@inproceedings{vylomova-etal-2017-context,
title = "Context-Aware Prediction of Derivational Word-forms",
author = "Vylomova, Ekaterina and
Cotterell, Ryan and
Baldwin, Timothy and
Cohn, Trevor",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2019/",
pages = "118--124",
abstract = "Derivational morphology is a fundamental and complex characteristic of language. In this paper we propose a new task of predicting the derivational form of a given base-form lemma that is appropriate for a given context. We present an encoder-decoder style neural network to produce a derived form character-by-character, based on its corresponding character-level representation of the base form and the context. We demonstrate that our model is able to generate valid context-sensitive derivations from known base forms, but is less accurate under lexicon agnostic setting."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vylomova-etal-2017-context">
<titleInfo>
<title>Context-Aware Prediction of Derivational Word-forms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Derivational morphology is a fundamental and complex characteristic of language. In this paper we propose a new task of predicting the derivational form of a given base-form lemma that is appropriate for a given context. We present an encoder-decoder style neural network to produce a derived form character-by-character, based on its corresponding character-level representation of the base form and the context. We demonstrate that our model is able to generate valid context-sensitive derivations from known base forms, but is less accurate under lexicon agnostic setting.</abstract>
<identifier type="citekey">vylomova-etal-2017-context</identifier>
<location>
<url>https://aclanthology.org/E17-2019/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>118</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-Aware Prediction of Derivational Word-forms
%A Vylomova, Ekaterina
%A Cotterell, Ryan
%A Baldwin, Timothy
%A Cohn, Trevor
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F vylomova-etal-2017-context
%X Derivational morphology is a fundamental and complex characteristic of language. In this paper we propose a new task of predicting the derivational form of a given base-form lemma that is appropriate for a given context. We present an encoder-decoder style neural network to produce a derived form character-by-character, based on its corresponding character-level representation of the base form and the context. We demonstrate that our model is able to generate valid context-sensitive derivations from known base forms, but is less accurate under lexicon agnostic setting.
%U https://aclanthology.org/E17-2019/
%P 118-124
Markdown (Informal)
[Context-Aware Prediction of Derivational Word-forms](https://aclanthology.org/E17-2019/) (Vylomova et al., EACL 2017)
ACL
- Ekaterina Vylomova, Ryan Cotterell, Timothy Baldwin, and Trevor Cohn. 2017. Context-Aware Prediction of Derivational Word-forms. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 118–124, Valencia, Spain. Association for Computational Linguistics.