@inproceedings{song-etal-2016-learning,
title = "Learning to Identify Sentence Parallelism in Student Essays",
author = "Song, Wei and
Liu, Tong and
Fu, Ruiji and
Liu, Lizhen and
Wang, Hanshi and
Liu, Ting",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1076",
pages = "794--803",
abstract = "Parallelism is an important rhetorical device. We propose a machine learning approach for automated sentence parallelism identification in student essays. We build an essay dataset with sentence level parallelism annotated. We derive features by combining generalized word alignment strategies and the alignment measures between word sequences. The experimental results show that sentence parallelism can be effectively identified with a F1 score of 82{\%} at pair-wise level and 72{\%} at parallelism chunk level. Based on this approach, we automatically identify sentence parallelism in more than 2000 student essays and study the correlation between the use of sentence parallelism and the types and quality of essays.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2016-learning">
<titleInfo>
<title>Learning to Identify Sentence Parallelism in Student Essays</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruiji</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lizhen</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanshi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Parallelism is an important rhetorical device. We propose a machine learning approach for automated sentence parallelism identification in student essays. We build an essay dataset with sentence level parallelism annotated. We derive features by combining generalized word alignment strategies and the alignment measures between word sequences. The experimental results show that sentence parallelism can be effectively identified with a F1 score of 82% at pair-wise level and 72% at parallelism chunk level. Based on this approach, we automatically identify sentence parallelism in more than 2000 student essays and study the correlation between the use of sentence parallelism and the types and quality of essays.</abstract>
<identifier type="citekey">song-etal-2016-learning</identifier>
<location>
<url>https://aclanthology.org/C16-1076</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>794</start>
<end>803</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Identify Sentence Parallelism in Student Essays
%A Song, Wei
%A Liu, Tong
%A Fu, Ruiji
%A Liu, Lizhen
%A Wang, Hanshi
%A Liu, Ting
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F song-etal-2016-learning
%X Parallelism is an important rhetorical device. We propose a machine learning approach for automated sentence parallelism identification in student essays. We build an essay dataset with sentence level parallelism annotated. We derive features by combining generalized word alignment strategies and the alignment measures between word sequences. The experimental results show that sentence parallelism can be effectively identified with a F1 score of 82% at pair-wise level and 72% at parallelism chunk level. Based on this approach, we automatically identify sentence parallelism in more than 2000 student essays and study the correlation between the use of sentence parallelism and the types and quality of essays.
%U https://aclanthology.org/C16-1076
%P 794-803
Markdown (Informal)
[Learning to Identify Sentence Parallelism in Student Essays](https://aclanthology.org/C16-1076) (Song et al., COLING 2016)
ACL
- Wei Song, Tong Liu, Ruiji Fu, Lizhen Liu, Hanshi Wang, and Ting Liu. 2016. Learning to Identify Sentence Parallelism in Student Essays. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 794–803, Osaka, Japan. The COLING 2016 Organizing Committee.