a) and (b) show the results
of the choice of two important parameters. Table 5(a) shows that
the best inner dimension 𝑑model is 96, while Table 5(b) motivates
the choice of not using positional encoding before the Transformer
block (cf. Section 3.1), as is usually done in Transformer architec-
tures. The findings indicate that utilizing a fixed positional encoding
(as originally proposed [51]), or a fully learnable one (as proposed
in [57]) results in a decrease in the model’s average performance.
[Effect of the pretraining on the baselines] We performed
experiments to evaluate the effect of our proposed pretraining pro-
cess on other deep-learning competitors (ConvNet, ResNet, and
Inception). However, these baselines do not benefit from our two-
step training, as the scores reached by the pretrained version of
the model were equivalent to the ones obtained with the non-
pretrained.

5 CONCLUSIONS
This paper proposes the ADF framework and the TransApp classi-
fier to detect appliances in very low-frequency electricity consump-
tion time series. The classifier is first pretrained in a self-supervised
manner to enhance its performance on appliance detection tasks.
The results show that ADF improves the performance of state-of-
the-art time series classifiers applied to appliance detection and that
the TransApp architecture is the most accurate. Furthermore, we
show that ADF enables TransApp to scale to very long consumption
series, making it applicable to real-world scenarios.
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