@inproceedings{ruan-etal-2020-interactively,
title = "Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition",
author = "Ruan, Huibin and
Hong, Yu and
Xu, Yang and
Huang, Zhen and
Zhou, Guodong and
Zhang, Min",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.282",
doi = "10.18653/v1/2020.coling-main.282",
pages = "3168--3178",
abstract = "We tackle implicit discourse relation recognition. Both self-attention and interactive-attention mechanisms have been applied for attention-aware representation learning, which improves the current discourse analysis models. To take advantages of the two attention mechanisms simultaneously, we develop a propagative attention learning model using a cross-coupled two-channel network. We experiment on Penn Discourse Treebank. The test results demonstrate that our model yields substantial improvements over the baselines (BiLSTM and BERT).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ruan-etal-2020-interactively">
<titleInfo>
<title>Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Huibin</namePart>
<namePart type="family">Ruan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guodong</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We tackle implicit discourse relation recognition. Both self-attention and interactive-attention mechanisms have been applied for attention-aware representation learning, which improves the current discourse analysis models. To take advantages of the two attention mechanisms simultaneously, we develop a propagative attention learning model using a cross-coupled two-channel network. We experiment on Penn Discourse Treebank. The test results demonstrate that our model yields substantial improvements over the baselines (BiLSTM and BERT).</abstract>
<identifier type="citekey">ruan-etal-2020-interactively</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.282</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.282</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3168</start>
<end>3178</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition
%A Ruan, Huibin
%A Hong, Yu
%A Xu, Yang
%A Huang, Zhen
%A Zhou, Guodong
%A Zhang, Min
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F ruan-etal-2020-interactively
%X We tackle implicit discourse relation recognition. Both self-attention and interactive-attention mechanisms have been applied for attention-aware representation learning, which improves the current discourse analysis models. To take advantages of the two attention mechanisms simultaneously, we develop a propagative attention learning model using a cross-coupled two-channel network. We experiment on Penn Discourse Treebank. The test results demonstrate that our model yields substantial improvements over the baselines (BiLSTM and BERT).
%R 10.18653/v1/2020.coling-main.282
%U https://aclanthology.org/2020.coling-main.282
%U https://doi.org/10.18653/v1/2020.coling-main.282
%P 3168-3178
Markdown (Informal)
[Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition](https://aclanthology.org/2020.coling-main.282) (Ruan et al., COLING 2020)
ACL