@inproceedings{kohita-etal-2020-interactive,
title = "Interactive Construction of User-Centric Dictionary for Text Analytics",
author = "Kohita, Ryosuke and
Yoshida, Issei and
Kanayama, Hiroshi and
Nasukawa, Tetsuya",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.72/",
doi = "10.18653/v1/2020.acl-main.72",
pages = "789--799",
abstract = "We propose a methodology to construct a term dictionary for text analytics through an interactive process between a human and a machine, which helps the creation of flexible dictionaries with precise granularity required in typical text analysis. This paper introduces the first formulation of interactive dictionary construction to address this issue. To optimize the interaction, we propose a new algorithm that effectively captures an analyst`s intention starting from only a small number of sample terms. Along with the algorithm, we also design an automatic evaluation framework that provides a systematic assessment of any interactive method for the dictionary creation task. Experiments using real scenario based corpora and dictionaries show that our algorithm outperforms baseline methods, and works even with a small number of interactions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kohita-etal-2020-interactive">
<titleInfo>
<title>Interactive Construction of User-Centric Dictionary for Text Analytics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryosuke</namePart>
<namePart type="family">Kohita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Issei</namePart>
<namePart type="family">Yoshida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Kanayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tetsuya</namePart>
<namePart type="family">Nasukawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a methodology to construct a term dictionary for text analytics through an interactive process between a human and a machine, which helps the creation of flexible dictionaries with precise granularity required in typical text analysis. This paper introduces the first formulation of interactive dictionary construction to address this issue. To optimize the interaction, we propose a new algorithm that effectively captures an analyst‘s intention starting from only a small number of sample terms. Along with the algorithm, we also design an automatic evaluation framework that provides a systematic assessment of any interactive method for the dictionary creation task. Experiments using real scenario based corpora and dictionaries show that our algorithm outperforms baseline methods, and works even with a small number of interactions.</abstract>
<identifier type="citekey">kohita-etal-2020-interactive</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.72</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.72/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>789</start>
<end>799</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interactive Construction of User-Centric Dictionary for Text Analytics
%A Kohita, Ryosuke
%A Yoshida, Issei
%A Kanayama, Hiroshi
%A Nasukawa, Tetsuya
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F kohita-etal-2020-interactive
%X We propose a methodology to construct a term dictionary for text analytics through an interactive process between a human and a machine, which helps the creation of flexible dictionaries with precise granularity required in typical text analysis. This paper introduces the first formulation of interactive dictionary construction to address this issue. To optimize the interaction, we propose a new algorithm that effectively captures an analyst‘s intention starting from only a small number of sample terms. Along with the algorithm, we also design an automatic evaluation framework that provides a systematic assessment of any interactive method for the dictionary creation task. Experiments using real scenario based corpora and dictionaries show that our algorithm outperforms baseline methods, and works even with a small number of interactions.
%R 10.18653/v1/2020.acl-main.72
%U https://aclanthology.org/2020.acl-main.72/
%U https://doi.org/10.18653/v1/2020.acl-main.72
%P 789-799
Markdown (Informal)
[Interactive Construction of User-Centric Dictionary for Text Analytics](https://aclanthology.org/2020.acl-main.72/) (Kohita et al., ACL 2020)
ACL