@inproceedings{gundapu-mamidi-2020-gundapusunil-semeval,
title = "Gundapusunil at {S}em{E}val-2020 Task 9: Syntactic Semantic {LSTM} Architecture for {SENTI}ment Analysis of Code-{MIX}ed Data",
author = "Gundapu, Sunil and
Mamidi, Radhika",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.166/",
doi = "10.18653/v1/2020.semeval-1.166",
pages = "1247--1252",
abstract = "The phenomenon of mixing the vocabulary and syntax of multiple languages within the same utterance is called Code-Mixing. This is more evident in multilingual societies. In this paper, we have developed a system for SemEval 2020: Task 9 on Sentiment Analysis of Hindi-English code-mixed social media text. Our system first generates two types of embeddings for the social media text. In those, the first one is character level embeddings to encode the character level information and to handle the out-of-vocabulary entries and the second one is FastText word embeddings for capturing morphology and semantics. These two embeddings were passed to the LSTM network and the system outperformed the baseline model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gundapu-mamidi-2020-gundapusunil-semeval">
<titleInfo>
<title>Gundapusunil at SemEval-2020 Task 9: Syntactic Semantic LSTM Architecture for SENTIment Analysis of Code-MIXed Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Gundapu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The phenomenon of mixing the vocabulary and syntax of multiple languages within the same utterance is called Code-Mixing. This is more evident in multilingual societies. In this paper, we have developed a system for SemEval 2020: Task 9 on Sentiment Analysis of Hindi-English code-mixed social media text. Our system first generates two types of embeddings for the social media text. In those, the first one is character level embeddings to encode the character level information and to handle the out-of-vocabulary entries and the second one is FastText word embeddings for capturing morphology and semantics. These two embeddings were passed to the LSTM network and the system outperformed the baseline model.</abstract>
<identifier type="citekey">gundapu-mamidi-2020-gundapusunil-semeval</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.166</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.166/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1247</start>
<end>1252</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gundapusunil at SemEval-2020 Task 9: Syntactic Semantic LSTM Architecture for SENTIment Analysis of Code-MIXed Data
%A Gundapu, Sunil
%A Mamidi, Radhika
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F gundapu-mamidi-2020-gundapusunil-semeval
%X The phenomenon of mixing the vocabulary and syntax of multiple languages within the same utterance is called Code-Mixing. This is more evident in multilingual societies. In this paper, we have developed a system for SemEval 2020: Task 9 on Sentiment Analysis of Hindi-English code-mixed social media text. Our system first generates two types of embeddings for the social media text. In those, the first one is character level embeddings to encode the character level information and to handle the out-of-vocabulary entries and the second one is FastText word embeddings for capturing morphology and semantics. These two embeddings were passed to the LSTM network and the system outperformed the baseline model.
%R 10.18653/v1/2020.semeval-1.166
%U https://aclanthology.org/2020.semeval-1.166/
%U https://doi.org/10.18653/v1/2020.semeval-1.166
%P 1247-1252
Markdown (Informal)
[Gundapusunil at SemEval-2020 Task 9: Syntactic Semantic LSTM Architecture for SENTIment Analysis of Code-MIXed Data](https://aclanthology.org/2020.semeval-1.166/) (Gundapu & Mamidi, SemEval 2020)
ACL