@inproceedings{ding-etal-2020-three,
title = "A Three-Parameter Rank-Frequency Relation in Natural Languages",
author = "Ding, Chenchen and
Utiyama, Masao and
Sumita, Eiichiro",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.44/",
doi = "10.18653/v1/2020.acl-main.44",
pages = "460--464",
abstract = "We present that, the rank-frequency relation in textual data follows $f \propto r^{-\alpha}(r+\gamma)^{-\beta}$, where $f$ is the token frequency and $r$ is the rank by frequency, with ($\alpha$, $\beta$, $\gamma$) as parameters. The formulation is derived based on the empirical observation that $d^2 (x+y)/dx^2$ is a typical impulse function, where $(x,y)=(\log r, \log f)$. The formulation is the power law when $\beta=0$ and the Zipf{--}Mandelbrot law when $\alpha=0$. We illustrate that $\alpha$ is related to the analytic features of syntax and $\beta+\gamma$ to those of morphology in natural languages from an investigation of multilingual corpora."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-etal-2020-three">
<titleInfo>
<title>A Three-Parameter Rank-Frequency Relation in Natural Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Utiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eiichiro</namePart>
<namePart type="family">Sumita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present that, the rank-frequency relation in textual data follows f \propto r⁻α(r+γ)⁻β, where f is the token frequency and r is the rank by frequency, with (α, β, γ) as parameters. The formulation is derived based on the empirical observation that d² (x+y)/dx² is a typical impulse function, where (x,y)=(łog r, łog f). The formulation is the power law when β=0 and the Zipf–Mandelbrot law when α=0. We illustrate that α is related to the analytic features of syntax and β+γ to those of morphology in natural languages from an investigation of multilingual corpora.</abstract>
<identifier type="citekey">ding-etal-2020-three</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.44</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.44/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>460</start>
<end>464</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Three-Parameter Rank-Frequency Relation in Natural Languages
%A Ding, Chenchen
%A Utiyama, Masao
%A Sumita, Eiichiro
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F ding-etal-2020-three
%X We present that, the rank-frequency relation in textual data follows f \propto r⁻α(r+γ)⁻β, where f is the token frequency and r is the rank by frequency, with (α, β, γ) as parameters. The formulation is derived based on the empirical observation that d² (x+y)/dx² is a typical impulse function, where (x,y)=(łog r, łog f). The formulation is the power law when β=0 and the Zipf–Mandelbrot law when α=0. We illustrate that α is related to the analytic features of syntax and β+γ to those of morphology in natural languages from an investigation of multilingual corpora.
%R 10.18653/v1/2020.acl-main.44
%U https://aclanthology.org/2020.acl-main.44/
%U https://doi.org/10.18653/v1/2020.acl-main.44
%P 460-464
Markdown (Informal)
[A Three-Parameter Rank-Frequency Relation in Natural Languages](https://aclanthology.org/2020.acl-main.44/) (Ding et al., ACL 2020)
ACL