@inproceedings{gundapu-mamidi-2020-gundapusunil,
title = "Gundapusunil at {S}em{E}val-2020 Task 8: Multimodal Memotion Analysis",
author = "Gundapu, Sunil and
Mamidi, Radhika",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.147/",
doi = "10.18653/v1/2020.semeval-1.147",
pages = "1112--1119",
abstract = "Recent technological advancements in the Internet and Social media usage have resulted in the evolution of faster and efficient platforms of communication. These platforms include visual, textual and speech mediums and have brought a unique social phenomenon called Internet memes. Internet memes are in the form of images with witty, catchy, or sarcastic text descriptions. In this paper, we present a multi-modal sentiment analysis system using deep neural networks combining Computer Vision and Natural Language Processing. Our aim is different than the normal sentiment analysis goal of predicting whether a text expresses positive or negative sentiment; instead, we aim to classify the Internet meme as a positive, negative, or neutral, identify the type of humor expressed and quantify the extent to which a particular effect is being expressed. Our system has been developed using CNN and LSTM and outperformed the baseline score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gundapu-mamidi-2020-gundapusunil">
<titleInfo>
<title>Gundapusunil at SemEval-2020 Task 8: Multimodal Memotion Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Gundapu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent technological advancements in the Internet and Social media usage have resulted in the evolution of faster and efficient platforms of communication. These platforms include visual, textual and speech mediums and have brought a unique social phenomenon called Internet memes. Internet memes are in the form of images with witty, catchy, or sarcastic text descriptions. In this paper, we present a multi-modal sentiment analysis system using deep neural networks combining Computer Vision and Natural Language Processing. Our aim is different than the normal sentiment analysis goal of predicting whether a text expresses positive or negative sentiment; instead, we aim to classify the Internet meme as a positive, negative, or neutral, identify the type of humor expressed and quantify the extent to which a particular effect is being expressed. Our system has been developed using CNN and LSTM and outperformed the baseline score.</abstract>
<identifier type="citekey">gundapu-mamidi-2020-gundapusunil</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.147</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.147/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1112</start>
<end>1119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gundapusunil at SemEval-2020 Task 8: Multimodal Memotion Analysis
%A Gundapu, Sunil
%A Mamidi, Radhika
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F gundapu-mamidi-2020-gundapusunil
%X Recent technological advancements in the Internet and Social media usage have resulted in the evolution of faster and efficient platforms of communication. These platforms include visual, textual and speech mediums and have brought a unique social phenomenon called Internet memes. Internet memes are in the form of images with witty, catchy, or sarcastic text descriptions. In this paper, we present a multi-modal sentiment analysis system using deep neural networks combining Computer Vision and Natural Language Processing. Our aim is different than the normal sentiment analysis goal of predicting whether a text expresses positive or negative sentiment; instead, we aim to classify the Internet meme as a positive, negative, or neutral, identify the type of humor expressed and quantify the extent to which a particular effect is being expressed. Our system has been developed using CNN and LSTM and outperformed the baseline score.
%R 10.18653/v1/2020.semeval-1.147
%U https://aclanthology.org/2020.semeval-1.147/
%U https://doi.org/10.18653/v1/2020.semeval-1.147
%P 1112-1119
Markdown (Informal)
[Gundapusunil at SemEval-2020 Task 8: Multimodal Memotion Analysis](https://aclanthology.org/2020.semeval-1.147/) (Gundapu & Mamidi, SemEval 2020)
ACL