@inproceedings{gomez-rodriguez-etal-2020-unifying,
title = "A Unifying Theory of Transition-based and Sequence Labeling Parsing",
author = "G{\'o}mez-Rodr{\'\i}guez, Carlos and
Strzyz, Michalina and
Vilares, David",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.336",
doi = "10.18653/v1/2020.coling-main.336",
pages = "3776--3793",
abstract = "We define a mapping from transition-based parsing algorithms that read sentences from left to right to sequence labeling encodings of syntactic trees. This not only establishes a theoretical relation between transition-based parsing and sequence-labeling parsing, but also provides a method to obtain new encodings for fast and simple sequence labeling parsing from the many existing transition-based parsers for different formalisms. Applying it to dependency parsing, we implement sequence labeling versions of four algorithms, showing that they are learnable and obtain comparable performance to existing encodings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gomez-rodriguez-etal-2020-unifying">
<titleInfo>
<title>A Unifying Theory of Transition-based and Sequence Labeling Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Gómez-Rodríguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalina</namePart>
<namePart type="family">Strzyz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vilares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We define a mapping from transition-based parsing algorithms that read sentences from left to right to sequence labeling encodings of syntactic trees. This not only establishes a theoretical relation between transition-based parsing and sequence-labeling parsing, but also provides a method to obtain new encodings for fast and simple sequence labeling parsing from the many existing transition-based parsers for different formalisms. Applying it to dependency parsing, we implement sequence labeling versions of four algorithms, showing that they are learnable and obtain comparable performance to existing encodings.</abstract>
<identifier type="citekey">gomez-rodriguez-etal-2020-unifying</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.336</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.336</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3776</start>
<end>3793</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Unifying Theory of Transition-based and Sequence Labeling Parsing
%A Gómez-Rodríguez, Carlos
%A Strzyz, Michalina
%A Vilares, David
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F gomez-rodriguez-etal-2020-unifying
%X We define a mapping from transition-based parsing algorithms that read sentences from left to right to sequence labeling encodings of syntactic trees. This not only establishes a theoretical relation between transition-based parsing and sequence-labeling parsing, but also provides a method to obtain new encodings for fast and simple sequence labeling parsing from the many existing transition-based parsers for different formalisms. Applying it to dependency parsing, we implement sequence labeling versions of four algorithms, showing that they are learnable and obtain comparable performance to existing encodings.
%R 10.18653/v1/2020.coling-main.336
%U https://aclanthology.org/2020.coling-main.336
%U https://doi.org/10.18653/v1/2020.coling-main.336
%P 3776-3793
Markdown (Informal)
[A Unifying Theory of Transition-based and Sequence Labeling Parsing](https://aclanthology.org/2020.coling-main.336) (Gómez-Rodríguez et al., COLING 2020)
ACL