@inproceedings{perez-rosas-etal-2017-identity,
title = "Identity Deception Detection",
author = "P{\'e}rez-Rosas, Ver{\'o}nica and
Davenport, Quincy and
Dai, Anna Mengdan and
Abouelenien, Mohamed and
Mihalcea, Rada",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1089",
pages = "885--894",
abstract = "This paper addresses the task of detecting identity deception in language. Using a novel identity deception dataset, consisting of real and portrayed identities from 600 individuals, we show that we can build accurate identity detectors targeting both age and gender, with accuracies of up to 88. We also perform an analysis of the linguistic patterns used in identity deception, which lead to interesting insights into identity portrayers.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perez-rosas-etal-2017-identity">
<titleInfo>
<title>Identity Deception Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Verónica</namePart>
<namePart type="family">Pérez-Rosas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quincy</namePart>
<namePart type="family">Davenport</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="given">Mengdan</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Abouelenien</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper addresses the task of detecting identity deception in language. Using a novel identity deception dataset, consisting of real and portrayed identities from 600 individuals, we show that we can build accurate identity detectors targeting both age and gender, with accuracies of up to 88. We also perform an analysis of the linguistic patterns used in identity deception, which lead to interesting insights into identity portrayers.</abstract>
<identifier type="citekey">perez-rosas-etal-2017-identity</identifier>
<location>
<url>https://aclanthology.org/I17-1089</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>885</start>
<end>894</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identity Deception Detection
%A Pérez-Rosas, Verónica
%A Davenport, Quincy
%A Dai, Anna Mengdan
%A Abouelenien, Mohamed
%A Mihalcea, Rada
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F perez-rosas-etal-2017-identity
%X This paper addresses the task of detecting identity deception in language. Using a novel identity deception dataset, consisting of real and portrayed identities from 600 individuals, we show that we can build accurate identity detectors targeting both age and gender, with accuracies of up to 88. We also perform an analysis of the linguistic patterns used in identity deception, which lead to interesting insights into identity portrayers.
%U https://aclanthology.org/I17-1089
%P 885-894
Markdown (Informal)
[Identity Deception Detection](https://aclanthology.org/I17-1089) (Pérez-Rosas et al., IJCNLP 2017)
ACL
- Verónica Pérez-Rosas, Quincy Davenport, Anna Mengdan Dai, Mohamed Abouelenien, and Rada Mihalcea. 2017. Identity Deception Detection. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 885–894, Taipei, Taiwan. Asian Federation of Natural Language Processing.