@inproceedings{agrawal-etal-2019-ars,
title = "{ARS}{\_}{NITK} at {MEDIQA} 2019:Analysing Various Methods for Natural Language Inference, Recognising Question Entailment and Medical Question Answering System",
author = "Agrawal, Anumeha and
Anil George, Rosa and
Ravi, Selvan Suntiha and
Kamath S, Sowmya and
Kumar, Anand",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5059/",
doi = "10.18653/v1/W19-5059",
pages = "533--540",
abstract = "In this paper, we present three approaches for Natural Language Inference, Question Entailment Recognition and Question-Answering to improve domain-specific Information Retrieval. For addressing the NLI task, the UMLS Metathesaurus was used to find the synonyms of medical terms in given sentences, on which the InferSent model was trained to predict if the given sentence is an entailment, contradictory or neutral. We also introduce a new Extreme gradient boosting model built on PubMed embeddings to perform RQE. Further, a closed-domain Question Answering technique that uses Bi-directional LSTMs trained on the SquAD dataset to determine relevant ranks of answers for a given question is also discussed."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agrawal-etal-2019-ars">
<titleInfo>
<title>ARS_NITK at MEDIQA 2019:Analysing Various Methods for Natural Language Inference, Recognising Question Entailment and Medical Question Answering System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anumeha</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rosa</namePart>
<namePart type="family">Anil George</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Selvan</namePart>
<namePart type="given">Suntiha</namePart>
<namePart type="family">Ravi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sowmya</namePart>
<namePart type="family">Kamath S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present three approaches for Natural Language Inference, Question Entailment Recognition and Question-Answering to improve domain-specific Information Retrieval. For addressing the NLI task, the UMLS Metathesaurus was used to find the synonyms of medical terms in given sentences, on which the InferSent model was trained to predict if the given sentence is an entailment, contradictory or neutral. We also introduce a new Extreme gradient boosting model built on PubMed embeddings to perform RQE. Further, a closed-domain Question Answering technique that uses Bi-directional LSTMs trained on the SquAD dataset to determine relevant ranks of answers for a given question is also discussed.</abstract>
<identifier type="citekey">agrawal-etal-2019-ars</identifier>
<identifier type="doi">10.18653/v1/W19-5059</identifier>
<location>
<url>https://aclanthology.org/W19-5059/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>533</start>
<end>540</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ARS_NITK at MEDIQA 2019:Analysing Various Methods for Natural Language Inference, Recognising Question Entailment and Medical Question Answering System
%A Agrawal, Anumeha
%A Anil George, Rosa
%A Ravi, Selvan Suntiha
%A Kamath S, Sowmya
%A Kumar, Anand
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F agrawal-etal-2019-ars
%X In this paper, we present three approaches for Natural Language Inference, Question Entailment Recognition and Question-Answering to improve domain-specific Information Retrieval. For addressing the NLI task, the UMLS Metathesaurus was used to find the synonyms of medical terms in given sentences, on which the InferSent model was trained to predict if the given sentence is an entailment, contradictory or neutral. We also introduce a new Extreme gradient boosting model built on PubMed embeddings to perform RQE. Further, a closed-domain Question Answering technique that uses Bi-directional LSTMs trained on the SquAD dataset to determine relevant ranks of answers for a given question is also discussed.
%R 10.18653/v1/W19-5059
%U https://aclanthology.org/W19-5059/
%U https://doi.org/10.18653/v1/W19-5059
%P 533-540
Markdown (Informal)
[ARS_NITK at MEDIQA 2019:Analysing Various Methods for Natural Language Inference, Recognising Question Entailment and Medical Question Answering System](https://aclanthology.org/W19-5059/) (Agrawal et al., BioNLP 2019)
ACL