Open Source Python Business Software for Mac - Page 6

Python Business Software for Mac

View 444 business solutions

Browse free open source Python Business Software for Mac and projects below. Use the toggles on the left to filter open source Python Business Software for Mac by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Ethereum ETL

    Ethereum ETL

    Python scripts for ETL (extract, transform and load) jobs for Ethereum

    Python scripts for ETL (extract, transform and load) jobs for Ethereum blocks, transactions, ERC20 / ERC721 tokens, transfers, receipts, logs, contracts, internal transactions. Data is available in Google BigQuery. Ethereum ETL lets you convert blockchain data into convenient formats like CSVs and relational databases.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. FiftyOne provides the building blocks for optimizing your dataset analysis pipeline. Use it to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! Surveys show that machine learning engineers spend over half of their time wrangling data, but it doesn't have to be that way.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Google Spreadsheets Python

    Google Spreadsheets Python

    Google Sheets Python API

    gspread is a Python API for Google Sheets. A service account is a special type of Google account intended to represent a non-human user that needs to authenticate and be authorized to access data in Google APIs [sic]. Since it’s a separate account, by default it does not have access to any spreadsheet until you share it with this account. Just like any other Google account. To access spreadsheets via Google Sheets API you need to authenticate and authorize your application. Older versions of gspread have used oauth2client. Google has deprecated it in favor of google-auth. If you’re still using oauth2client credentials, the library will convert these to google-auth for you, but you can change your code to use the new credentials to make sure nothing breaks in the future. If you familiar with the Jupyter Notebook, Google Colaboratory is probably the easiest way to get started using gspread.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    Great Expectations

    Great Expectations

    Always know what to expect from your data

    Great Expectations helps data teams eliminate pipeline debt, through data testing, documentation, and profiling. Software developers have long known that testing and documentation are essential for managing complex codebases. Great Expectations brings the same confidence, integrity, and acceleration to data science and data engineering teams. Expectations are assertions for data. They are the workhorse abstraction in Great Expectations, covering all kinds of common data issues. Expectations are a great start, but it takes more to get to production-ready data validation. Where are Expectations stored? How do they get updated? How do you securely connect to production data systems? How do you notify team members and triage when data validation fails? Great Expectations supports all of these use cases out of the box. Instead of building these components for yourself over weeks or months, you will be able to add production-ready validation to your pipeline in a day.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    HyperTools

    HyperTools

    A Python toolbox for gaining geometric insights

    HyperTools is a library for visualizing and manipulating high-dimensional data in Python. It is built on top of matplotlib (for plotting), seaborn (for plot styling), and scikit-learn (for data manipulation). Functions for plotting high-dimensional datasets in 2/3D. Static and animated plots. Simple API for customizing plot styles. Set of powerful data manipulation tools including hyperalignment, k-means clustering, normalizing and more. Support for lists of Numpy arrays, Pandas dataframes, text or (mixed) lists. Applying topic models and other text vectorization methods to text data. HyperTools is designed to facilitate dimensionality reduction-based visual explorations of high-dimensional data. The basic pipeline is to feed in a high-dimensional dataset (or a series of high-dimensional datasets) and, in a single function call, reduce the dimensionality of the dataset(s) and create a plot.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Jupyter Notebooks as PDF

    Jupyter Notebooks as PDF

    Save Jupyter Notebooks as PDF

    This Jupyter notebook extension allows you to save your notebook as a PDF. To make it easier to reproduce the contents of the PDF at a later date the original notebook is attached to the PDF. Unfortunately not all PDF viewers know how to deal with attachments. PDF viewers known to support downloading of file attachments are: Acrobat Reader, pdf.js and evince. The pdftk CLI program can also extract attached files from a PDF. Preview for OSX does not know how to display/give you access to attachments of PDF files.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Pendulum

    Pendulum

    Python datetimes made easy

    Pendulum is a Python package to ease datetime's manipulation. It provides classes that are drop-in replacements for the native ones (they inherit from them). Special care has been taken to ensure timezones are handled correctly, and are based on the underlying tzinfo implementation. For example, all comparisons are done in UTC or in the timezone of the datetime being used. There are several different methods available to create a new DateTime instance. datetime() sets the time to 00:00:00 if it's not specified, and the timezone (the tz keyword argument) to UTC. Otherwise it can be a Timezone instance or simply a string timezone value. Pendulum gives access to more attributes and properties than the default datetime class. The __str__ magic method is defined to allow DateTime instances to be printed as a pretty date string when used in a string context. Simple comparison is offered up via the basic operators.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    PipeRider

    PipeRider

    Code review for data in dbt

    PipeRider automatically compares your data to highlight the difference in impacted downstream dbt models so you can merge your Pull Requests with confidence. PipeRider can profile your dbt models and obtain information such as basic data composition, quantiles, histograms, text length, top categories, and more. PipeRider can integrate with dbt metrics and present the time-series data of metrics in the report. PipeRider generates a static HTML report each time it runs, which can be viewed locally or shared. You can compare two previously generated reports or use a single command to compare the differences between the current branch and the main branch. The latter is designed specifically for code review scenarios. In our pull requests on GitHub, we not only want to know which files have been changed, but also the impact of these changes on the data. PipeRider can easily generate comparison reports with a single command to provide this information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    Population Shift Monitoring

    Population Shift Monitoring

    Monitor the stability of a Pandas or Spark dataframe

    popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets. popmon creates histograms of features binned in time-slices, and compares the stability of the profiles and distributions of those histograms using statistical tests, both over time and with respect to a reference. It works with numerical, ordinal, categorical features, and the histograms can be higher-dimensional, e.g. it can also track correlations between any two features. popmon can automatically flag and alert on changes observed over time, such as trends, shifts, peaks, outliers, anomalies, changing correlations, etc, using monitoring business rules. Advanced users can leverage popmon's modular data pipeline to customize their workflow. Visualization of the pipeline can be useful when debugging or for didactic purposes. There is a script included with the package that you can use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate. It focuses on local development ergonomics and seamless transition to production environments, making it ideal for small teams and individuals needing a programmable and flexible orchestration solution without the overhead of enterprise systems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Run Page

    Run Page

    Make your own running home page

    GitHub Actions manages automatic synchronization of runs and generation of new pages. Gatsby-generated static pages, fast. Support for Vercel (recommended) and GitHub Pages automated deployment. React Hooks. Mapbox for map display. Supports most sports apps such as nike strava. Automatically backup gpx data for easy backup and uploading to other software.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. Write a training script (eg. train.py). Define a container with a Dockerfile that includes the training script and any dependencies.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    SalesGPT

    SalesGPT

    Context-aware AI Sales Agent to automate sales outreach

    This repo is an implementation of a context-aware AI Agent for Sales using LLMs and can work across voice, email and texting (SMS, WhatsApp, WeChat, Weibo, Telegram, etc.). SalesGPT is context-aware, which means it can understand what stage of a sales conversation it is in and act accordingly. Moreover, SalesGPT has access to tools, such as your own pre-defined product knowledge base, significantly reducing hallucinations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Sweetviz

    Sweetviz

    Visualize and compare datasets, target values and associations

    Sweetviz is an open-source Python library that generates beautiful, high-density visualizations to kickstart EDA (Exploratory Data Analysis) with just two lines of code. Output is a fully self-contained HTML application. The system is built around quickly visualizing target values and comparing datasets. Its goal is to help quick analysis of target characteristics, training vs testing data, and other such data characterization tasks. Shows how a target value (e.g. "Survived" in the Titanic dataset) relates to other features. Sweetviz integrates associations for numerical (Pearson's correlation), categorical (uncertainty coefficient) and categorical-numerical (correlation ratio) datatypes seamlessly, to provide maximum information for all data types. Automatically detects numerical, categorical and text features, with optional manual overrides. min/max/range, quartiles, mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream QT tasks; 4) efficient implementations of over 13 novel RL-based trading algorithms; 5) systematic evaluation toolkits with 6 axes and 17 measures; 6) different interfaces for interdisciplinary users.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    TradingGym

    TradingGym

    Trading backtesting environment for training reinforcement learning

    TradingGym is a toolkit (in Python) for creating trading and backtesting environments, especially for reinforcement learning agents, but also for simpler rule-based algorithms. It follows a design inspired by OpenAI Gym, offering various environments, data formats (tick data and OHLC), and tools to simulate trading with costs, position limits, observation windows etc. Licensed under MIT. This training environment was originally designed for tickdata, but also supports OHLC data format. WIP. The list contains the feature columns to use in the trading status.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    VisiData

    VisiData

    A terminal spreadsheet multitool for discovering and arranging data

    VisiData is an interactive multitool for tabular data. It combines the clarity of a spreadsheet, the efficiency of the terminal, and the power of Python, into a lightweight utility that can handle millions of rows with ease. A terminal interface for exploring and arranging tabular data. VisiData supports tsv, CSV, SQLite, JSON, xlsx (Excel), hdf5, and many other formats. Requires Linux, OS/X, or Windows (with WSL). Hundreds of other commands and options are also available; see the documentation. Code in the stable branch of this repository, including the main vd application, loaders, and plugins, is available for use and redistribution under GPLv3. VisiData is a free, open-source tool that lets you quickly open, explore, summarize, and analyze datasets in your computer’s terminal. VisiData works with CSV files, Excel spreadsheets, SQL databases, and many other data sources.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    airda

    airda

    airda(Air Data Agent

    airda(Air Data Agent) is a multi-smart body for data analysis, capable of understanding data development and data analysis needs, understanding data, generating data-oriented queries, data visualization, machine learning and other tasks of SQL and Python codes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    alpha_vantage

    alpha_vantage

    A python wrapper for Alpha Vantage API for financial data.

    Alpha Vantage delivers a free API for real time financial data and most used finance indicators in a simple json or pandas format. This module implements a python interface to the free API provided by Alpha Vantage. You can have a look at all the API calls available in their API documentation. For code-less access to the APIs, you may also consider the official Google Sheet Add-on or the Microsoft Excel Add-on by Alpha Vantage. To get data from the API, simply import the library and call the object with your API key. Next, get ready for some awesome, free, realtime finance data. Your API key may also be stored in the environment variable ALPHAVANTAGE_API_KEY. The library supports giving its results as json dictionaries (default), pandas dataframe (if installed) or csv, simply pass the parameter output_format='pandas' to change the format of the output for all the API calls in the given class.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    data-diff

    data-diff

    Efficiently diff rows across two different databases

    We're excited to announce the launch of a new open-source product, data-diff that makes comparing datasets across databases fast at any scale. data-diff automates data quality checks for data replication and migration. In modern data platforms, data is constantly moving between systems, and at the modern data volume and complexity, systems go out of sync all the time. Until now, there has not been any tooling to ensure that when the data is correctly copied. Replicating data at scale, across hundreds of tables, with low latency and at a reasonable infrastructure cost is a hard problem, and most data teams we’ve talked to, have faced data quality issues in their replication processes. The hard truth is that the quality of the replication is the quality of the data. Since copying entire datasets in batch is often infeasible at the modern data scale, businesses rely on the Change Data Capture (CDC) approach of replicating data using a continuous stream of updates.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    electricityMap

    electricityMap

    A real-time visualisation of the CO2 emissions of electricity

    Real-time visualization of the Greenhouse Gas (in terms of CO2 equivalent) footprint of electricity consumption built with d3.js and mapbox GL. Real-time data is defined as a data source with an hourly (or better) frequency, delayed by less than 2hrs. It should provide a breakdown by generation type. Often fossil fuel generation (coal/gas/oil) is combined under a single heading like 'thermal' or 'conventional', this is not a problem. Citizens should not be responsible for the emissions associated with all the products they export, but only for what they consume. Consumption-based accounting (CBA) is a very important aspect of climate policy and allows assigning responsibility to consumers instead of producers. Furthermore, this method is robust to governments relocating dirty production to neighboring countries in order to green their image while still importing from it.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    ipycytoscape

    ipycytoscape

    A Cytoscape Jupyter widget

    A widget enabling interactive graph visualization with cytoscape.js in JupyterLab and the Jupyter Notebook.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    leafmap

    leafmap

    A Python package for interactive mapping and geospatial analysis

    A Python package for geospatial analysis and interactive mapping in a Jupyter environment. Leafmap is a Python package for interactive mapping and geospatial analysis with minimal coding in a Jupyter environment. It is a spin-off project of the geemap Python package, which was designed specifically to work with Google Earth Engine (GEE). However, not everyone in the geospatial community has access to the GEE cloud computing platform. Leafmap is designed to fill this gap for non-GEE users. It is a free and open-source Python package that enables users to analyze and visualize geospatial data with minimal coding in a Jupyter environment, such as Google Colab, Jupyter Notebook, and JupyterLab. Leafmap is built upon several open-source packages, such as folium and ipyleaflet (for creating interactive maps), WhiteboxTools and whiteboxgui (for analyzing geospatial data), and ipywidgets (for designing interactive graphical user interface [GUI]).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    miepython

    miepython

    Mie scattering of light by perfect spheres

    miepython is a pure Python module to calculate light scattering for non-absorbing, partially-absorbing, or perfectly-conducting spheres. Mie theory is used, following the procedure described by Wiscombe. This code has been validated against his results. This code provides functions for calculating the extinction efficiency, scattering efficiency, backscattering, and scattering asymmetry. Moreover, a set of angles can be given to calculate the scattering for a sphere at each of those angles.
    Downloads: 1 This Week
    Last Update:
    See Project