@inproceedings{paetzold-2020-utfpr,
title = "{UTFPR} at {S}em{E}val-2020 Task 7: Using Co-occurrence Frequencies to Capture Unexpectedness",
author = "Paetzold, Gustavo Henrique",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.140/",
doi = "10.18653/v1/2020.semeval-1.140",
pages = "1066--1070",
abstract = "We describe the UTFPR system for SemEval-2020`s Task 7: Assessing Humor in Edited News Headlines. Ours is a minimalist unsupervised system that uses word co-occurrence frequencies from large corpora to capture unexpectedness as a mean to capture funniness. Our system placed 22nd on the shared task`s Task 2. We found that our approach requires more text than we used to perform reliably, and that unexpectedness alone is not sufficient to gauge funniness for humorous content that targets a diverse target audience."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paetzold-2020-utfpr">
<titleInfo>
<title>UTFPR at SemEval-2020 Task 7: Using Co-occurrence Frequencies to Capture Unexpectedness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gustavo</namePart>
<namePart type="given">Henrique</namePart>
<namePart type="family">Paetzold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the UTFPR system for SemEval-2020‘s Task 7: Assessing Humor in Edited News Headlines. Ours is a minimalist unsupervised system that uses word co-occurrence frequencies from large corpora to capture unexpectedness as a mean to capture funniness. Our system placed 22nd on the shared task‘s Task 2. We found that our approach requires more text than we used to perform reliably, and that unexpectedness alone is not sufficient to gauge funniness for humorous content that targets a diverse target audience.</abstract>
<identifier type="citekey">paetzold-2020-utfpr</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.140</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.140/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1066</start>
<end>1070</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UTFPR at SemEval-2020 Task 7: Using Co-occurrence Frequencies to Capture Unexpectedness
%A Paetzold, Gustavo Henrique
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F paetzold-2020-utfpr
%X We describe the UTFPR system for SemEval-2020‘s Task 7: Assessing Humor in Edited News Headlines. Ours is a minimalist unsupervised system that uses word co-occurrence frequencies from large corpora to capture unexpectedness as a mean to capture funniness. Our system placed 22nd on the shared task‘s Task 2. We found that our approach requires more text than we used to perform reliably, and that unexpectedness alone is not sufficient to gauge funniness for humorous content that targets a diverse target audience.
%R 10.18653/v1/2020.semeval-1.140
%U https://aclanthology.org/2020.semeval-1.140/
%U https://doi.org/10.18653/v1/2020.semeval-1.140
%P 1066-1070
Markdown (Informal)
[UTFPR at SemEval-2020 Task 7: Using Co-occurrence Frequencies to Capture Unexpectedness](https://aclanthology.org/2020.semeval-1.140/) (Paetzold, SemEval 2020)
ACL